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A B S T R A C T

Bonemarrow-derived humanmesenchymal stem cells (BM-hMSCs) show promise as cell-based delivery
vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant
human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the
proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors”) with those to
do not (“non-attractors”) to identify pathways that may modulate BM-hMSC homing, followed by
targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose
metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in
the stromal cells suggests microenvironmental cross-talk.
ã 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Glioblastoma (GBM) is the most common adult primary brain
tumor [1,2]. Despite an aggressive multimodal therapeutic
approach, the median survival rate is approximately one year
[2–4]. One of themajor factors contributing to the poor outcome of
GBM is the lack of therapeutics that can penetrate the blood-tumor

barrier to effectively deliver anti-glioma agents [5–8]. To circum-
vent this obstacle, we and others have utilized bone-marrow
human mesenchymal stem cells (BM-hMSCs) for targeted delivery
of anti-glioma agents, due to their intrinsic tropism for gliomas
following intra-arterial delivery [7–10]. Though the mechanisms
underlying BM-hMSC homing to gliomas remain largely unknown,
BM-hMSCs are capable of homing to xenografts derived from
commercially available “professional” glioma cell lines [7,10],
syngenic glioma models [8], and glioma stem cells (GSCs) [11].

GCSs are isolated directly from fresh tumor surgical resections
and grown as spheroids in vitro, often expressing CD133 or
CD15 cell surface markers [12,13]. These small subpopulations of
cells have stem-like properties [12,14]. GSCs are hypothesized to be
tumor-initiating cells, responsible for treatment failure due to their
stem-like properties, particularly unlimited self-renewal, and their
resistance to treatment [12,14]. GSC-derived xenografts (GSCXs),
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compared to xenografts from commercial rat and human cell lines,
offer the highest translational significance as a clinical model of
glioma. GSCs faithfully mimic both the genotype and phenotype of
the parent tumor in vivo [15]. Though GSCXs are translationally
significant [15] and are capable of eliciting BM-hMSC homing,
recent work from our group has demonstrated that not all GSCXs
elicit BM-hMSCs homing equally [11]. In that study, some GSCXs
were able to strongly attract BM-hMSCs after intra-arterial
injection, whereas others were unable to attract BM-hMSCs.
Those GSCXs that elicited BM-hMSC homing are herein termed
‘attractors’while those that do not are termed ‘non-attractors’. The
attractor and non-attractor phenotypes provide a unique oppor-
tunity to understand the mechanisms underlying BM-hMSC
homing. That understanding could eventually help identify
patients most appropriate for BM-hMSC-mediated delivery.

Previous studies have focused on soluble tumor-derived factors
such as PDGF-BB [16], SDF-1 [17], and TGF-b [11] as inflammation-
related cues for BM-hMSC homing. These studies have yielded
some insight into the mediators of BM-hMSC homing. However, to
the best of our knowledge, a mass spectrometry-based proteomic
approach has not been applied to decipher the molecular
correlates of BM-hMSC homing to GSCXs. Proteins have functions
integral to cell–cell signaling, cell structure, and metabolic
pathways. Alterations in the proteomic profiles of cells result in
the phenotypic characteristics of cancers, such as uncontrolled
growth and proliferation, invasion, and metabolic changes to
support these features [18,19]. In addition, proteomic alterations in
the tumor microenvironment may support malignancies via cross-
talk between cancer and stromal cells [20–22]. In principle, high-
resolution nLC-MS/MS should allow the distinction between
human and mouse proteins on a large scale; identified human
proteins would be derived from malignant tumor cells, while
identified mouse proteins would represent the stromal compo-
nent. Therefore, we hypothesized that alteration of the proteomic
profile of cancer and stromal cell populations between attractor
and non-attractor GSC xenografts may provide insights into key
biochemical pathways involved in the attraction of BM-hMSCs to
gliomas. We have previously performed label-free quantitative
proteomic and targeted transcriptomic studies on GSCs and GBM
cells [23–26]. For the first time, we extend these methodologies to
attractor and non-attractor GSCXs.

2. Materials and methods

2.1. Chemicals and reagents

LC–MS grade acetonitrile and water were purchased from J.T.
Baker (Philipsburg, NJ). Formic acid and radioimmunoprecipitation
assay (RIPA) buffer were purchased from Pierce (Rockford, IL).
Iodoacetamide (IAA), dithiothreitol (DTT), and ammonium bicar-
bonate were obtained from Sigma–Aldrich (St. Louis, MO).
Sequencing grade trypsin was purchased from Promega (Madison,
WI); sodium fluoride (NaF) was supplied by BDH (West Chester,
PA), and phenylmethanesulfonylfluoride (PMSF) from Calbiochem
(Darmstadt, Germany).

2.2. Animals

Male athymic nude mice (nu/nu) were purchased from the
Department of Experimental Radiation Oncology, The University of
Texas M.D. Anderson Cancer Center (Houston, TX). Animal
manipulations were done in accordance with institutional
(MDACC) guidelines under the Animal Care and Use Committee
protocols. All approved animal protocols were in compliance with
the USDA AnimalWelfare Act and the Guide for the Care and Use of
Laboratory Animals (NIH).

2.3. Glioma xenograft model

GSCs (GSC11, GSC17, GSC274, GSC268, GSC229, and GSC231)
were established as previously described [12,14]. Cells (1�106)
were implanted into mice via the screw-guide method as
previously described [27] for a total of nine attractors (GSCX17,
GSCX268, and GSCX274) and nine non-attractors (GSCX11,
GSCX229, and GSCX231) as determined from our previous study
[11] (Fig. 1).

2.4. Tissue dissection and sectioning

Animals were anesthetized by intraperitoneal injection of
ketamine/xylazine solution and sacrificed by CO2 inhalation.
Brains were removed immediately and flash frozen in liquid
nitrogen vapor and stored in�80 �C [28]. Brainswere sliced 1.5mm
thick encompassing the bolt and injection site using a brainmatrix.
Tissue punches (1.5mm diameter; Braintree Scientific, Braintree,
MA) for proteomics and transcriptomics were taken from the
tumor site within each slice and flash frozen in liquid nitrogen.

[(Fig._1)TD$FIG]

Fig. 1. Workflow for proteomic and transcriptomic analysis of GSC xenografts.
Glioma stem cells (GSCs) derived from patient tumors were intracranially
implanted into athymic mice. Three of these cell lines represent BM-hMSC homing
GSC xenografts (GSCX) (i.e., attractors; GSCX274, GSCX268, and GSCX17) and three
represent non-homing GSCXs (i.e., non-attractors; GSCX11, GSCX229, and
GSCX231). Nine biological replicates per phenotype were analyzed for statistical
inference of biological significance. Brains were removed from tumor-bearing mice
and processed for tumor tissue sampling as described in Section 2. Individual tumor
tissue puncheswereprocessed in parallel for label-free quantitative proteomics and
targeted transcriptomic microarray. Quantitative proteomic and transcriptomic
data were used to decipher underlying biological differences between the two
phenotypes (phenome).
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2.5. Protein preparation from brain

Tissue puncheswere suspended in RIPA buffer containing 2mM
NaF, 2�Halt Protease and Phosphatase Inhibitor Cocktail (Thermo-
Pierce), 25 Units of universal nuclease, and 1mM PMSF (final
concentrations). Samples were subjected to seven freeze-thaw
cycles each consisting of 90 s in liquid nitrogen and 5min on ice.
Samples were spun for 10min at 1000� g at 4 �C. The supernatant
(whole cell lysate; WCL) was removed and protein concentration
measured by BCA (Pierce, Rockford, IL). Whole cell lysates (100ug)
were precipitated with the 2D Clean-Up Kit (GE Healthcare,
Piscataway, NJ). Samples were resuspended in 25mM ammonium
bicarbonate (pH 8) with sonication for 5min. Samples were
reduced with 10mM DTT for 1h at room temperature and
alkylated with 5mM IAA for 1h at room temperature in the dark.
Proteins were digested overnight with trypsin 1:50 (w/w) at 37 �C.

2.6. Nano liquid chromatography–mass spectrometry

Each individual sample (nine per phenotype) consisting of three
biological replicates per cell line were dissolved in 0.1% FA/5% ACN
(v/v) and run in a block-randomized fashion (www.random.org)
[29]. Chromatographic separations were performed with a nano-
LC chromatography system (Easy-nLC 1000, Thermo Scientific) [183_TD$DIFF]

coupled online to a hybridmass spectrometer consisting of a linear
quadrupole ion trap and an Orbitrap (LTQ-Orbitrap Elite, Thermo
Fisher Scientific[184_TD$DIFF]). Samples were loaded on a C18 trap column
100mm ID�2 cm (New Objective) for online desalting and eluted
from a PicoFrit1 (75mm ID�15mm tip) column packed with
10 cm ProteoPep II (5mm, 300Å, C18, New Objective) with the
following gradient at 250nL/min: 5% solvent B for 5min; 35% B
over 139min; 95% B over 26min followed by isocratic at 95% B for
10min. Mobile phases were 0.1% formic acid in water (A) and 0.1%
formic acid in acetonitrile (B). The instrument was operated in
positive ion mode for data-dependent analyses (DDA), automati-
cally switching between survey scans (MS) at m/z 350-2000 ac-
quired in the Orbitrap (60,000 atm/z 400) in profile mode andMS/
MS scans in the Orbitrap in centroid mode (15,000 atm/z 400). For
each sample, the five most abundant precursor ions above a
10,000 count threshold were selected from each survey scan (MS)
for HCD fragmentation (isolation width �2.0Da, default charge
state of 4, normalized collision energy 30%, activation Q 0.250, and
activation time 0.1 s as previously described [23,30]). Ion injection
times for the MS and MS/MS scans were 500ms each. The
automatic gain control targets for the Orbitrap were 1�106 for the
MS scans and 2�105 for MS/MS scans. Dynamic exclusion
(�10ppm relative to precursor ion m/z) was enabled with a
repeat count of 1, maximal exclusion list size of 500, and an
exclusion duration of 60 s. Monoisotopic precursor selection
(MIPS) was enabled, and unassigned and singly charged ions were
rejected. The following ion source parameters were used: capillary
temperature 275 �C, source voltage 2.2 kV, and S-lens RF level 40%.
Spectra were acquired using Xcalibur, version 2.0.7 (Thermo
Fisher).

2.7. Protein identification

Data files (.raw) were imported into Progenesis LC-MS (version
4.1; Nonlinear Dynamics, Newcastle upon Tyne, U.K) for spectral
alignment based on m/z and retention time using a proprietary
algorithm and manual landmarks using one sample (‘Mix Control’
an equal protein mixture from each sample) as the reference, as
previously described [31]. The top 5 spectra for each feature were
exported as a combined .mgf file, [185_TD$DIFF] searched with PEAKS (version 6,
Bioinformatics Solutions Inc., Waterloo, ON) against a merged
UniProtKB/SwissProt Human Mouse database of canonical

sequences (March 2014; 24,541 entries) appended with the
Common Repository of Adventitious Proteins (cRAP) contaminant
database (February 2012 version, The Global Proteome Machine,
www.thegpm.org/cRAP/index.html). The Human [186_TD$DIFF]and Mouse cRAP
database enabled us to identify peptides belonging to either
human or mouse as well as peptides with shared sequences in a
single database search. PEAKS automatically generated a decoy-
fusion, which appended a decoy sequence to each protein for
calculation of FDR [32]. All modifications in the Unimod database
were considered in the PEAKS search [23,33]. PEAKS searcheswere
performed with a precursor ion mass tolerance of 10ppm and
fragment mass tolerance was 0.1Da. Trypsin was specified as the
proteolytic enzyme and a maximum of twomissed cleavages were
allowed.

Search results with score [187_TD$DIFF](-10log P) of 30 or higher, with an
estimated FDR value of <1% (at the protein level) as calculated by
PEAKS, were exported from PEAKS and re-imported into [188_TD$DIFF]Pro-
genesis for manual monoisotopic peak correction. Deamidated
peptides identified in the PEAKS database search were used to
direct manual monoisotopic peak correction, which is done to
correct for misassigned monoisotopic m/z values not corrected in
an automated fashion by Progenesis. After monoisotopic peak
correction, the top 5 spectra for each feature were exported as a
combined .mgf file, [185_TD$DIFF] searched with PEAKS and imported into [188_TD$DIFF]

Progenesis for manual conflict resolution. Conflict resolution is the
process whereby we ensure that a single peptide sequence is
assigned to a single feature, by removing lower scoring peptide
assignments to generate a final peptide list with raw abundances
as previously described [34]. The peptide list was exported as raw
abundances to Excel for data analysis. Themass spectrometric data
have been deposited in ProteomeXchange (http://proteomecen-
tral.proteomexchange.org) via the PRIDE partner repository [35]
with the dataset identifier PXD001778.

2.8. Proteomic data analysis

All peptides listed as having shared or group accessions, or
listed with multiple accessions, were removed—a total of
625 peptides. In this process, peptide sequences belonging to
single protein identifications were kept for further statistical
analysis while those belonging to more than one (i.e., “shared or
group accessions, or listed with multiple accessions”) were
removed. This criterion (Paris guidelines) increases the confidence
of protein quantification [36,37]. Next, all post-translational
modifications except carbamidomethylation of cysteine and
oxidation of methionine were removed. Mouse and human
proteins were sorted and separated before data analysis. Proteins
identified as exogenous contaminants, such as keratin and trypsin,
were eliminated. Finally, all protein identifications required a
minimum of two unique peptides. Proteins without at least two
peptides were excluded from further analysis. A total of two tables
of peptide intensities (human WCL and mouse WCL) were
imported into custom scripts for analysis (Supplementary
Tables S1 and S2). All calculations were done using SAS PROC
MIXED with restricted maximum likelihood estimations (SAS
version 9.4, SAS Institute, Cary, NC), and type 3 sums of squares
(where appropriate). In all cases, the intensity of each peptide ion
species was normalized by standardization across all measure of
that peptide species. Standardization is a calculation in which the
average intensity for all measures of a given peptide is subtracted
from each measure, and the resulting difference is then divided by
the standard deviation of all measures of the peptide. Missing
values, defined as the lack of a reported intensity for a given
peptide in a given LC–MS/MS run (i.e., a peptide observed in one
replicate but not in another), were assumed to be missing at
random and were excluded from the analysis. A random effects
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model was used to partition variation in the peptide intensities
between treatment levels (attractors and non-attractors), the three
biological replicates, and the three analytical replicates. Supple-
mentary Tables S3 and S4 contain the results for each protein from
each analysis human and mouse, respectively. Next, a hierarchical
linear model was used to test for differences in mean intensity
between the attractors and non-attractors, while allowing each
biological replicate to have its ownoverallmean. The p-values from
each analysis were corrected for multiple hypothesis testing with
an FDR (q) of �0.05 considered significant [38]. The same model
was run on the log2 converted raw intensities. The differences in
estimatedmean between attractor and non-attractor in these tests
were taken as an estimate of the overall fold change within the
treatment. Supplementary Tables S3 and S4 list the test statistics
and effect estimates for each protein interrogated within each
analysis. The q-value reported throughout the text is the
instantaneous q value (q_inst; Supplementary Tables S3 and S4),
which is the FDR if the given protein were taken as the least

significant protein differentially expressed. For visualization of
data, positive fold change values are indicative of an increase in
protein expression in attractors relative to non-attractors and
negative fold change values are indicative of a decrease in protein
expression in attractors relative to non-attractors. Perseus
software (version 1.5.16) was used for visualization the data [39]
and the Database for Annotation, Visualization and Integrated
Discovery (DAVID version 6.7) for interrogation of enriched [40,41]
KEGG pathways [42,43] with a false discovery rate (FDR) of <10%
using Benjamini–Hochberg p-value correction (q-value) [38]. The
relative log2 protein fold changes were matched to hexadecimal
color codes as previously described [44]. A fold change of
+3 corresponded to #FF0000, 0 to #FFFF00 and �4 to
#00FF00 for human proteins. A fold change of +3 corresponded
to #FF0000, 0 to #FFFF00 and �1.9 to #00FF00 for mouse proteins
The proteins and their corresponding color codes were then
mapped onto metabolic pathways available in KEGG using KEGG
Mapper [42,43].

[(Fig._2)TD$FIG]

Fig. 2. Volcano plots (q-value vs log2 fold change) for human tumor and mouse stromal proteins. (A) Logarithmic ratios of attractor (N=9) vs non-attractor (N =9) human
tumor proteins plotted against the q-value (where q�0.5 is considered significant; horizontal line) of the hierarchical linear model. Positive fold change values are indicative
of an increase in protein expression and a negative fold change value a decrease in protein expression in attractors relative to non-attractors. (B) Logarithmic ratios of attractor
(N =9) vs non-attractor (N=9) mouse stroma proteins plotted against the q-value (where q�0.5 is considered significant; horizontal line) of the hierarchical linear model.
Positive fold change values are indicative of an increase in protein expression and a negative fold change value a decrease in protein expression in attractors relative to non-
attractors. (C) Number of quantified human and mouse proteins. (D) Employing a hierarchical linear model (see Section 2) 552 human and 299 mouse proteins were
significantly differentially expressed between the attractor and non-attractor phenotype. All proteins are listed in Supplementary Tables S3 and S4 with their respective q-
values and log2 fold change.
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2.9. Transcriptomics

A custom targeted microarray containing functional human
gene sets related to glioma biology was used to measure the
relative expression of epigenetics-, radiation sensitivity-, ion-,
metabolomics-, ER stress-, and unfolded protein response-,
ubiquitination, chromosome 19-, and all cloned glycogene-related
transcripts compiled from the NCBI human sequence and CAZy
(www.cazy.org) databases totaling 2577 transcripts [45–47]. Each
transcript-specific oligonucleotide was spotted in triplicate on the
microarray. A full description of the targeted transcriptomics
platform dynamic range, accuracy, reproducibility as well as
stringency and quality control measures is available in Kroes et al.
[45,46]. The relative quantitation of individual transcript abun-
dance in 18 GSC xenografts (N =9 attractors; N =9 non-attractors)
was compared. Briefly, total RNA from each of the defined GSC
xenografts was extracted and purified for amplification then
labeled with fluorescent dye Cy5 and a universal human reference
(Stratagene, La Jolla, CA) was labeled with Cy3 [48]. Microarray
chips were scanned using a high-resolution confocal laser

(ScanArray 4000XL; Packard Biochip Technologies, Billerica, MA)
and Cy3 and Cy5 fluorescence data were analyzed for quality
control parameters [45,46] using BlueFuse (Illumina Fulbourn,
Cambridge, UK). Significance analysis of microarrays algorithm
(SAM, v4.0, Stanford University, Palo Alto, CA) [49] was used with
minimum 5000 permutations to determine statistically significant
differentially expressed genes. The significance cutoff in these
experiments was set to a FDR of<10% [45–47]. Positive fold change
values are indicative of an increase in transcript expression in
attractors relative to non-attractors and negative fold change
values are indicative of a decrease in transcript expression in
attractors relative to non-attractors (Supplementary Table S5).

3. Results and discussion

Mouse tumor xenografts provide a valuable tool as a preclinical
model of GBM. GSC-derived xenografts (GSCXs) have a higher
translational significance compared to xenografts derived from
commonly used commercial glioma cell lines [15]. However, GSCXs
exhibiting differential attraction of for BM-hMSCs have not been

[(Fig._3)TD$FIG]

Fig. 3. Analysis of significant human GSC xenograft proteins. (A) Unsupervised hierarchical clustering of all significant human xenograft proteins using log2 fold change
values. (B) Bioinformatic analysis of enriched KEGG pathways using DAVID functional analysis. The top 12 KEGG pathways associated with significantly differentially
expressed human proteins are shown. KEGG terms are ranked by the �log10 (q-value) after Benjamini–Hochberg p-value correction (orange line). The black bars show the
number of proteins that is common between KEGG term’s set and the respective human protein set.
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systematically studied at either the proteomic or transcriptomic
level. We utilized label-free quantitative proteomics as a reliable
technique previously employed by our lab [23,50] that is cost
effective, yields high proteome coverage, and does not suffer from
dynamic range limitations [37,51]. We also utilized a targeted
transcriptomic platform [45–47], which contains genesets related
to GBM biology, in parallel to label-free proteomics (Fig. 1). The
targeted microarray was used to overcome the limitations of mass
spectrometric detection of low abundance proteins (e.g., glycosyl-
ation-related enzymes) by measuring gene expression. For
statistical rigor of biological significance, nine biological replicates
were analyzed per phenotype.

Employing a hierarchical linear model, 552 and 299 human and
mouse proteins, respectively were significantly differentially
expressed between attractors and non-attractors (Fig. 2). A
hierarchical linear model allows us to correctly support the known
variancestructurewithinthedatawiththeadvantageofbeingableto
detecteventsofa smallmagnitudecompared to simplerapproaches,
thus, increasing the number of statistically differentially expressed
proteins. Fold changes of small magnitude may have a significant

impact on a biological system in reactions with catalytic effect such
asmetabolism, examined here, particularly if the change occurs at a
rate-limiting step. Small magnitude changes in proteins may be
critically relevant differences between the two phenotypes.

Within the human tumor protein dataset, 46 proteins were
increased in the attractor phenotype and 506 were decreased
relative to non-attractors. The mouse protein dataset, which
represents thestromal(brainparenchyma)component,206proteins
are increased in the attractor phenotype and 93 were decreased
relative to non-attractors (Fig. 2 [189_TD$DIFF]). We interrogated the KEGG
biological pathways using DAVID [40–43] for the 552 differentially
expressed human tumor proteins in the heatmap generated by
Perseus (Fig. 3A). The top 12 KEGG pathways associated with
differential protein expression using a false discovery rate (FDR) of
<10% (Benjamini–Hochberg q-value) are displayed with corre-
sponding protein counts (Fig. 3B). Among the top-ranked KEGG
pathways were fatty acid metabolism, glycolysis/gluconeogenesis,
and the pentose phosphate pathway (PPP). Next we examined the
differentially expressed mouse proteins (Fig. 4A) representing the
stromal (brain parenchyma) component. DAVID analysis of KEGG

[(Fig._4)TD$FIG]

Fig. 4. Analysis of significant xenograft mouse stromal proteins. (A) Unsupervised hierarchical clustering of all significant xenograft mouse stromal compartment proteins
using log2 fold change values. (B) Bioinformatic analysis of enriched KEGG pathways using DAVID functional analysis. The top 12 KEGG pathways associatedwith significantly
differentially expressedmouse proteins are shown. KEGG terms are ranked by the�log10 (q-value) after Benjamini–Hochberg p-value correction (orange line). The black bars
show the number of proteins that is common between KEGG term’s set and the respective mouse protein set.
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[(Fig._5)TD$FIG]

Fig. 5. Human GSC xenograft protein expression values mapped onto the glycolysis/gluconeogenesis KEGG pathway. The human protein expression profiles from GSCXs
mapped onto the fatty acidmetabolism pathway highlights protein fold changes in attractors relative to non-attractors. Themeasured protein fold changeswere converted to
color andmapped onto KEGG pathways. Proteins up-regulated in attractors relative to non-attractors aremarked in red, down-regulated proteins in attractors relative to non-
attractors are marked in green.
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biological pathways [40–43] revealed glycolysis/gluconeogenesis
and the PPP among the top-ranked KEGG pathways (Fig. 4B).

3.1. Fatty acid metabolism

In order to determine how fatty acid metabolism differs
between attractors and non-attractors, the log2 protein fold change
values were converted to hexadecimal color codes and mapped
onto the KEGG pathway [44]. The mapped protein expression data
showed an overall decrease in the KEGG fatty acid metabolism
pathway in the attractors relative to the non-attractors (Fig. S1).
Docosahexaenoic acid (DHA), one of the most abundant fatty acids
in the CNS [52,53], is a member of this pathway. As seen in Fig. S1,
there is a decrease in relative expression of proteins involved in
DHA synthesis in attractors (e.g., trifunctional enzyme subunit
alpha and very-long-chain enoyl-CoA reductase), as well as many
upstream enzymes indirectly involved in DHA synthesis including:
acetyl-CoA acetyltransferase, hydroxyacyl-coenzyme A dehydro-
genase, enoyl-CoA hydratase, and fatty acid synthase.

DHA is a precursor to many bioactive molecules with anti-
inflammatory effects [54–58]. Our lab has previously shown, using
ESI–MS/MS and MALDI-IMS followed byMALDI-MS/MS, that DHA,
the precursor to inflammatory-resolvingmolecules, is decreased in
the attractor phenotype [59]. The fact that the proteomic data from
our xenografts is congruent with our previous lipidomic analysis
on these samples adds a level of confidence to our dataset,
providing orthogonal validation to the lower expression levels of
the DHA observed in attractors. The decreased levels of DHA and
the proteins responsible for its synthesis may be a key component
to the homing permissive environment of attractors [59].

3.2. Glycolysis and the pentose phosphate pathway

Glycolysis is a cancer-related pathway [18,19], and its enrich-
ment in our bioinformatic analysis via DAVID is a validating
measure in our xenograft tumor samples. A characteristic feature
of transformed or malignant cells is a metabolic shift toward
glycolysis, first described by Otto Warburg [60,61]. The glycolytic
shift in tumor cells is independent of defects in mitochondrial
respiration and oxygen availability [18,19]; gliomas are no
exception to this phenomenon. GBM cells have been observed
to convert 90% of glucose to lactate and alanine via glycolysis in
vitro [62]. To understand the regulated changes in glycolysis
between attractors and non-attractors, we mapped the log2
protein fold change values of human tumor proteins to the KEGG
glycolysis pathway. We found that in the attractors, the glycolytic
pathway was down-regulated relative to non-attractors (Fig. 5).
The attractor stromal microenvironment, on the other hand, had
reciprocal expression of glycolysis. Glycolysis was up-regulated in
attractors relative to non-attractors (Fig. S3A).

The down-regulation of glycolysis in attractors prompted us to
consider the status of other glucose-dependent pathways. Glucose,
upon entering the cell through glucose transporters and phosphor-
ylated by hexokinases, may also be consumed by glucose-6-
phosphate dehydrogenase (G6PDH) and converted to 6-phospho-
gluconolactone, thus entering the PPP [63]. The PPP is a biochemical
pathway that metabolizes glucose to produce NADPH for fatty acid
metabolism, redox reactions, and ribose 5-phosphate for nucleotide
synthesis. Up-regulation of the PPP has been posited to provide a
selective advantage to cancer cells [64,65].Weexamined the protein
expression profile of GSCXs in the PPP, which notably was also a
KEGG pathway enriched in our analysis (Fig. 3B). Mapping the log2
protein fold change values of human tumor proteins to the KEGG
pentose phosphate pathway, we observed that the PPP was also
down-regulated in attractors relative to non-attractors (Fig. S2).
Notably, G6PDH, which catalyzes the first and rate-limiting step in

thePPP, and6-phosphogluconolactonase, anotherkeyenzyme inthe
oxidative branch, were decreased in attractors (Supplementary
TableS3). Transketolase, a componentof thenon-oxidativebranch in
the PPP, was also decreased in attractors (Fig. S2) [18,63]. The down-
regulation of the PPP would suggest compromised defense against
reactive oxygen species (ROS) in attractors compared to non-
attractors. Consistent with this, we found a down-regulation of
glutathione S-transferase and superoxide dismutase in attractors
relative to non-attractors. In addition, the down-regulation of the
PPP in attractors would reduce the NADPHproduction necessary for
fatty acid synthesis [66]. Congruent with this, the fatty acid
metabolism pathway, as described above, is concomitantly de-
creased in attractors relative to non-attractors.

Similar to glycolysis, the attractor stromal microenvironment
had reciprocal expression of glucose-dependent metabolic path-
way, PPP (Fig. S3B). Taken together, our findings suggest
microenvironmental cross-talk between the tumor and the stroma.
This is supported by several reports of the microenvironment
supporting tumor growth, survival, and metastasis [20–22]. The
possibility of stromal cell support via reciprocal expression of
glucose metabolism may point to a role for the stroma as an
important component in BM-hMSC homing.

3.3. Glycosylation targeted transcriptomics

Glucose is the primary carbon source for fatty acid metabolism,
glycolysis, and the PPP [18]. With the down-regulation of all three
of these pathways in attractors, it is possible, though not mutually
exclusive, that either attractors have decreased glucose transport
across the cell membrane, or attractors are shunting glucose
toward the hexosamine biosynthesis pathway, which is responsi-
ble for generating activated sugars for glycosylation [67–69]. To
gain insight into the latter possibility, that glucose metabolism
may be shifted toward the hexosamine pathway, we used a custom
microarray platform containing 2577 transcripts [45,46].

Microarray analysis revealed 254 genes that were significantly
differentially expressed at <10% FDR. Of the 254 differentially
expressed transcripts, 121 had increased expression in attractors
relative to non-attractors and 133 had decreased expression in
attractors relative to non-attractors (Supplementary Table S5).
Glutamine fructose-6-phosphate amidotransferase 1 (Gfpt1),
which controls the flux of glucose into the hexosamine biosynthe-
sis pathway along with (Gfpt2), was down-regulated (�1.28-fold)
in attractors. Yet, enzymes involved in the N-linked glycosylation
pathway synthesis, dolichol-phosphate mannosyltransferase sub-
unit 1 (DPM1) and dol-P-Man:Man(7) GlcNAc(2)-PP-Dol alpha-1,6-
mannosyltransferase (ALG12), had increased expression in attrac-
tors relative to non-attractors (Supplementary Table S5) [69].
Dolichyl-diphosphooligosaccharide-protein glycosyltransferase
(STT3B), which catalyzes the transfer of the high mannose lipid-
linked oligosaccharide to nascent polypeptides, was up-regulated
1.33 fold in attractors [69]. Enzymes involved in the biosynthesis of
complex-type N-glycans beta-1,4-galactosyltransferase 5
(B4GALT5) and the commitment step of complex N-glycans,
alpha-mannosidase 2� (MAN2A2) were 1.27 and 1.21 fold up-
regulated, respectively. The transcript NGLY1 encoding the enzyme
commonly known as PNGase F, which removes N-linked glycans,
was down-regulated (�1.35 fold) in attractors relative to non-
attractors.

The expression of these significant human glycogenes found in
our targeted transcriptomicdataset [190_TD$DIFF]provides evidence thatN-linked
glycosylation is increased in attractors relative to non-attractors
based [191_TD$DIFF]on key enzymes responsible for N-glycan processing, the
commitment step toward complex-type N-glycans, and the transfer
to nascent proteins. Additionally, the enzyme responsible for N-
glycan hydrolysis (NGLY1) was down-regulated. The relevance of
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cell-surface glycosylation in brain tumors [70] warrants further
glycomics-based investigation of the tumor cell surface.

4. Conclusions

We showed a decrease in the human proteins responsible for
fatty acid metabolism in attractors compared to non-attractors.
The predicted outcome of this would be a decrease in the
biosynthesis of DHA in attractors, which supports our previous
lipidomic study [59]. We also show an overall down-regulation in
glucose-dependent metabolic pathways – glycolysis and the PPP –

in attractors relative to non-attractors. A consequence of such
regulation is decreased NAPDH for fatty acid metabolism and
homeostasis of ROS. Despite the decrease in glucose-dependent
metabolic pathways, we found an increase in glyco-transcripts
involved in glucose-dependent N-linked glycosylation in attractors
relative to non-attractors. Finally, our data reveals an up-regulation
of glucose-dependent metabolic pathways in the mouse stromal
component in attractors relative to non-attractors, in contrast to
the human tumor proteins. Taken together, these results implicate
lipids and ROS in glioma-induced BM-hMSC homing and suggest a
role for tumor microenvironmental cross-talk.
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