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In this paper, we introduce the notion of property [K]* which implies property [K], and we 

show the following: Let X be a continuum and let w be any Whitney map for C(X). Then the 

following are equivalent. (1) X has property [K]*. (2) C(X) has property [K]*. (3) The Whitney 

continuum K’(t) (0~ t<w(X)) has property [K]*. 

As a corollary, we obtain that if a continuum X has property [K]*, then C(X) has property 

[K] and each Whitney continuum in C(X) has property [K]. These are partial answers to Nadler’s 

question and Wardle’s question ([lo, (16.37)] and [ll, p. 2951). 

Also, we show that if each continuum X,, (n = 1,2,3,. .) has property [K]*, then the product 

n X,, has property [K]*, hence C(fl X,,) and each Whitney continuum have property [K]*. It 

is known that there exists a curve X such that X has property [K], but X XX does not have 

property [K] (see [ll]). 

AMS (MOS) Subj. Class.: 54B20, 54C10 

Hyperspaces Whitney Continuum 

property [K 1 eqi-LC” 

Introduction 

By a continuum we mean a compact connected metric space. For given continuum 

X with metric d, by the hyperspaces of X we mean 

2x = {A c X 1 A is nonempty closed subset of X} 

and 

C(X) = {A E 2x 1 A is connected}, 

which have the Hausdor-metric dH defined by d,(A,B)=inf{e>O]Bc U(A;e) 

and A c U( B; E)}, where A, BE 2x and U(A; E) is the s-neighborhood of A in X. 

A mapping w : C(X) + [0, w(X)] is called a Whitney map for C(X) provided that 

the following conditions are satisfied: 

(1) w({x}) =0 for each XE X, and 

(2) if A, BE C(X), AC B and A# B, then w(A)<w(B). 

In [ 121, Whitney showed that there always exists a Whitney map on any continuum. 

Then w-‘(t) (Ost<w(X)) is called a Whitney continuum. Let aEAEC(X). We 

shall say that X has property [K] with respect to (A, a) if X satisfies the following 
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condition: given any 8 > 0, there exists S(E) > 0 such that if 6 E X and d (a, b) < S(E), 

then there exists B E C(X) such that b E B and dH (A, B) < F. 

If X has property [K] with respect to each (A, a), we say that X has property [K]. 

The notion of property [K] is important in hyperspaces theory (see the references). 

In [lo, (16.37), p. 5581, Nadler had the following questions: 

(a) If a continuum X has property [K], then does 2x have property [K]? 

(b) If a continuum X has property [K], then does C(X) have property [K]? 

(c) If 2x has property [K], then does C(X) have property [K]? 

(d) If C(X) has property [K], then does 2x have property [K]? 

In [2], W.J. Charatonik showed that there is a curve X such that X and C(X) have 

property [K], while 2x does not have property [K]. Hence (a) and (d) are answered 

in the negative. Thus only two questions (b) and (c) have remained open in this 

area. Also, it is important to note that property [K] is not closed concerning the 

operation of product, i.e., there is a continuum X such that X has property [K], 

but X x X does not have property [K] (see [ 111). In fact, the curve in [2] is the 

same as in the curve in [ll]. This curve is described in Example 3.6. 

For a given concrete continuum Y, it is complicated to determine whether C(Y) 

has property [K] or not. For example, in [2, p. 4581, Charatonik used the 

following fact without proof: if X is the curve in [2], then the cone of X has 

property [K]. But it seems that the proof is not easy. In fact, the author does not 

know whether Y x [0, l] and the cone of Y have property [K] or not, when Y has 

property [Kl. 
In this paper, we introduce the notion of property [K]” and we show the following: 

Let X be a continuum and let w be any Whitney map for C(X). Then the following 

are equivalent. 

(1) X has property [K]“. 

(2) C(X) has property [K]“. 

(3) The Whitney continuum w-‘(t) (0~ t< w(X)) has property [K]*. 

As a corollary, we have that if X has property [K]*, then C(X) and each Whitney 

continuum 6_-’ (t) have property [K]. These are partial answers to Nadler’s question 

[ 10, (16.37)] and Wardle’s question [ 11, p. 2951. Also, we show the following: 

Let X,, be a continuum (n = 1,2,. . .). Then the following are equivalent. 

(1) Each X,, has property [K]“. 

(2) The product n X, has property [K]“. 

This implies that property [K] is not equal to property [K]*. By definitions, we 

can easily see that property [K]” implies property [K] (see (1.1)). 

1. Property [K]* 

Let X be a continuum and let a E A E C(X). A finite sequence p,, p2, . . . , pm of 

points of X is called an ~-chain (& > 0) if d(p,, p,,,) < F for each i. Let d be a finite 

open covering of A. A finite sequence U, , U2, . . . , U,,, of & is called a chain if 
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U, n lJi+, # 0 for each i = 1,2,. . . , m - 1. For each XE A, we consider the set 

Chain,,(&) of all finite chains (U, , U,, . . . , U,) of d with a E U, and x E U,,,. 

Let F > 0. Consider the following conditions (A, a, E)*: there exists 8(e) > 0 such 

that if b E U(a, S(e)), then for each x E A and 5 > 0 there is a finite open covering 

ti of A with mesh ti < E such that if (CJ,, U,, . . . , Um) E Chain,,(&), then there is 

a c-chain b = b:, bf, . . . , bf”‘, b:, bz, . . . , b;‘*‘, . . . , bk, bf,,, . . . , b$“’ of points of X 

such that d,(bT, Cl U,) < B for each j = 1,2,. . . , m and k = 1,2,. . . , i(j). We say 

X has property [K]* with respect to (A, a) if X satisfies the condition (A, a, E)* 

for each B > 0. Also, we say X has property [K]” if X has property [K]” with 

respect to each (A, a) (a E A E C(X)). 

Proposition 1.1. Zf a continuum X has property [K]” with respect to (A, a), then X 

has property [K] with respect to (A, a), where a E A E C(X). Hence, if X has property 

[K]“, then X has property [K]. 

Remark 1.2. In Proposition 1.1, the converse assertion is not true. The curve X in 

[2] or [ll] has property [K], but not property [K]” (see Example 3.6). 

A continuum X is equi-homogeneous with respect to mappings if for any F > 0 

there is 8 > 0 such that if a, b E X and d(a, b) < 6, then there is a mappingf: X + X 

such that f(a) = b and d(f(x), x)< F for each XE X. Clearly, if X is equi- 

homogeneous with respect to mappings, X has property [K]*. By the theorem of 

Effros [13, (2.1)], we can easily see that each homogeneous continuum has property 

[K]“. Also, each Peano continuum has property [K]*. Note that the sin( l/x)-curve 

has property [K]*. 

We refer readers to [ 51 and [lo] for hyperspaces theory. 

2. Property [K]* and equi-LC” mappings 

A mappingf: X + Y between metric spaces is equi-LC” provided thatfis surjective 

and for given x E X and a neighborhood V of x in X there is a neighborhood U 

of x in V such that if a, b of-‘(y) n U for some y E Y, then there is a path cr(a, b) 

from a to b in f-‘(y) n V. 

First, we show the following: 

Theorem 2.1. Let f: X + Y be an open mapping between continua. Suppose that f is 

equi-LC’. Let a E AE C(X). Zf Y has property [K]* with respect to (f(A),f(a)), 

then X has property [K]* with respect to (A, a). 

Proof. Let E > 0. Sincefis equi-LC’, there is F’> 0 (7e’< &) such that if x, x’E~~l(y) 

for some y E Y and d(x, x’) < 7e’, then there is a path (Y(x, x’) from x to x’ inf-‘(y) 

such that diam (Y (x, x’) < 4~. 
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For each x E A, define the following: set 2, by Z, = U(x, E’) n A. Since A is 

compact, there are points x1, x2,. . . , x, of A such that lJy=, U(x,, .a’) 3 A. Since f 

is an open mapping, there is y > 0 such that if y, y’~ Y and d(y, y’) < y, then 

4, (f-‘(y)J-‘(y’)) < 8’. 
Since Y has property [K]* with respect to (f(A),f(a)), there is 6(y) > 0 satisfying 

the condition (f(A),_/-(a), y)*. Take 6>0 (S<E’) such that f(U(a,s))c 

U(f( a), 6(y)). Suppose that b E U(a, 6). Let x E A and let 5 > 0. Choose 5’> 0 such 

that if y, y’~ Y and d(y, y’) < l’, then dH(f’(y),f-‘(y’)) < &‘. Choose a finite open 

covering ti of f(A) with mesh d<y such that if (U,, U,,..., U,,,)E 

Chainf(,,f,,,(&), then there is a l’-chain f(b) = y:, y:, . . . , yf”‘, . . . , y!,,, . . . , y:“” 

of points of Y satisfying that d,(yr, Cl U,) < y for each j, k. Consider the set 

a={DID=f-‘(U)nZx,#0fori=1,2 ,..., II and U E a}. Then 93 is a finite open 

covering of A with mesh 5% < E. 

Suppose that (Dl , D2, . . . , D,,,) E Chain,,(%). Set Di =f’( Ui) n Zx,zc,, (i = 

1,2 ,..., m). Then UinUi+,Z(d (i=1,2 ,..., m-l), hence (U,,U2 ,..., U,)E 

Chain,(,,,,,,(N. Thus there is a l’-chain f(b) = yi, y:, . . . , yf”‘, . . . , yx, 
2 

Ym, . . ., Yin Icrn) of points of Y such that dH(yT, Cl U,) < y for each j = 1,2,. . . , m. By 

the choice of y, we have a finite sequence b =p:, pf, . . . , pf”‘, . . . , p!,,, p’,, . . . , ~2”’ 

of points of X such that each p: belongs to f-‘(yr) and d(x,(j,,p,“) <2&I. Let CT 

be the component of Cl U(p,f‘; $E) nf-‘(yr) which contains p;. Note that b E C:, 

cfc u(xn(j); &I, Cl U(p,:; 7F’)nf’(yr)c Cf and d(pT,pT+‘)<4&’ and 

I f 
y3 y2 Yl 

Fig. 1 
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d(pf’j’, pj,‘) (6~‘. Since dH(j-‘(y~),f’(y~+‘)) < l and dH(f~‘(y~“‘),f’(yf+‘)) < 

f; we can choose a point qf of Cf such that d(pT, q:+‘) < d and d(pj”‘, q;+‘) < i’. 

Since each Cy is connected, we can easily choose a c-chain b = b:, 

b;, . . . , b;“‘, . . . , b;, . . . , b?“’ of points of X such that dH( b:, Cl 0,) < E for each 

j-1,2,..., m and k-1,2,..., i’(j). This implies that X satisfies the condition 

(A, a, E)*. Hence X has property [K]* with respect to (A, a). 0 

Example 2.2. In the statement of Theorem 2.1, we cannot omit the condition that 

f is equi-LC”. Let X be the two-dimensional continuum as below (see Fig. 1) and 

Y = [0, 11. Then there is an open mapping f: X + Y such that f-‘(y) is an arc for 

each y E Y. Since Y is a Peano continuum, Y has property [K]*, but X does not 

have property [K]. 

Theorem 2.3. Let f: X’+ X be an open monotone mapping between continua. If X’ 

has property [K]*, then X has property [K]“. 

Proof. Let a E A E C(X) and let E > 0. We shall show that X satisfies the condition 

(A, a, E)*. Set A’=_/-‘(A) and choose a point a’~_/-‘(a). Take a positive number 

E’ such that if x, , x2 E X’ and d (xl, x2) < E’, then d (f(x,),f(x,)) < E. Since X’ has 

property [K]“, we can choose a neighborhood U’ of a’ in X’ satisfying the condition 

(A’, a’, e’)*. Set U =f( U’). Then U is a neighborhood of a in X. Suppose that 

b E U. Let x E A and let 5 > 0. Choose l’> 0 such that if x’, x” E X’ and d (x’, x”) < c’, 

then d(f(x’),f(x”)) < 5. Choose a point b’Ef_‘(b) n U’. Let x’~f’(x). Then there 

is a finite open covering &’ of A’ with mesh &‘c E’ such that if (Ui, U;, . . . , UL) E 

Chain,,,J&‘), there is a <‘-chain b:, bf, . . . , bf”‘, . . _, b!,,, . . . , b$“’ of points of X’ 

such that d,(b,k, Cl Uj) < E’. 

For each y E A, choose an open neighborhood U, of y in A such that f’( u,) c 

IJ { U’I U’nf’(y) # 0, U’E a’} and u, = n 1.0 U’) I utnf’(_Y) f 0, lJ’E 4. 
Since A is compact, there are points y, , y,, . . . , y, of A such that lJ:=, U,, = A. Set 

& = {U 1 U = U,, (i = 1,2, . . . , n)}. Suppose that (U’, U,, . . . , .!I,,,) E Chain,,(d). By 

the choice of U,:, we can see that there is a chain (U{, U;, . . , Uk) of d’ such that 

U’E U; andf( Uj) 1 Uj. Since_/-‘(x) is a continuum, there is a chain (UA, . . . , U:) 

of &I such that U;nf’(x)#@ (k>m) and x’EU:. Then 

(Ui, U;, . . . , Uk, . . . , U:) E Chain,,,(&). H ence there is a Cl-chain b’= b:, 

b:, . . . , b;“‘, . . . , b;, . . . , b:“’ of points of X’ such that dH (bj, Cl Uj) < E’. Then 

b=f(bt), f(b:) ,..., f(bi”‘) ,..., f(b!,,) ,..., f(bz”‘) is a c-chain of points of X 

such that dH(f(b:), Cl Uj) < E. This implies that X satisfies the condition (A, a, E)*. 

Hence X has property [K]*. 0 

Now, we need the following: 

2.4 (cf., [6, (2.3)]). Let X be a continuum and let o be any Whitney map for C(X). 

Then for any E > 0 there exists 6 > 0 such that ifA, B E C(X), [w(A) - w( B)I < S and 

B c U(A, a), then d,(A, B) < E. 
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2.5 [8, Lemma I]. Let X be a continuum and let w be any Whitney map for C(X). 

Let O< t < w(X). If A, BE Y’(t) such that An B # 0, then there is a path CY in 

[w-‘(t)n C(Au B)] such that endpoints ofa are A and B. 

Theorem 2.6. Let X be a continuum and let w be any Whitney map for C(X). Then 

the following are equivalent. 

(1) X has property [K]*. 

(2) C(X) has property [K]“. 

(3) Each Whitney continuum o-‘(t) (OS t < o(X)) has property [K]“. 

Proof. First, we shall show that (1) implies (2). Consider the following subset of 

xx C(X): 

Then Z is a continuum. 

Let p : Z + X be the projection, i.e., p((x, A)) = x. By Wardle’s result [ll, (2.2)], 

p is an open mapping. Also, By 2.4 and 2.5, we can see that p is equi-LC’. By 

Theorem 2.1, Z has property [K]“. Let q:Z+ C(X) be the projection, i.e., 

q((x,A))=A. Since qP1(A)={(x,A)( x E A} for each A E C(X), we can easily see 

that q is an open monotone mapping. By Theorem 2.3, C(X) has property [K]“. 

Next, we shall show that (1) implies (3). Consider the following set in X x w-‘(t): 

Z’={(x,A)IxEX,AE/‘(t)andxEA}. 

Then Z’ is a continuum. By the similar arguments as above, we see that o-‘(t) has 

property [K]*. 

Clearly, (3) implies (1). 

The remainder of the proof follows from the next lemma. 

Lemma 2.7. Let X be a continuum. If C(X) has property [K]*, then X has property 

[Kl*. 

Proof. Let a AE C(X) let F Since C(X) property [K]“, is a 

Ou of in C(X) the condition {a}, e)* c X 

C(X)). Set = 021 Suppose that E U. l> 0 let x A. Then is 

a open covering of A mesh & E such if (U, U,, _ . , E 

Chain,,(&), there is b-chain {b} B:, B:, . . Bi”‘, . . , BL, . . , of 

points C(X) such dH( B,k, Uj) < Then there a c-chain = 

b:, . . b;“‘, . , b;, . _ of points X such b:E B,k. that 

dH( Cl Uj) E. Hence satisfies the (A, a, Cl 

In to (2.6), have the proposition. 

Proposition 2.8 (cf., [ll, (2.8)]). Let X be a continuum and let w be any Whitney 

map for C(X). If C(X) has property [K], then w-‘(t) has property [K] for each 

OGtGw(X). 
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Proof. Let AE&E C(w-’ (t)) and let F > 0. Since C(X) has property [K], there is 

6 >O such that if B E C(X) and dH(A, B) < 6, then there is % E C(C(X)) such that 

BE 93 and dH(&, 33) < E. Let BE L’(t) such that dH(A, B) < 6. Then there is a 

continuum %‘E C(C(X)) such that BE 93’, dH(d, a’)< E. By [ll, (2.8)], X has 

property [K]. By [5], there is a retraction r: C(X)+ w-‘([t, o(X)] such that DC 

r(D) for each D E C(X). By 2.4, we may assume that d, (&, r*( 93’)) < E, where 

r*: C(C(X))+ C(C(X)) is the mapping induced by r. Then r”(93’) c 

w-‘([t, 4X)1). c onsider the following subset Z of r*(!!%‘) x L’(t): 

Z={(D, 0’): DE r*(a’), LYE&‘(t)n C(D)}. 

Then Z is a compacturn. Let p : Z + r*( 93’) be the projection. Since p is a monotone 

mapping, Z is a continuum. Let q :Z+ w-‘(t) be the projection. Then % = q(Z) is 

a continuum contained in w-‘( ) t such that BE 2% By 2.4, we may assume that 

dH (&, 33) < E. This completes the proof. q 

As a corollary of Theorem 2.6, we have partial answers to Nadler’s question and 

Wardle’s question ([ 10, (16.37)] and [ 11, p. 2951). 

Corollary 2.9. Zf a continuum X has property [K]*, then C(X) and w-‘(t) have 

property [K], where w is any Whitney mupfor C(X) and O< t<w(X). 

3. Property [K]” and product 

In this section, we show that if each continuum X, has property [K]* (n = 1,2, . . .), 

then the product n X, has property [K]*. Hence C(fl X,,) and the Whitney con- 

tinuum have property [K]* (see Theorem 2.6). 

Lemma 3.1. If X, and X2 are continua which have property [IL]*, then X, x X2 has 

property [K]“. 

Proof. Let d be the metric on X, x X, defined by d((x, y), (x’, y’)) = 

d,(x, x’) + d2(y, y’), where d, denotes a metric on Xi (i = 1,2). 

Let a E A E C(X, x X2) and let E > 0. We shall show that X, xX, satisfies the 

condition (A, a, E)*. Let pi : X, x X, + Xi (i = 1,2) be the projection and let ui = pi( a) 

and Ai =p,(A). Then ui E Ai E C(X,) (i = 1,2). Since each Xi has property [K]*, 

there is Sj = &(;E) > 0 satisfying the condition (Ai, u,, $E)*. Set S = min{6,, 6,). 
Consider the neighborhood U( a, 6) of a in X, x X,. Suppose 6 = (b, b2) E U(u, 6). 

Let 5 be any positive number and let x = (x,, x2) E A. Since b, E U(u,, S,), there is 

a finite open covering & Of Ai with mesh tii <SE satisfying the condition (Ai, ui, ie)*. 

Consider the following set s4 = { UI U = ( Vx n A # VE , WE a,}. Then 

mesh d<&. Let (U,, U, ,..., U,,,) E Chain,,(&). Set U, = (V, X Wi) n A. Then 

(V, , V,, . . . , V,) E Chain,,,,( a,) and ( W, , W,, . . . , W,,,) E Chain,,,(&). We may 
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assume that there are c/2-chain a, =p:, p:, . . . , PI”“, . . . , p!,,, p’,, . . . , ~2”’ of points 

of X, and b2= q:, q:, . . . , q:‘(l), . . . , q:, . . . , qzm’ of points of X, such that 

d,(pF, Cl 5) <;E and &(qjk’, Cl Wj) <to for eachj = 1,2, . . . , m, k = 1,2, . . . , i(m) 

andk’=1,2,..., i’(m). We may assume that i(j) = i’(j) for each j = 1,2, . . . , m. Set 

b) = (p,“, 4;). Then b = b:, b:, . . . , bi”‘, . . . , bk, . . . , 6:"' is a t-chain of points of 

X, x X, such that d, (bf, Cl Uj) < E. This implies that X, x X, satisfies the condition 

(A, a, E)*. Hence X, x X, has property [K]“. 0 

Theorem 3.2. Let X,, be a continuum (n = 1,2, . . .). Then theproduct n X,, has property 

[K]* if and only if each X, has property [K]“. 

Proof. Suppose that each X,, has property [K]*. Let d, be the metric on X, such 

that diam X, < 1 and let d be the metric on n X, defined by d((x,), (yn)) = 

CT=1 d(x,, y,,W. Let a E AE C<Fl X,) and let E > 0. Choose a natural number k 

suchthatdiam((x,,x, ,..., x,)~n,?=,+,X,)<$&foreach(x,,x, ,..., xk)Enjk_,Xj. 

Let p: n X, -flT=, X, be the projection and let a’= p(a) and A’=p(A). Since 

n,“=, Xj has property [K]” (see Lemma 3.1), there is 6 > 0 satisfying the condition 

(A’, a ‘, ;E)*. Suppose b E U( a, 6) c n X,. Let 5 be any positive number and let x E A. 

Then there is a finite open covering &’ of A’ such that mesh d’ <+F and 

if (U:, U;, . . . , UL)E Chain,,,(,,(&‘), then there is a j-chain p(b) = 

p:,p: )...) p;(l) )...) p; )..., ~2”” of points of n:=, Xj such that dH( pJ, Cl Uj) < ;E. 

Set U = ( U’ x n,“=, Xi) n A for each U’ E d’ and set d = { U 1 U’ E a’}. Then 

diam & < F. If (U,, U,, . . . , Urn))) Chain,,(&), then (U;, U;,..., U~)E 

Chain n,p(x)(&‘). Hence there is a l-chain p(b) =p:, p:, . . . ,pi(‘), . . . , p;, . . . ,p$“‘) 

of points of n;=, X, such that d, (pJ, Cl U,!) < ;E. 

Set bJ=p,‘x (bk+l, bkf2,. . .) in X,. Clearly dn(bJ, Cl U,) < E and b = 

b;, b:, . . . , b;“‘, . . . , b:“’ is a l-chain of points of n X,. This implies that n X,, has 

property [K]* with respect to (A, a), hence n X, has property [K]“. 

The converse assertion follows from Theorem 2.3. 0 

Corollary 3.3. If each continuum X,, (n = 1,2, . . .) has property [K]*, then C(n X,,) 

has property [K]“. Also, zfw is any Whitney map for C(n X,), then each Whitney 

continuum 6’ (t) has property [K]*. 

Example 3.4. Consider the following set in the plane E2. X = Uzep=, (pO, qn), where 

po=(0,0)~E2, q,,=(l,l/n)EE’ and (pO, q,,) denotes the segment from p0 to q,, in 

E2 (see Fig. 2). Then X has property [K]*. 

Example 3.5. Consider the following set in the plane E *. X’ = {(x, sin 27r/x) 10 < x s 1 

or -1~x<O}u{(O,y)~-lsy~l}. Let A be an arc in E2 from (-1,0) to (1,0) 

such that A n X’ = {( -1, 0), (1, 0)). Let X = X’ u A. Then X has property [K]* (see 

Fig. 3). Hence the product n X,, (X,, =X) has property [K]” and C(n X,) and 

each Whitney continuum has property [K]“. 
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Fig. 2 

Fig. 3 

Example 3.6. Let X = S’u 2 u E’, where S’ is the unit circle in the plane E’, 

~={[l+l/t]e”: tsl} and E’={[l-l/t]e-“: tzl} (see Fig. 4). In [ll], Wardle 

showed that X has property [K], but X x X does not have property [K]. By Lemma 

3.1, X does not have property [K]*. In fact, X does not have property [K]* with 

respect to (S’ u 2, a), where a E S’. 

Finally, we give the following questions. 

Question 1. Let f: X + Y be an open mapping between continua and let f be 

equi-LC’. If Y has property [K], is it true that X has property [K]? Moreover, if 
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Fig. 4 

X is a Peano continuum and a continuum Y has property [K], is it true that X x Y 

has property [K]? 

Question 2. If X is a hereditarily indecomposable continuum, does X have property 

[K]“? Is it true that C(X) has property [K]? It is known that X has property [K] 

(see [ll, (3.1)]), and each Whitney continuum has property [K] (see [5, (SS)] and 

r11, (4.3)1). 
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