Topology and its Applications 30 (1988) 165-174 North-Holland

165

ON THE PROPERTY OF KELLEY IN THE HYPERSPACE AND WHITNEY CONTINUA

Hisao KATO

Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 730, Japan

Received 19 May 1987 Revised 5 October 1987

In this paper, we introduce the notion of property $[K]^*$ which implies property [K], and we show the following: Let X be a continuum and let ω be any Whitney map for C(X). Then the following are equivalent. (1) X has property $[K]^*$. (2) C(X) has property $[K]^*$. (3) The Whitney continuum $\omega^{-1}(t)$ ($0 \le t \le \omega(X)$) has property $[K]^*$.

As a corollary, we obtain that if a continuum X has property $[K]^*$, then C(X) has property [K] and each Whitney continuum in C(X) has property [K]. These are partial answers to Nadler's question and Wardle's question ([10, (16.37)] and [11, p. 295]).

Also, we show that if each continuum X_n (n = 1, 2, 3, ...) has property $[K]^*$, then the product $[] X_n$ has property $[K]^*$, hence $C([] X_n)$ and each Whitney continuum have property $[K]^*$. It is known that there exists a curve X such that X has property [K], but $X \times X$ does not have property [K] (see [11]).

AMS (MOS) Subj. Class.: 54B20, 54C10HyperspacesWhitney Continuumproperty [K]eqi-LC0

Introduction

By a *continuum* we mean a compact connected metric space. For given continuum X with metric d, by the hyperspaces of X we mean

 $2^X = \{A \subset X \mid A \text{ is nonempty closed subset of } X\}$

and

 $C(X) = \{A \in 2^X \mid A \text{ is connected}\},\$

which have the Hausdorff metric d_H defined by $d_H(A, B) = \inf\{\varepsilon > 0 | B \subset U(A; \varepsilon)$ and $A \subset U(B; \varepsilon)\}$, where $A, B \in 2^X$ and $U(A; \varepsilon)$ is the ε -neighborhood of A in X. A mapping $\omega : C(X) \rightarrow [0, \omega(X)]$ is called a Whitney map for C(X) provided that the following conditions are satisfied:

(1) $\omega({x}) = 0$ for each $x \in X$, and

(2) if A, $B \in C(X)$, $A \subseteq B$ and $A \neq B$, then $\omega(A) < \omega(B)$.

In [12], Whitney showed that there always exists a Whitney map on any continuum. Then $\omega^{-1}(t)$ ($0 \le t \le \omega(X)$) is called a *Whitney continuum*. Let $a \in A \in C(X)$. We shall say that X has property [K] with respect to (A, a) if X satisfies the following condition: given any $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that if $b \in X$ and $d(a, b) < \delta(\varepsilon)$, then there exists $B \in C(X)$ such that $b \in B$ and $d_H(A, B) < \varepsilon$.

If X has property [K] with respect to each (A, a), we say that X has property [K]. The notion of property [K] is important in hyperspaces theory (see the references). In [10, (16.37), p. 558], Nadler had the following questions:

- (a) If a continuum X has property [K], then does 2^X have property [K]?
- (b) If a continuum X has property [K], then does C(X) have property [K]?
- (c) If 2^{X} has property [K], then does C(X) have property [K]?
- (d) If C(X) has property [K], then does 2^X have property [K]?

In [2], W.J. Charatonik showed that there is a curve X such that X and C(X) have property [K], while 2^X does not have property [K]. Hence (a) and (d) are answered in the negative. Thus only two questions (b) and (c) have remained open in this area. Also, it is important to note that property [K] is not closed concerning the operation of product, i.e., there is a continuum X such that X has property [K], but $X \times X$ does not have property [K] (see [11]). In fact, the curve in [2] is the same as in the curve in [11]. This curve is described in Example 3.6.

For a given concrete continuum Y, it is complicated to determine whether C(Y) has property [K] or not. For example, in [2, p. 458], Charatonik used the following fact without proof: if X is the curve in [2], then the cone of X has property [K]. But it seems that the proof is not easy. In fact, the author does not know whether $Y \times [0, 1]$ and the cone of Y have property [K] or not, when Y has property [K].

In this paper, we introduce the notion of property $[K]^*$ and we show the following: Let X be a continuum and let ω be any Whitney map for C(X). Then the following are equivalent.

- (1) X has property $[K]^*$.
- (2) C(X) has property $[K]^*$.

(3) The Whitney continuum $\omega^{-1}(t)$ ($0 \le t \le \omega(X)$) has property $[K]^*$.

As a corollary, we have that if X has property $[K]^*$, then C(X) and each Whitney continuum $\omega^{-1}(t)$ have property [K]. These are partial answers to Nadler's question [10, (16.37)] and Wardle's question [11, p. 295]. Also, we show the following:

Let X_n be a continuum (n = 1, 2, ...). Then the following are equivalent.

(1) Each X_n has property $[K]^*$.

(2) The product $\prod X_n$ has property $[K]^*$.

This implies that property [K] is not equal to property $[K]^*$. By definitions, we can easily see that property $[K]^*$ implies property [K] (see (1.1)).

1. Property [K]*

Let X be a continuum and let $a \in A \in C(X)$. A finite sequence p_1, p_2, \ldots, p_m of points of X is called an ε -chain ($\varepsilon > 0$) if $d(p_i, p_{i+1}) < \varepsilon$ for each *i*. Let \mathscr{A} be a finite open covering of A. A finite sequence U_1, U_2, \ldots, U_m of \mathscr{A} is called a *chain* if

 $U_i \cap U_{i+1} \neq \emptyset$ for each i = 1, 2, ..., m-1. For each $x \in A$, we consider the set $Chain_{ax}(\mathcal{A})$ of all finite chains $\langle U_1, U_2, ..., U_m \rangle$ of \mathcal{A} with $a \in U_1$ and $x \in U_m$.

Let $\varepsilon > 0$. Consider the following conditions $(A, a, \varepsilon)^*$: there exists $\delta(\varepsilon) > 0$ such that if $b \in U(a, \delta(\varepsilon))$, then for each $x \in A$ and $\zeta > 0$ there is a finite open covering \mathscr{A} of A with mesh $\mathscr{A} < \varepsilon$ such that if $\langle U_1, U_2, \ldots, U_m \rangle \in \operatorname{Chain}_{ax}(\mathscr{A})$, then there is a ζ -chain $b = b_1^1, b_1^2, \ldots, b_1^{i(1)}, b_2^1, b_2^2, \ldots, b_2^{i(2)}, \ldots, b_m^1, b_m^2, \ldots, b_m^{i(m)}$ of points of X such that $d_H(b_j^k, \operatorname{Cl} U_j) < \varepsilon$ for each $j = 1, 2, \ldots, m$ and $k = 1, 2, \ldots, i(j)$. We say X has property $[K]^*$ with respect to (A, a) if X satisfies the condition $(A, a, \varepsilon)^*$ for each $\varepsilon > 0$. Also, we say X has property $[K]^*$ if X has property $[K]^*$ with respect to each (A, a) $(a \in A \in C(X))$.

Proposition 1.1. If a continuum X has property $[K]^*$ with respect to (A, a), then X has property [K] with respect to (A, a), where $a \in A \in C(X)$. Hence, if X has property $[K]^*$, then X has property [K].

Remark 1.2. In Proposition 1.1, the converse assertion is not true. The curve X in [2] or [11] has property [K], but not property $[K]^*$ (see Example 3.6).

A continuum X is equi-homogeneous with respect to mappings if for any $\varepsilon > 0$ there is $\delta > 0$ such that if $a, b \in X$ and $d(a, b) < \delta$, then there is a mapping $f: X \to X$ such that f(a) = b and $d(f(x), x) < \varepsilon$ for each $x \in X$. Clearly, if X is equihomogeneous with respect to mappings, X has property $[K]^*$. By the theorem of Effros [13, (2.1)], we can easily see that each homogeneous continuum has property $[K]^*$. Also, each Peano continuum has property $[K]^*$. Note that the $\sin(1/x)$ -curve has property $[K]^*$.

We refer readers to [5] and [10] for hyperspaces theory.

2. Property $[K]^*$ and equi-LC⁰ mappings

A mapping $f: X \to Y$ between metric spaces is *equi*-LC⁰ provided that f is surjective and for given $x \in X$ and a neighborhood V of x in X there is a neighborhood Uof x in V such that if $a, b \in f^{-1}(y) \cap U$ for some $y \in Y$, then there is a path $\alpha(a, b)$ from a to b in $f^{-1}(y) \cap V$.

First, we show the following:

Theorem 2.1. Let $f: X \to Y$ be an open mapping between continua. Suppose that f is equi-LC⁰. Let $a \in A \in C(X)$. If Y has property $[K]^*$ with respect to (f(A), f(a)), then X has property $[K]^*$ with respect to (A, a).

Proof. Let $\varepsilon > 0$. Since f is equi-LC⁰, there is $\varepsilon' > 0$ ($7\varepsilon' < \varepsilon$) such that if x, $x' \in f^{-1}(y)$ for some $y \in Y$ and $d(x, x') < 7\varepsilon'$, then there is a path $\alpha(x, x')$ from x to x' in $f^{-1}(y)$ such that diam $\alpha(x, x') < \frac{1}{2}\varepsilon$.

For each $x \in A$, define the following: set Z_x by $Z_x = U(x, \varepsilon') \cap A$. Since A is compact, there are points x_1, x_2, \ldots, x_n of A such that $\bigcup_{i=1}^n U(x_i, \varepsilon') \supset A$. Since f is an open mapping, there is $\gamma > 0$ such that if y, $y' \in Y$ and $d(y, y') < \gamma$, then $d_H(f^{-1}(y), f^{-1}(y')) < \varepsilon'$.

Since Y has property $[K]^*$ with respect to (f(A), f(a)), there is $\delta(\gamma) > 0$ satisfying the condition $(f(A), f(a), \gamma)^*$. Take $\delta > 0$ $(\delta < \varepsilon')$ such that $f(U(a, \delta)) \subset U(f(a), \delta(\gamma))$. Suppose that $b \in U(a, \delta)$. Let $x \in A$ and let $\zeta > 0$. Choose $\zeta' > 0$ such that if $y, y' \in Y$ and $d(y, y') < \zeta'$, then $d_H(f^{-1}(y), f^{-1}(y')) < \zeta$. Choose a finite open covering \mathscr{A} of f(A) with mesh $\mathscr{A} < \gamma$ such that if $\langle U_1, U_2, \ldots, U_m \rangle \in$ Chain_{f(a)f(x)}(\mathscr{A}), then there is a ζ' -chain $f(b) = y_1^1, y_1^2, \ldots, y_1^{i(1)}, \ldots, y_m^1, \ldots, y_m^{i(m)}$ of points of Y satisfying that $d_H(y_j^k, \operatorname{Cl} U_j) < \gamma$ for each j, k. Consider the set $\mathscr{B} = \{D \mid D = f^{-1}(U) \cap Z_{x_i} \neq \emptyset$ for $i = 1, 2, \ldots, n$ and $U \in \mathscr{A}\}$. Then \mathscr{B} is a finite open covering of A with mesh $\mathscr{B} < \varepsilon$.

Suppose that $\langle D_1, D_2, \ldots, D_m \rangle \in \operatorname{Chain}_{ax}(\mathcal{B})$. Set $D_i = f^{-1}(U_i) \cap Z_{x_{n(i)}}$ $(i = 1, 2, \ldots, m)$. Then $U_i \cap U_{i+1} \neq \emptyset$ $(i = 1, 2, \ldots, m-1)$, hence $\langle U_1, U_2, \ldots, U_m \rangle \in \operatorname{Chain}_{f(a)f(x)}(\mathcal{A})$. Thus there is a ζ' -chain $f(b) = y_1^1, y_1^2, \ldots, y_1^{i(1)}, \ldots, y_m^1, y_m^2, \ldots, y_m^{i(m)}$ of points of Y such that $d_H(y_j^k, \operatorname{Cl} U_j) < \gamma$ for each $j = 1, 2, \ldots, m$. By the choice of γ , we have a finite sequence $b = p_1^1, p_1^2, \ldots, p_1^{i(1)}, \ldots, p_m^1, p_m^2, \ldots, p_m^{i(m)}$ of points of X such that each p_j^k belongs to $f^{-1}(y_j^k)$ and $d(x_{n(j)}, p_j^k) < 2\varepsilon'$. Let C_j^k be the component of $\operatorname{Cl} U(p_j^k; \frac{1}{2}\varepsilon) \cap f^{-1}(y_j^k)$ which contains p_j^k . Note that $b \in C_{1}^1$, $C_j^k \subset U(x_{n(j)}; \varepsilon)$, $\operatorname{Cl} U(p_j^k; 7\varepsilon') \cap f^{-1}(y_j^k) \subset C_j^k$ and $d(p_j^k, p_j^{k+1}) < 4\varepsilon'$ and

Fig. 1

 $d(p_j^{i(j)}, p_{j+1}^1) < 6\varepsilon'$. Since $d_H(f^{-1}(y_j^k), f^{-1}(y_j^{k+1})) < \zeta$ and $d_H(f^{-1}(y_j^{i(j)}), f^{-1}(y_{j+1}^1)) < \zeta$, we can choose a point q_j^k of C_j^k such that $d(p_j^k, q_j^{k+1}) < \zeta$ and $d(p_j^{i(j)}, q_{j+1}^1) < \zeta$. Since each C_j^k is connected, we can easily choose a ζ -chain $b = b_1^1$, $b_1^2, \ldots, b_1^{i'(1)}, \ldots, b_m^1, \ldots, b_m^{i'(m)}$ of points of X such that $d_H(b_j^k, \operatorname{Cl} D_j) < \varepsilon$ for each $j = 1, 2, \ldots, m$ and $k = 1, 2, \ldots, i'(j)$. This implies that X satisfies the condition $(A, a, \varepsilon)^*$. Hence X has property $[K]^*$ with respect to (A, a).

Example 2.2. In the statement of Theorem 2.1, we cannot omit the condition that f is equi-LC⁰. Let X be the two-dimensional continuum as below (see Fig. 1) and Y = [0, 1]. Then there is an open mapping $f: X \to Y$ such that $f^{-1}(y)$ is an arc for each $y \in Y$. Since Y is a Peano continuum, Y has property $[K]^*$, but X does not have property [K].

Theorem 2.3. Let $f: X' \to X$ be an open monotone mapping between continua. If X' has property $[K]^*$, then X has property $[K]^*$.

Proof. Let $a \in A \in C(X)$ and let $\varepsilon > 0$. We shall show that X satisfies the condition $(A, a, \varepsilon)^*$. Set $A' = f^{-1}(A)$ and choose a point $a' \in f^{-1}(a)$. Take a positive number ε' such that if $x_1, x_2 \in X'$ and $d(x_1, x_2) < \varepsilon'$, then $d(f(x_1), f(x_2)) < \varepsilon$. Since X' has property $[K]^*$, we can choose a neighborhood U' of a' in X' satisfying the condition $(A', a', \varepsilon')^*$. Set U = f(U'). Then U is a neighborhood of a in X. Suppose that $b \in U$. Let $x \in A$ and let $\zeta > 0$. Choose $\zeta' > 0$ such that if $x', x'' \in X'$ and $d(x', x'') < \zeta'$, then $d(f(x'), f(x'')) < \zeta$. Choose a point $b' \in f^{-1}(b) \cap U'$. Let $x' \in f^{-1}(x)$. Then there is a finite open covering \mathscr{A}' of A' with mesh $\mathscr{A}' < \varepsilon'$ such that if $\langle U'_1, U'_2, \ldots, U'_m \rangle \in$ Chain $_{a'x'}(\mathscr{A}')$, there is a ζ' -chain $b_1^1, b_1^2, \ldots, b_1^{1(1)}, \ldots, b_m^1, \ldots, b_m^{1(m)}$ of points of X' such that $d_H(b_i^k, \operatorname{Cl} U'_i) < \varepsilon'$.

For each $y \in A$, choose an open neighborhood U_y of y in A such that $f^{-1}(U_y) \subset$ $\bigcup \{ U' \mid U' \cap f^{-1}(y) \neq \emptyset, U' \in \mathscr{A}' \} \text{ and } U_y \subset \bigcap \{ f(U') \mid U' \cap f^{-1}(y) \neq \emptyset, U' \in \mathscr{A}' \}.$ Since A is compact, there are points y_1, y_2, \ldots, y_n of A such that $\bigcup_{i=1}^n U_{y_i} = A$. Set $\mathcal{A} = \{ U \mid U = U_{v_i} \ (i = 1, 2, ..., n) \}$. Suppose that $\langle U_1, U_2, ..., U_m \rangle \in \text{Chain}_{ax}(\mathcal{A})$. By the choice of U_{y_i} , we can see that there is a chain $\langle U'_1, U'_2, \ldots, U'_m \rangle$ of \mathscr{A}' such that $a' \in U'_1$ and $f(U'_j) \supset U_j$. Since $f^{-1}(x)$ is a continuum, there is a chain $\langle U'_m, \ldots, U'_r \rangle$ such $U'_k \cap f^{-1}(x) \neq \emptyset$ \mathscr{A}' that $(k \ge m)$ and $x' \in U'_r$. of Then $\langle U'_1, U'_2, \ldots, U'_m, \ldots, U'_r \rangle \in \text{Chain}_{a'x'}(\mathscr{A}')$. Hence there is a ζ' -chain $b' = b_1^1$, $b_1^2, \ldots, b_1^{i(1)}, \ldots, b_r^1, \ldots, b_r^{i(r)}$ of points of X' such that $d_H(b_i^k, \operatorname{Cl} U_i') < \varepsilon'$. Then $b = f(b_1^1), f(b_1^2), \ldots, f(b_1^{i(1)}), \ldots, f(b_m^1), \ldots, f(b_m^{i(m)})$ is a ζ -chain of points of X such that $d_H(f(b_i^k), \operatorname{Cl} U_i) < \varepsilon$. This implies that X satisfies the condition $(A, a, \varepsilon)^*$. Hence X has property $[K]^*$. \Box

Now, we need the following:

2.4 (cf., [6, (2.3)]). Let X be a continuum and let ω be any Whitney map for C(X). Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that if A, $B \in C(X)$, $|\omega(A) - \omega(B)| < \delta$ and $B \subset U(A, \delta)$, then $d_H(A, B) < \varepsilon$. **2.5** [8, Lemma 1]. Let X be a continuum and let ω be any Whitney map for C(X). Let $0 < t < \omega(X)$. If A, $B \in \omega^{-1}(t)$ such that $A \cap B \neq \emptyset$, then there is a path α in $[\omega^{-1}(t) \cap C(A \cup B)]$ such that end points of α are A and B.

Theorem 2.6. Let X be a continuum and let ω be any Whitney map for C(X). Then the following are equivalent.

(1) X has property $[K]^*$.

(2) C(X) has property $[K]^*$.

(3) Each Whitney continuum $\omega^{-1}(t)$ ($0 \le t \le \omega(X)$) has property $[K]^*$.

Proof. First, we shall show that (1) implies (2). Consider the following subset of $X \times C(X)$:

$$Z = \{(x, A) \mid x \in X, A \in C(X) \text{ and } x \in A\}.$$

Then Z is a continuum.

Let $p: Z \to X$ be the projection, i.e., p((x, A)) = x. By Wardle's result [11, (2.2)], p is an open mapping. Also, By 2.4 and 2.5, we can see that p is equi-LC⁰. By Theorem 2.1, Z has property $[K]^*$. Let $q: Z \to C(X)$ be the projection, i.e., q((x, A)) = A. Since $q^{-1}(A) = \{(x, A) | x \in A\}$ for each $A \in C(X)$, we can easily see that q is an open monotone mapping. By Theorem 2.3, C(X) has property $[K]^*$.

Next, we shall show that (1) implies (3). Consider the following set in $X \times \omega^{-1}(t)$:

 $Z' = \{(x, A) | x \in X, A \in \omega^{-1}(t) \text{ and } x \in A\}.$

Then Z' is a continuum. By the similar arguments as above, we see that $\omega^{-1}(t)$ has property $[K]^*$.

Clearly, (3) implies (1).

The remainder of the proof follows from the next lemma.

Lemma 2.7. Let X be a continuum. If C(X) has property $[K]^*$, then X has property $[K]^*$.

Proof. Let $a \in A \in C(X)$ and let $\varepsilon > 0$. Since C(X) has property $[K]^*$, there is a neighborhood \mathcal{U} of $\{a\}$ in C(X) satisfying the condition $(A, \{a\}, \varepsilon)^*$ $(A \subset X \subset C(X))$. Set $U = \mathcal{U} \cap X$. Suppose that $b \in U$. Let $\zeta > 0$ and let $x \in A$. Then there is a finite open covering \mathscr{A} of A with mesh $\mathscr{A} < \varepsilon$ such that if $\langle U_1, U_2, \ldots, U_m \rangle \in$ Chain_{ax}(\mathscr{A}), then there is a ζ -chain $\{b\} = B_1^1, B_1^2, \ldots, B_1^{i(1)}, \ldots, B_m^1, \ldots, B_m^{i(m)}$ of points of C(X) such that $d_H(B_j^k, \operatorname{Cl} U_j) < \varepsilon$. Then there is a ζ -chain $b = b_1^1, \ldots, b_1^{i(1)}, \ldots, b_m^1, \ldots, b_m^{i(m)}$ of points of X such that $b_j^k \in B_j^k$. Note that $d_H(b_j^k, \operatorname{Cl} U_j) < \varepsilon$. Hence X satisfies the condition $(A, a, \varepsilon)^*$. \Box

In relation to (2.6), we have the following proposition.

Proposition 2.8 (cf., [11, (2.8)]). Let X be a continuum and let ω be any Whitney map for C(X). If C(X) has property [K], then $\omega^{-1}(t)$ has property [K] for each $0 \le t \le \omega(X)$.

Proof. Let $A \in \mathcal{A} \in C(\omega^{-1}(t))$ and let $\varepsilon > 0$. Since C(X) has property [K], there is $\delta > 0$ such that if $B \in C(X)$ and $d_H(A, B) < \delta$, then there is $\mathcal{B} \in C(C(X))$ such that $B \in \mathcal{B}$ and $d_H(\mathcal{A}, \mathcal{B}) < \varepsilon$. Let $B \in \omega^{-1}(t)$ such that $d_H(A, B) < \delta$. Then there is a continuum $\mathcal{B}' \in C(C(X))$ such that $B \in \mathcal{B}'$, $d_H(\mathcal{A}, \mathcal{B}') < \varepsilon$. By [11, (2.8)], X has property [K]. By [5], there is a retraction $r: C(X) \rightarrow \omega^{-1}([t, \omega(X)])$ such that $D \subset r(D)$ for each $D \in C(X)$. By 2.4, we may assume that $d_H(\mathcal{A}, r^*(\mathcal{B}')) < \varepsilon$, where $r^*: C(C(X)) \rightarrow C(C(X))$ is the mapping induced by r. Then $r^*(\mathcal{B}') \subset \omega^{-1}([t, \omega(X)])$. Consider the following subset Z of $r^*(\mathcal{B}') \times \omega^{-1}(t)$:

$$Z = \{ (D, D') \colon D \in \gamma^*(\mathcal{B}'), D' \in \omega^{-1}(t) \cap C(D) \}.$$

Then Z is a compactum. Let $p: Z \to r^*(\mathcal{B}')$ be the projection. Since p is a monotone mapping, Z is a continuum. Let $q: Z \to \omega^{-1}(t)$ be the projection. Then $\mathcal{B} = q(Z)$ is a continuum contained in $\omega^{-1}(t)$ such that $B \in \mathcal{B}$. By 2.4, we may assume that $d_H(\mathcal{A}, \mathcal{B}) < \varepsilon$. This completes the proof. \Box

As a corollary of Theorem 2.6, we have partial answers to Nadler's question and Wardle's question ([10, (16.37)] and [11, p. 295]).

Corollary 2.9. If a continuum X has property $[K]^*$, then C(X) and $\omega^{-1}(t)$ have property [K], where ω is any Whitney map for C(X) and $0 < t < \omega(X)$.

3. Property $[K]^*$ and product

In this section, we show that if each continuum X_n has property $[K]^*$ (n = 1, 2, ...), then the product $\prod X_n$ has property $[K]^*$. Hence $C(\prod X_n)$ and the Whitney continuum have property $[K]^*$ (see Theorem 2.6).

Lemma 3.1. If X_1 and X_2 are continua which have property $[K]^*$, then $X_1 \times X_2$ has property $[K]^*$.

Proof. Let d be the metric on $X_1 \times X_2$ defined by $d((x, y), (x', y')) = d_1(x, x') + d_2(y, y')$, where d_i denotes a metric on X_i (i = 1, 2).

Let $a \in A \in C(X_1 \times X_2)$ and let $\varepsilon > 0$. We shall show that $X_1 \times X_2$ satisfies the condition $(A, a, \varepsilon)^*$. Let $p_i : X_1 \times X_2 \to X_i$ (i = 1, 2) be the projection and let $a_i = p_i(a)$ and $A_i = p_i(A)$. Then $a_i \in A_i \in C(X_i)$ (i = 1, 2). Since each X_i has property $[K]^*$, there is $\delta_i = \delta_i(\frac{1}{2}\varepsilon) > 0$ satisfying the condition $(A_i, a_i, \frac{1}{2}\varepsilon)^*$. Set $\delta = \min\{\delta_1, \delta_2\}$. Consider the neighborhood $U(a, \delta)$ of a in $X_1 \times X_2$. Suppose $b = (b_1, b_2) \in U(a, \delta)$. Let ζ be any positive number and let $x = (x_1, x_2) \in A$. Since $b_i \in U(a_i, \delta_i)$, there is a finite open covering \mathcal{A}_i of A_i with mesh $\mathcal{A}_i < \frac{1}{2}\varepsilon$ satisfying the condition $(A_i, a_i, \frac{1}{2}\varepsilon)^*$. Consider the following set $\mathcal{A} = \{U \mid U = (V \times W) \cap A \neq \emptyset, V \in \mathcal{A}_1, W \in \mathcal{A}_2\}$. Then mesh $\mathcal{A} < \varepsilon$. Let $\langle U_1, U_2, \ldots, U_m \rangle \in \text{Chain}_{ax}(\mathcal{A})$. Set $U_i = (V_i \times W_i) \cap A$. Then $\langle V_1, V_2, \ldots, V_m \rangle \in \text{Chain}_{a_ix_1}(\mathcal{A}_1)$ and $\langle W_1, W_2, \ldots, W_m \rangle \in \text{Chain}_{a_2x_2}(\mathcal{A}_2)$. We may

assume that there are $\zeta/2$ -chain $a_1 = p_1^1, p_1^2, \dots, p_1^{i(1)}, \dots, p_m^1, p_m^2, \dots, p_m^{i(m)}$ of points of X_1 and $b_2 = q_1^1, q_1^2, \dots, q_1^{i'(1)}, \dots, q_m^1, \dots, q_m^{i'(m)}$ of points of X_2 such that $d_H(p_j^k, \operatorname{Cl} V_j) < \frac{1}{2}\varepsilon$ and $d_H(q_j^k, \operatorname{Cl} W_j) < \frac{1}{2}\varepsilon$ for each $j = 1, 2, \dots, m, k = 1, 2, \dots, i(m)$ and $k' = 1, 2, \dots, i'(m)$. We may assume that i(j) = i'(j) for each $j = 1, 2, \dots, m$. Set $b_j^k = (p_j^k, q_j^k)$. Then $b = b_1^1, b_1^2, \dots, b_1^{i(1)}, \dots, b_m^1, \dots, b_m^{i(m)}$ is a ζ -chain of points of $X_1 \times X_2$ such that $d_H(b_j^k, \operatorname{Cl} U_j) < \varepsilon$. This implies that $X_1 \times X_2$ satisfies the condition $(A, a, \varepsilon)^*$. Hence $X_1 \times X_2$ has property $[K]^*$. \Box

Theorem 3.2. Let X_n be a continuum (n = 1, 2, ...). Then the product $\prod X_n$ has property $[K]^*$ if and only if each X_n has property $[K]^*$.

Proof. Suppose that each X_n has property $[K]^*$. Let d_n be the metric on X_n such that diam $X_n < 1$ and let d be the metric on $\prod X_n$ defined by $d((x_n), (y_n)) = \sum_{n=1}^{\infty} d(x_n, y_n)/2^n$. Let $a \in A \in C(\prod X_n)$ and let $\varepsilon > 0$. Choose a natural number k such that diam $((x_1, x_2, \ldots, x_k) \times \prod_{j=k+1}^{\infty} X_j) < \frac{1}{2}\varepsilon$ for each $(x_1, x_2, \ldots, x_k) \in \prod_{j=1}^k X_j$. Let $p: \prod X_n \to \prod_{j=1}^k X_j$ be the projection and let a' = p(a) and A' = p(A). Since $\prod_{j=1}^k X_j$ has property $[K]^*$ (see Lemma 3.1), there is $\delta > 0$ satisfying the condition $(A', a', \frac{1}{2}\varepsilon)^*$. Suppose $b \in U(a, \delta) \subset \prod X_n$. Let ζ be any positive number and let $x \in A$.

Then there is a finite open covering \mathscr{A}' of A' such that mesh $\mathscr{A}' < \frac{1}{2}\varepsilon$ and if $\langle U'_1, U'_2, \ldots, U'_m \rangle \in \operatorname{Chain}_{a'p(x)}(\mathscr{A}')$, then there is a ζ -chain $p(b) = p_1^1, p_1^2, \ldots, p_1^{i(1)}, \ldots, p_m^1, \ldots, p_m^{i(m)}$ of points of $\prod_{j=1}^k X_j$ such that $d_H(p_j', \operatorname{Cl} U_j') < \frac{1}{2}\varepsilon$. Set $U = (U' \times \prod_{j=1}^k X_j) \cap A$ for each $U' \in \mathscr{A}'$ and set $\mathscr{A} = \{U \mid U' \in \mathscr{A}'\}$. Then diam $\mathscr{A} < \varepsilon$. If $\langle U_1, U_2, \ldots, U_m \rangle \in \operatorname{Chain}_{ax}(\mathscr{A})$, then $\langle U'_1, U'_2, \ldots, U'_m \rangle \in$ Chain $_{a'p(x)}(\mathscr{A}')$. Hence there is a ζ -chain $p(b) = p_1^1, p_1^2, \ldots, p_1^{i(1)}, \ldots, p_m^1, \ldots, p_m^{i(m)}$ of points of $\prod_{j=1}^k X_j$ such that $d_H(p_j', \operatorname{Cl} U_j') < \frac{1}{2}\varepsilon$.

Set $b_j^r = p_j^r \times (b_{k+1}, b_{k+2}, \ldots) \in \prod X_n$. Clearly $d_H(b_j^r, \operatorname{Cl} U_j) < \varepsilon$ and $b = b_1^1, b_1^2, \ldots, b_1^{i(1)}, \ldots, b_m^{i(m)}$ is a ζ -chain of points of $\prod X_n$. This implies that $\prod X_n$ has property $[K]^*$ with respect to (A, a), hence $\prod X_n$ has property $[K]^*$.

The converse assertion follows from Theorem 2.3. \Box

Corollary 3.3. If each continuum X_n (n = 1, 2, ...) has property $[K]^*$, then $C(\prod X_n)$ has property $[K]^*$. Also, if ω is any Whitney map for $C(\prod X_n)$, then each Whitney continuum $\omega^{-1}(t)$ has property $[K]^*$.

Example 3.4. Consider the following set in the plane E^2 . $X = \bigcup_{n=0}^{\infty} \langle p_0, q_n \rangle$, where $p_0 = (0, 0) \in E^2$, $q_n = (1, 1/n) \in E^2$ and $\langle p_0, q_n \rangle$ denotes the segment from p_0 to q_n in E^2 (see Fig. 2). Then X has property $[K]^*$.

Example 3.5. Consider the following set in the plane E^2 . $X' = \{(x, \sin 2\pi/x) | 0 < x \le 1$ or $-1 \le x < 0\} \cup \{(0, y) | -1 \le y \le 1\}$. Let A be an arc in E^2 from (-1, 0) to (1, 0) such that $A \cap X' = \{(-1, 0), (1, 0)\}$. Let $X = X' \cup A$. Then X has property $[K]^*$ (see Fig. 3). Hence the product $\prod X_n (X_n = X)$ has property $[K]^*$ and $C(\prod X_n)$ and each Whitney continuum has property $[K]^*$.

Fig. 2

Example 3.6. Let $X = S^1 \cup \Sigma \cup \Sigma'$, where S^1 is the unit circle in the plane E^2 , $\Sigma = \{[1+1/t] e^{it}: t \ge 1\}$ and $\Sigma' = \{[1-1/t] e^{-it}: t \ge 1\}$ (see Fig. 4). In [11], Wardle showed that X has property [K], but $X \times X$ does not have property [K]. By Lemma 3.1, X does not have property [K]*. In fact, X does not have property [K]* with respect to $(S^1 \cup \Sigma, a)$, where $a \in S^1$.

Finally, we give the following questions.

Question 1. Let $f: X \to Y$ be an open mapping between continua and let f be equi-LC⁰. If Y has property [K], is it true that X has property [K]? Moreover, if

X is a Peano continuum and a continuum Y has property [K], is it true that $X \times Y$ has property [K]?

Question 2. If X is a hereditarily indecomposable continuum, does X have property $[K]^*$? Is it true that C(X) has property [K]? It is known that X has property [K] (see [11, (3.1)]), and each Whitney continuum has property [K] (see [5, (8.5)] and [11, (4.3)]).

References

- J.J. Charatonik, The property of Kelley and confluent mappings, Bull. Acad. Polon. Sci. 31 (1983) 375-380.
- [2] W.J. Charatonik, Hyperspaces and the Property of Kelley, Bull. Pol. Acad. Sci. 30 (1982) 457-459.
- [3] H. Kato, Concerning a property of J.L. Kelley and refinable maps, Math. Japon. 31 (1986) 711-719.
- [4] H. Kato, Generalized homogeneity of continua and a question of J.J. Charatonik, Houston J. Math. 13 (1987) 51-63.
- [5] J.L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942) 22-36.
- [6] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974) 155-164.
- [7] P. Krupski, The property of Kelley in circularly chainable and in chainable continua, Bull. Acad. Polon. Sci. 29 (1981) 377-381.
- [8] S.B. Nadler, Jr., Some basic connectivity properties of Whitney map inverses, Studies in Topology (Academic Press, New York) 393-410.
- [9] S.B. Nadler, Jr., Concerning completeness of the space of confluent mappings, Houston J. Math. 2 (1976) 561-580.
- [10] S.B. Nadler, Jr., Hyperspaces of Sets (Marcel Dekker, New York/Basel, 1978).
- [11] R.W. Wardle, On a property of J.L. Kelley, Houston J. Math. 3 (1977) 291-299.
- [12] H. Whitney, Regular families of curves, I, Proc. Nat. Acad. Sci. U.S.A. 18 (1932) 275-278.
- [13] E.G. Effros, Transformation groups and C*-algebras, Ann. Math. 81 (1965) 38-55.