
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Mathematics 215 (2007) 1–23
www.elsevier.com/locate/aim

Schubert classes in the equivariant cohomology
of the Lagrangian Grassmannian

Takeshi Ikeda

Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan

Received 28 October 2005; accepted 9 April 2007

Available online 6 May 2007

Communicated by Michael J. Hopkins

To Ryoshi Hotta on the occasion of his 65th birthday

Abstract

Let LGn denote the Lagrangian Grassmannian parametrizing maximal isotropic (Lagrangian) subspaces
of a fixed symplectic vector space of dimension 2n. For each strict partition λ = (λ1, . . . , λk) with λ1 � n

there is a Schubert variety X(λ). Let T denote a maximal torus of the symplectic group acting on LGn.
Consider the T -equivariant cohomology of LGn and the T -equivariant fundamental class σ(λ) of X(λ). The
main result of the present paper is an explicit formula for the restriction of the class σ(λ) to any torus fixed
point. The formula is written in terms of factorial analogue of the Schur Q-function, introduced by Ivanov.
As a corollary to the restriction formula, we obtain an equivariant version of the Giambelli-type formula
for LGn. As another consequence of the main result, we obtained a presentation of the ring H∗

T
(LGn).

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let LGn denote the Lagrangian Grassmannian parametrizing n-dimensional isotropic sub-
spaces of a fixed 2n-dimensional symplectic vector space. The Schubert classes give a linear
basis for the integral cohomology ring of LGn. These classes can be parametrized by sequences
λ = (λ1, . . . , λk) of integers such that n � λ1 > · · · > λk � 1. The same set of sequences also
parametrizes the T -fixed points in LGn, where T denotes a maximal torus of the symplectic
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group acting on LGn. Here we consider the T -equivariant integral cohomology ring H ∗
T (LGn).

We are interested in the T -equivariant Schubert classes σ(λ) in H ∗
T (LGn). The classes σ(λ)

form a free basis of H ∗
T (LGn) over the ring S of T -equivariant cohomology of a point. It is

known that S is naturally identified with the polynomial ring Z[ε1, . . . , εn] (for the definition
of εi see Section 4.1). Let e(μ) be the T -fixed point corresponding to an index μ. The inclusion
map iμ : {e(μ)} ↪→ LGn induces the restriction morphism i∗μ :H ∗

T (LGn) → H ∗
T ({e(μ)}) ∼= S . The

main result of the present paper (Theorem 6.2) is an explicit formula for i∗μσ(λ), the restriction
of the equivariant Schubert class σ(λ) to a T -fixed point e(μ), as a polynomial in Z[ε1, . . . , εn].

For the classical Grassmannian Gd,n of d-dimensional subspaces of C
n, Knutson and Tao [21]

derived a formula for the restriction of the equivariant Schubert classes to a torus fixed point. This
formula is written in terms of the factorial analogue of the Schur function introduced by Bieden-
harn and Louck [3] and studied by other authors (see Section 5). Recently, Lakshmibai et al.
[29] also proved the restriction formula by a different method. They also derived equivariant
Giambelli formulas, determinantal formulas in the global ring H ∗

T (Gd,n) of equivariant coho-
mology, that express the equivariant Schubert classes.

As for the ordinary cohomology of the Lagrangian Grassmannian, Hiller and Boe [16] proved
Pieri-type formulas. Using the result in [16], Pragacz [38] proved Giambelli-type formulas that
express each Schubert class in a Schur-type Pfaffian form. The derivation of the Pfaffian formula
is based on a comparison of the formula in [16] and the Pieri formula for the Schur Q-function.
Our formula (Theorem 6.2) is written in terms of the factorial analogue of the Schur Q-function,
introduced by Ivanov [18,19]. This leads to an equivariant Giambelli-type formula (6.4) analo-
gous to Pragacz’s result.

Here is a brief summary of the paper. In Section 2 we recall some results on the Weyl group
of type Cn and fix some standard notation. The set of minimal coset representatives introduced
in this section will be used as an index set that parametrizes the main objects of this paper, the
Schubert varieties, T -fixed points, etc. We also present several combinatorial descriptions of this
set. Section 3 is devoted to basic geometric settings, where we introduce the Schubert varieties.
We proceed by studying the T -equivariant cohomology of LGn in Section 4. A recurrence rela-
tion (4.10) arising from the equivariant Pieri–Chevalley formula (4.8) plays the central role. In
Section 5 we give a definition of the factorial analogue of the Schur Q-function and present some
properties. Finally, in Section 6 we prove our main theorem. The proof is performed by a com-
parison of Ivanov’s Pieri-type formula (5.2) for factorial Q-function and the recurrence relation
for the restricted Schubert class. Using the restriction formula, we prove the Giambelli-type for-
mula (6.4) for the equivariant Schubert classes of LGn. In Section 7, we also give a supplementary
discussion on expressing the Schubert classes of two-row type diagrams in terms of a polynomial
in the special Schubert classes σ(i) (1 � i � n). A formula in Proposition 7.1 seems to be new.
It provides an explicit form of any two-row type factorial Q-function. In Section 8, we prove a
ring presentation for H ∗

T (LGn) as a quotient of the polynomial ring over S . In Appendix A, we
present a brief introduction to Ivanov’s functions and prove a vanishing property crucial to the
main body of the paper.

It is well-known that the cohomology ring of the Grassmannian of orthogonal type is very
similar to that of LGn. It is natural to expect the equivariant Schubert classes for the orthogonal
Grassmannian is described by factorial Schur P -functions (cf. [20,38]). Indeed, after the first
version of this paper is written, the author and H. Naruse succeed in deriving such formulas. We
will discuss the subject in a separate paper [17] which focuses on some combinatorial aspects of
the equivariant Schubert calculus.
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It should be mentioned that a recent result due to Ghorpade and Raghavan [10] provides an
alternative combinatorial approach to our formula (6.2). They developed the standard monomial
theory for the coordinate ring of the tangent cone of X(λ) (see [22] for the corresponding result
for the ordinary Grassmannian). Note that a preceding result of Conca [8] corresponds to the case
with the fixed point is the identity coset. This description immediately leads to a combinatorial
formula for σ(λ)|μ, which is quite similar to a tableau type formula for Qλ(x|a) given in [19].
Details of these issues will be discussed in [17]. Recently, the result, namely a combinatorial
expression for the restriction of a Schubert class in LGn to a T -fixed point, was independently
proved by Kreiman [25] (see also [24] for type A).

2. Preliminaries

We first recall some basic notions about the Weyl group of type Cn, in order to fix our notation.
The purpose of this section is to introduce an index set for the main ingredients of this paper,
Schubert varieties, torus fixed points, etc. References for this section are [4,15,16].

2.1. Weyl group of type Cn

Let S2n be the symmetric group of all permutations of 2n letters {1, . . . ,2n}. Set i = 2n −
i + 1. Let W be the subgroup of w ∈ S2n such that w(i) = j ⇔ w(ī) = j̄ . Then w ∈ W can
be determined by w(1), . . . ,w(n). A standard set of generators of W is given by si = (i, i +
1)(i + 1, i) (1 � i � n − 1) and sn = (n,n), where we denote by (i, j) the transposition. The
length �(w) of an element w in W is the smallest number of the generators s1, . . . , sn (the simple
reflections) whose product is w.

Let WP denote the parabolic subgroup of W consisting of the element w such that
w({1, . . . , n}) ⊂ {1, . . . , n}. Clearly WP is isomorphic to Sn. Let WP denote the set of w ∈ W

such that w(1) < · · · < w(n). Let u ∈ W . The coset uWP contains a unique element w in WP .
Actually w is the unique element in the coset uWP of minimal length. The longest element in
W is denoted by w0. If the coset uWP ∈ W/WP is represented by w ∈ WP , then w0uWP is
represented by w∨ = (w(n), . . . ,w(1)) ∈ WP .

2.2. Combinatorial description of WP

By a symmetric Young diagram, we mean a sequence D = (d1, . . . , dn) with d1 � d2 � · · · �
dn � 0 such that

di = �{j | dj � i} (1 � i � n).

By Ysym
n we denote the set of symmetric Young diagrams D = (d1, . . . , dn) contained in the

square n × n, where by the last condition we mean d1 � n.
Let w ∈ WP . Then the sequence

D(w) = (
n + 1 − w(1), n + 2 − w(2), . . . ,2n − w(n)

)
, (2.1)

is an element of Ysym
n . Note that here we consider w(i) simply as an element of {1, . . . ,2n} with-

out “bar.” For example if n = 5 and w = (1,3,4,5,2) = (1,3,4,6,9), then the corresponding
Young diagram is D(w) = (5,4,4,3,1). See Fig. 1.
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Fig. 1.

Fig. 2.

For any symmetric Young diagram D = (d1, . . . , dn) in Ysym
n , its upper shifted diagram S(D)

is obtained from D by discarding the boxes strictly lower than the diagonal, i.e.

S(D) = {
(i, j) ∈ Z

2
∣∣ 1 � i � j � di

}
,

which we regard as an array of boxes in the plane with matrix-style coordinates. For example if
D = (5,4,4,3,1), its upper shifted diagram S(D) is depicted as Fig. 2.

Let λi be the number of boxes in the ith row of S(D). Then the sequence λ = (λ1, . . . , λn) is
a strict partition. Namely there is k such that λ1 > · · · > λk > 0 and λj = 0 for j > k. Let SPn

denote the set of strict partitions λ = (λ1, . . . , λn) contained in the staircase ρ(n) = (n,n − 1,

. . . ,1), namely λ1 � n. For D in Ysym
n , its upper shifted diagram S(D) is thus considered to be a

strict partition in SPn. For example, the diagram of Fig. 2 is considered to be the strict partition
λ = (5,3,2).

We let Mn denote the set {0,1}n. We use δ = (δ1, . . . , δn) to denote an element in Mn. For
w ∈ WP , we set δi = 1 if i ∈ {w(1), . . . ,w(n)} and δi = 0 if i /∈ {w(1), . . . ,w(n)}. Then we
associate δ = (δ1, . . . , δn) ∈Mn to w ∈ WP .

Proposition 2.1. By the above correspondences, we have bijections between the following sets:

(i) The coset representatives WP ;
(ii) The set Ysym

n of symmetric Young diagrams contained in the square n × n;
(iii) The set Mn of sequences δ = (δ1, . . . , δn) with δi ∈ {0,1};
(iv) The set SPn of strict partitions λ contained in ρ(n).

Proof. It is clear that each correspondence is one to one. Also it is easy to see that the cardinality
of each of the sets WP ,Ysym

n ,Mn,SPn is 2n. Hence the claim follows. �
The following result is well known (see e.g. [15]).
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Lemma 2.2. For w ∈ WP , the length �(w∨) is equal to |λ| = ∑k
i=1 λi , where λ ∈ SPn corre-

sponds to w ∈ WP .

3. Lagrangian Grassmannians and Schubert varieties

This section is devoted to the set up of geometric objects.

3.1. Lagrangian Grassmannians

Let V be a vector space spanned by the basis eee1, . . . ,eeen,eeen̄, . . . ,eee1̄. Introduce a symplec-
tic form by (eeei,eeej ) = (eeeī ,eeej̄ ) = 0 and (eeei,eeej̄ ) = −(eeej̄ ,eeei) = δij . Let Vi denote the sub-
space spanned by the first i vectors in eee1, . . . ,eeen,eeen̄, . . . ,eee1̄. A subspace W in V is isotropic
if (uuu,vvv) = 0 for all uuu,vvv ∈ W . Note that Vi (1 � i � n) are isotropic of dimension i and
Vn+i = (Vn−i )

⊥ (1 � i � n). Denote by LGn the set of n-dimensional isotropic subspaces of V .
Then LGn is a closed subvariety of the Grassmannian of n-dimensional subspaces of V , and is
called the Lagrangian Grassmannian.

The group G = Sp(V ) of linear automorphisms of V preserving (,) acts transitively on LGn.
So LGn is identified with the quotient of G by the stabilizer of any point. We identify LGn

with the homogeneous space G/P , where P denotes the stabilizer of the point Vn, the span of
eee1, . . . ,eeen. The elements of G that are diagonal with respect to the basis we took form a maximal
torus T of G. The elements of G that are upper triangular matrices form a Borel subgroup B

of G.

3.2. Schubert varieties

The T -fixed points of LGn are parametrized by WP : for w in WP , the corresponding T -fixed
point, denoted by e(w), is the span of eeew(1), . . . ,eeew(n). Let X(w)◦ denote the B-orbit of e(w).
It is known that X(w)◦ is an affine space of dimension �(w), called a Schubert cell. The Zariski
closures X(w) = X(w)◦ are called the Schubert varieties.

We have the following description:

X(w) = {
L ∈ LGn

∣∣ dim
(
L ∩ Vw(i)

)
� i for 1 � i � n

}
.

Let λ = (λ1 > · · · > λk > 0) ∈ SPn be a strict partition corresponding to w ∈ WP . Then we also
denote the variety X(w) by X(λ). We have

X(λ) = {
L ∈ LGn

∣∣ dim(L ∩ Vn+1−λi
) � i for 1 � i � k

}
,

whose codimension is given as |λ| = ∑k
i=1 λi by Lemma 2.2.

3.3. Bruhat–Chevalley order

For w,v ∈ WP , we say w � v if the torus fixed point e(v) belongs to X(w). This is a partial
order called the Chevalley–Bruhat order. The condition w � v is given by the following two
equivalent forms: (1) w(i) � v(i) (1 � i � n), (2) λ ⊂ μ, namely λi � μi (1 � i � n), where
λ,μ ∈ SPn correspond to w,v, respectively. The Schubert variety X(λ) admits a canonical
partition into Schubert cells X(μ)◦ with μ � λ.
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4. Equivariant cohomology

We are interested in the T -equivariant integral cohomology ring H ∗
T (LGn). For general facts

on the equivariant cohomology, we refer to Brion [5], Goresky et al. [11] and references therein.

4.1. Equivariant Schubert classes

Let S denote the T -equivariant integral cohomology ring of a point {pt} (namely the ordinary
integral cohomology ring of the classifying space of T ). The natural map LGn → {pt} induces an
S-algebra structure on H ∗

T (LGn). Given w ∈ WP , denote by σ(w) the T -equivariant fundamen-
tal class of X(w), called the equivariant Schubert class. We also denote σ(w) by σ(λ), where
λ ∈ SPn corresponds to w ∈ WP . It is known that H ∗

T (LGn) is a free S-module with the basis
σ(w) (w ∈ WP ):

H ∗
T (LGn) =

⊕
w∈WP

S · σ(w).

For each T -fixed point e(v), v ∈ WP , we have an embedding iv : {e(v)} ↪→ LGn. This yields
a homomorphism i∗v :H ∗

T (LGn) → H ∗
T ({e(v)}) ∼= S . The direct product of these is an injection

of rings: ∏
v

i∗v :H ∗
T (LGn) −→

∏
v

H ∗
T

({
e(v)

})
. (4.1)

The injectivity is a consequence of “equivariant formality” (cf. [11]) of the T -variety LGn. For
w,v ∈ WP , denote by σ(w)|v the image i∗v σ (w). The goal of this paper is to give an explicit
formula for σ(w)|v ∈ S .

Remark. A remarkable characterization of the image of the morphism
∏

v i∗v has been obtained
by [11]. However we shall not use the result in the present paper.

Let t = Lie(T ) be the Lie algebra of the torus T . An element of t takes the form h =
diag(h1, . . . , hn,−hn, . . . ,−h1). Define linear functionals εi ∈ t∗ by εi(h) = hi for 1 � i � n.
Let T̂ be the free abelian group generated by ε1, . . . , εn. Each element

∑
miεi in T̂ determines

a character of T via T � exp(h) → e
∑

miεi (h) ∈ C
×. By this correspondence we can identify T̂

with the character group of T . There is a canonical map T̂ → S that extends to an isomorphism
of the symmetric algebra Sym(T̂ ) onto S (see e.g. [5, Section 1]). Thus we identify S with the
polynomial ring Z[ε1, . . . , εn]. We shall also use the variables xi = −εi for 1 � i � n. They are
convenient for positivity reasons (cf. Section 4.7).

4.2. T -stable affine neighborhood of e(v)

Let U(v) denote the set of points of LGn whose matrix representatives ξ = (ξi,j )2n×n satisfy
ξv(i),j = δi,j . This is a T -stable affine space isomorphic to An(n+1)/2 containing the point e(v)

as the origin. The coordinate function on U(v) determined by the matrix entry ξi,j with i /∈
{v(1), . . . , v(n)} is an eigenvector for T of the weight −(εi −εv(j)), here we understand εi = −εi .
Let Ξ be the square matrix (ξv∨(i),v(j))1�i,j�n. Not all the entries of Ξ are independent, since
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the column vectors of ξ should span an isotropic subspace. As a set of free parameters on the
affine space U(v), we can take the set of entries of weakly upper triangular part of Ξ with respect
to the anti-diagonal. Thus the coordinate ring of U(v) is R(v) = C[ξv∨(i),v(j) | v∨(i) � v(j)].

It is convenient to consider v∨ and v as the (ordered) index sets corresponding to the rows and
columns of Ξ respectively. In this notation we write Ξ = (ξr,c)r∈v∨,c∈v . Note that the weight of
the coordinate function ξr,c is given by −(εr − εc).

4.3. Gröbner degeneration

Following [29, Section 6], we briefly explain the idea of Gröbner degeneration. Let U denote
the affine space A

N equipped with an action of algebraic torus T . Suppose the origin o ∈ U

is the only T -fixed point. Choose a T -diagonalizable coordinate system ξ1, . . . , ξN such that ξi

has weight −χi ∈ T̂ . Let 1 � i1 < · · · < ik � n be a sequence. The prime ideal (ξi1, . . . , ξik )

of the coordinate ring C[U ] = C[ξ1, . . . , ξN ] defines a simplest possible T -stable subvariety V
in U , a coordinate subspace. In the T -equivariant cohomology ring of H ∗

T (U) we have the class
[V] ∈ H 2k

T (U) of V . The image of the restriction map to the origin o is given by

[V]|o =
k∏

j=1

χij . (4.2)

Let V1, . . . ,Vm be distinct coordinate subspaces of the same codimension k. Consider the T -
stable subvariety Y = ⋃k

j=1 Vj . Then we have

[Y ]|o =
m∑

j=1

[Vj ]|o. (4.3)

Let X be a smooth projective variety on which T acts with finitely many fixed points. Let
Z be a T -stable subvariety and p be a T -fixed point on Z. Suppose we have a T -stable affine
neighborhood U of p such that U ∼= A

N with the origin o ∈ A
N corresponding to p. Since the

restriction to the point p factors through the restriction to the open set U , we have [Z]|p =
[Z ∩ U ]|o. The idea of Gröbner degeneration is to hope that the affine variety Z ∩ U can be
deformed into

⋃k
j=1 Vj such that Vj (1 � j � m) are distinct coordinate subspaces of the same

codimension, so that we can calculate [Z]|p by the above formula (4.3). If the coordinate ring
C[Z ∩ U ] degenerates to a Stanley–Reisner ring by taking the initial ideal of the defining ideal
of Z ∩ U with respect to some monomial order, then we have a desired deformation.

4.4. A product formula

We shall prove a formula that expresses σ(w)|w as a product of negative roots. This is a
special case of the main result (Theorem 6.2). In the subsequent of the paper, we need only the
fact that σ(w)|w is a non-zero polynomial (see the proof of Lemma 4.9).

Lemma 4.1. We have the following formula:

σ(w)|w =
∏

(i,j)∈λ

(xw(i) − xw(j)), (4.4)

where λ ∈ SPn is the upper shifted diagram corresponding to w ∈ WP .
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Fig. 3.

Proof. The variety U(w) ∩ X(w) is just a “coordinate subspace” in U(w) defined by ξr,c = 0
for r ∈ w∨, c ∈ w, and r > c. We denote by I(w) the set of such pairs. For each (r, c) ∈ I(w),
we associate (i, j) by w(i) = c and w(j) = r . Then (i, j) is a box in the upper shifted diagram λ

corresponding to w. This establishes a bijection from I(w) to the set of boxes of λ. Recall that
ξr,c has the weight −(εr − εc). Then by using (4.2) we obtain the formula. �

For example, let w = (1,3, 5̄, 4̄, 2̄) (see Fig. 3). The corresponding strict partition is λ =
(5,3). Then σ(w)|w = 2x1(x1 + x3)(x1 − x5)(x1 − x4)(x1 − x2) × 2x3(x3 − x5)(x3 − x4).

4.5. The divisor class

Let div = (n,n − 1, . . . ,2,1). The corresponding σ(div) is the unique Schubert class of codi-
mension one. So we call it the divisor class. We know the following explicit form of this class
restricted to any T -fixed point e(v).

Lemma 4.2. The restriction of the divisor class σ(div) to a T -fixed point e(v) is given by

σ(div)|v = 2
n∑

i=1

δixi

(
v ∈ WP

)
, (4.5)

where δ = (δ1, . . . , δn) ∈Mn corresponds to v ∈ WP .

Proof. Consider the closed subvariety U(v) ∩ X(div) of U(v) ∼= A
n(n+1)/2. Let ξ = [ξξξv(1), . . . ,

ξξξv(n)] be a matrix representative of a point L in U(v). The condition for L to be in X(div) is
equivalent to dim(Vn + L) � 2n − 1. If we define the n × n matrix X by

[eee1, . . . ,eeen,ξξξv(1), . . . ,ξξξv(n)] =
[

1n ∗
0 X

]
,

then the last condition says that detX should vanish. Let k be such a number that v(k) � n and
v(k + 1) > n. Then by elementary manipulations of a determinant, we have detX = ±detY
where we denote by Y = (ξr,c) the k × k submatrix of X with c ∈ {v(1), . . . , v(k)}, and
r ∈ {v(k), . . . , v(1)}. Choose a monomial order on R(v) such that the initial term of detY is
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the product of anti-diagonal entries ±∏k
i=1 ξv(i),v(i). Now applying (4.3) we have σ(div)|v =

−∑k
i=1 2εv(i). Hence the claim follows. �

Remark. To the flag variety of the Kac–Moody groups, Kostant and Kumar derived the corre-
sponding formula ([23, Proposition 4.24(c)], see also [27, Section 11]).

4.6. Chevalley’s multiplicities

Let us recall the Chevalley multiplicities [7]. Let w,w′ ∈ WP , such that X(w′) is a Schubert
divisor of X(w), i.e., X(w′) is a codimension one subvariety in X(w). Then there is a positive
root β such that w′ = wsβ and �(w′) = �(w) − 1, where sβ is the reflection corresponding to β .
Let (,) be the inner product on T̂ ⊗Z R = ⊕n

i=1 Rεi such that (εi , εj ) = δij , and β∨ be 2β/(β,β).
Then the Chevalley multiplicity c(w,w′) is defined

c(w,w′) = (
�n,β

∨)
, (4.6)

where �n = ∑n
i=1 εi , the nth fundamental weight. We can describe c(w,w′) in a combinatorial

way.

Lemma 4.3. (See [16].) Let X(w′) be a Schubert divisor in X(w). Let D(w),D(w′) be the
corresponding symmetric diagrams. Exactly one of the following holds.

(1) D(w′) is obtained from D(w) adding two boxes at the positions (i, j) and (j, i) (i �= j ).
Then the corresponding positive root β is εi + εj , and we have c(w,w′) = 2.

(2) D(w′) is obtained from D(w) adding a box at the diagonal position (i, i), then the corre-
sponding positive root β is 2εi , and we have c(w,w′) = 1.

In Fig. 4, the numbers indicate the Chevalley multiplicities, where n = 3.

Fig. 4.
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One can easily verify the following rule.

Lemma 4.4. We assume w′ → w (w,w′ ∈ WP ). Let λ,λ′ ∈ SPn correspond to w,w′, respec-
tively. Let k, k′ be the numbers of non-zero parts of λ,λ′, respectively. Then c(w,w′) = 1 if
k′ = k + 1, and c(w,w′) = 2 if k′ = k.

4.7. Equivariant Pieri–Chevalley formula

Since {σ(w)}w∈WP forms a basis of H ∗
T (LGn) over the ring S , we can define the structure

constants cu
w,v ∈ S for all w,v,u ∈ WP by the formula

σ(w) · σ(v) =
∑
u

cu
w,v σ (u). (4.7)

The structure constant cu
w,v has degree �(w) + �(v) − �(u) and vanishes unless u � w,v and

�(u) � �(w)+ �(v). It should be remarked that cu
w,v has a remarkable positivity property conjec-

tured by D. Peterson and proved by Graham [14]. Namely each cu
w,v can be written as a linear

combination of monomials in the negative roots with non-negative integer coefficients.

Lemma 4.5 (The equivariant Pieri–Chevalley formula). Let w ∈ WP . Then the following for-
mula holds:

σ(div) · σ(w) = cw
div,wσ (w) +

∑
w′ : w′→w

c(w,w′)σ (w′), (4.8)

where w′ → w means that X(w′) is a Schubert divisor of X(w).

Proof. By the same argument of [21, Proposition 2], the claim follows from the Pieri–Chevalley-
type formulas for the ordinary integral cohomology, which is a special case Hiller and Boe’s Pieri
formula from [16] (see also Fulton and Woodward [9, Lemma 8.1]). �

For the flag variety of an arbitrary Kac-Moody group, the corresponding formula of
Lemma 4.5 has been appeared in the context of the nil-Hecke algebra by Kostant and Kumar,
see [23]. Later Arabia [2] established the fact that the equivariant cohomology is isomorphic to
the dual of the nil-Hecke algebra. The parabolic analogue is also studied in [27, Section 11]. See
also Robinson [39], Andersen et al. [1, Appendix D].

4.8. Recurrence relation

In this section, we prove a key lemma (Lemma 4.7) to the proof of our main result. First we
need a simple lemma on structure constants.

Lemma 4.6. The structure constant cw
div,w is given by

cw
div,w = σ(div)|w. (4.9)
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Proof. If we restrict (4.8) to e(w), we have

σ(div)|w · σ(w)|w = cw
div,wσ (w)|w +

∑
w′ : w′→w

c(w,w′)σ (w′)|w.

For w′ such that w′ → w, we have σ(w′)|w = 0 since w �� w′. Hence the sum in the right-hand
side vanishes. The claim follows since σ(w)|w is non-zero as we see from Lemma 4.4. �

Now the equivariant Pieri–Chevalley formula (4.8) gives directly the following recurrence
relation on the family of restricted classes σ(w)|v (w ∈ WP ) for any fixed v ∈ WP .

Lemma 4.7. Let e(v) be any T -fixed point. The polynomials σ(w)|v (w ∈ WP ) satisfy the fol-
lowing recurrence relation:

d(w,v) · σ(w)|v =
∑

w′ : w′→w

c(w,w′) σ (w′)|v, (4.10)

where d(w,v) = σ(div)|v − σ(div)|w .

Since d(w,v) is non-zero if w � v and w �= v, the recurrence relation (4.10) and the initial
condition σ(φ)|v = 1 determine the polynomials σ(w)|v (w ∈ WP ) uniquely. An analogous
recurrence relation was used by Rosenthal and Zelevinsky [40] to prove a determinantal formula
of the multiplicity of a T -fixed point in a Schubert variety in the Grassmannian.

Remark. The ordinary-cohomology version of Lemma 4.7 has been obtained by Lakshmibai
and Weyman [28], and Hiller [15].

5. The factorial Schur Q-functions

Let x = (x1, . . . , xn) be a finite sequence of variables and let a = (ai)i�1 be any sequence
such that a1 = 0. Let

(x|a)k =
k∏

i=1

(x − ai)

for each k � 1 and (x|a)0 = 1. The factorial Schur Q-function for a strict partition λ = (λ1 >

· · · > λk > 0) of length k � n is defined as follows [19].

Definition 5.1. Let A(x) denote the skew-symmetric n × n matrix ((xi − xj )/(xi + xj ))1�i,j�n

and let Bλ(x|a) denote the n × k matrix ((xi |a)λk−j+1). Let

Aλ(x|a) =
[

A(x) Bλ(x|a)

−tBλ(x|a) 0

]
which is a skew-symmetric (n + k) × (n + k) matrix. Put

Pfλ(x|a) =
{

Pf(Aλ(x1, . . . , xn|a)) if n + k is even;
Pf(A (x , . . . , x ,0|a)) if n + k is odd.
λ 1 n
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Then put

Pλ(x|a) = Pfλ(x|a)

Dn(x)
, Qλ(x|a) = 2kPλ(x|a), (5.1)

where Dn(x) = ∏
1�i<j�n (xi − xj )/(xi + xj ).

Remark. Note that the ordinary Schur Q-functions are obtained from Ivanov’s Q-functions by
setting ai = 0. In fact the above definition is a factorial analogue of Nimmo’s formula [35] (see
also [31, Chapter III, 8, Example 13]) for the Schur Q-functions. The reader can find other
expressions for Qλ(x|a) in [19].

The functions Qλ(x|a) were introduced by Ivanov1 [18,19]. He established some fundamental
properties of the functions (combinatorial presentations, Schur-type Pfaffian formulas, vanishing
and characterization properties, etc.). In particular, a Pieri-type formula is available, which is
crucial to our consideration. Note that P(1)(x|a) does not depend on the parameter a = (ai) and
actually we have P(1)(x|a) = ∑n

i=1 xi . So we simply denote P(1)(x|a) by P(1)(x). Let λ and λ′
be strict partitions of length � n. We will write λ′ → λ if λ ⊂ λ′ and |λ′| = |λ| + 1.

Proposition 5.2 (A Pieri-type formula). (See [19].) For any strict partition λ = (λ1 > · · ·
> λk > 0) of length k � n, we have(

P(1)(x) −
k∑

j=1

aλj +1

)
· Pλ(x|a) =

∑
λ′:λ′→λ

Pλ′(x|a), (5.2)

where λ′ runs for all strict partitions of length less than or equal to n such that λ′ → λ.

Proof. The above formula corresponds to [19, Theorem 6.2]. The only difference is that we use
n-variables x = (x1, . . . , xn) here. Then we can consistently set Pμ(x|a) to be zero for any strict
partition μ of length strictly greater than n (see [19, Definition 2.10]). �

Factorial analogues of the Schur S-functions were introduced by Biedenharn and Louck [3]
and further studied by Chen and Louck [6], Goulden and Greene [12], Goulden and Hamel [13],
Macdonald [32], and Molev and Sagan [34] (see also Macdonald [31, Chapter I, 3, Examples 20,
21]). In these works it was shown that several important facts about the Schur S-functions (com-
binatorial presentations, Jacobi–Trudi identities, Pieri-type formulas, Littlewood–Richardson
rules, etc.) can be transferred to the factorial Schur S-functions. The factorial Schur S-functions
also play a central role in the study of the center of the universal enveloping algebra of gln (see
Okounkov and Olshanski [37], Okounkov [36] and references therein).

In a geometric context, the factorial Schur functions appeared in [21,29]. They present the
restriction to torus fixed points of the Schubert classes in the equivariant cohomology of the
Grassmannian. Recently Mihalcea [33] obtained a presentation by generators and relations for
the equivariant quantum cohomology ring of the Grassmannian. In this work the factorial Schur

1 According to Ivanov [18,19], A. Okounkov defined them for the special parameter a with ai = i − 1.
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S-functions2 appeared as the polynomial representatives of the equivariant quantum Schubert
classes. A similar presentation for the quantum cohomology ring of the Lagrangian Grass-
mannian was given by Kresch and Tamvakis [26]. It will be an interesting problem to extend
their result to the quantum equivariant cohomology ring.

6. Restriction and Giambelli-type formulas

6.1. Restriction formula

Let us take the following particular parameters:

a1 = 0, ai = xn−i+2 (2 � i � n + 1), ai = 0 (i > n + 1). (6.1)

We denote by x〈n〉 the specialization of a = (ai)
∞
i=1 given by (6.1). Let μ ∈ WP and δ =

(δ1, . . . , δn) ∈ Mn correspond to μ. Then we set xμ = (δ1x1, . . . , δnxn).

Definition 6.1. A specialization Qλ(xμ|x〈n〉) of Qλ(x|a) is given as follows. First we substitute
xμ for x = (x1, . . . , xn) to obtain Qλ(xμ|a), then we specialize ai ’s as in (6.1) to get Qλ(xμ|x〈n〉).

Theorem 6.2. For strict partitions λ,μ ∈ SPn, we have

σ(λ)|μ = Qλ(xμ|x〈n〉). (6.2)

Proof. It suffices to show that the right-hand side of (6.2) satisfies the recurrence relation (4.10)
and the initial condition σ(φ)|μ = 1. As for the initial condition, we have Qφ(x|a) = 1 by de-
finition. Hence the proof is completed by a comparison of (4.10) and (5.2). We first specialize
Pλ(x|a) to Pλ(xμ|a) and then to Pλ(xμ|x〈n〉). By applying this specialization to (5.2), we have(

P(1)(xμ) −
k∑

j=1

xn−λj +1

)
· Pλ(xμ|x〈n〉) =

∑
λ′

Pλ′(xμ|x〈n〉), (6.3)

where the sum is taken over those λ′ ∈ SPn such that λ′ → λ because Pλ′(xμ|x〈n〉) vanishes
unless λ′ ∈ SPn (Proposition A.1). Now we multiply the both hand sides of (6.3) by 2k+1, where
k is the number of non-zero parts of λ. By Lemma 4.2, we have σ(div)|w = 2

∑k
j=1 xn−λj +1 and

σ(div)|v = 2P(1)(xμ). Therefore we have

d(w,v) = 2P(1)(xμ) − 2
k∑

i=1

xn−λi+1.

Now let λ′ ∈ SPn be such that λ′ → λ and k′ be the number of non-zero parts of λ′. From
Lemmas 4.3 and 4.4, we can see that 2k+1Pλ′(x|a) = c(w,w′)Qλ′(x|a). Note also 2kPλ(x|a) =
Qλ(x|a). Thus we proved that Qλ(xμ|x〈n〉) (λ ∈ SPn) satisfy (4.10). �

2 It has come to my knowledge via [33, §5, Remark 2] that the factorial Schur S-functions coincide with the double
Schubert polynomials by Lascoux and Schützenberger [30] when indexed by a Grassmann permutation. However, the
details of this connection seem to be missing from the literature.
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6.2. Giambelli-type formula

We can prove an equivariant analogue of Pragacz’ Giambelli-type formula. Let λ ∈ SPn. We
write λ = (λ1, . . . , λ2r ) with λ1 > · · · > λ2r � 0.

Theorem 6.3. The equivariant Schubert class σ(λ) is expressed as a Pfaffian of the following
form:

σ(λ) = Pf
(
σ(λi, λj )

)
1�i,j�2r

. (6.4)

Proof. Because of the injection (4.1), it is enough to show that, for arbitrary μ in SPn, the
restrictions to e(μ) of the both hand sides of (6.4) coincide. We have

σ(λ)|μ = Qλ(xμ|x〈n〉) = Pf
(
Qλi,λj

(
xμ|x〈n〉

))
1�i,j�2r

= Pf
(
σ(λi, λj )|μ

)
1�i,j�2r

.

In the second equality, we use the Pfaffian formula for factorial Q-functions (A.1). Since the
restriction i∗μ is a ring homomorphism and we are done. �

The above formula has a striking character in contrast to the ordinary Grassmannian case
[29], where the equivariant Giambelli formula is given in a Jacobi–Trudi type determinant, with
matrix entries of linear combinations of (equivariant ) special Schubert classes. In our formula,
each matrix entry of the Pfaffian is itself an equivariant Schubert class. In spite of this simplicity,
if we wish to express the equivariant Schubert class as a polynomial of the special Schubert
classes σ(k) (1 � k � n), we need some work to be done. We will treat the problem in the next
subsection.

7. On the two-row type classes

The formula (6.4) looks the same as the classical one shown by Pragacz ([38, Proposition 6.6],
see also Józefiak [20]), where the Q-functions Qλ(x) (λ ∈ SPn) represent the Schubert classes
in the ordinary cohomology ring of LGn. Recall that we have the following formula for r > s � 0:

Qr,s(x) = Qr(x)Qs(x) + 2
s∑

i=1

(−1)iQr+i (x)Qs−i (x). (7.1)

Therefore the Pragacz’ formula gives an expression for each Schubert class as a polynomial in
the special Schubert classes.

Now in our setting of equivariant cohomology ring, Eq. (6.4) actually provides an expression
for each σ(λ) as a polynomial in σ(λi, λj ). If λj = 0 then σ(λi, λj ) = σ(λi) is a special class.
For the two-row type classes, i.e. σ(λi, λj ) with λj > 0, we want to express them as a polynomial
in the special classes σ(k) (1 � k � n). In fact, we have the following expression for two-row
type classes σ(k,1) in H ∗

T (LGn):

σ(k,1) = σ(k)σ (1) − 2σ(k + 1) − 2xn−k+1σ(k) (2 � k � n), (7.2)
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where σ(j) = 0 for j > n. The above expression is a consequence of the following formula for
Ivanov’s functions:

Qk,1(x|a) = Qk(x|a)Q1(x|a) − 2Qk+1(x|a) − 2ak+1Qk(x|a). (7.3)

As illustrated by this example, we need a correction term to classical formula (7.1).
To generalize (7.2), we prove the next proposition, which is also interesting from a purely

combinatorial point of view. In this section, x = (x1, x2, . . .) and a = (a2, a3, . . .) are two se-
quences of infinite variables. We can define Qλ(x|a) for any strict partition λ. They are in the
ring Z[a2, a3, a4, . . .] ⊗Z Γ , where Γ denotes a distinguished subring spanned by the Schur’s
Q-functions in “the ring of symmetric functions Λ” [31]. For the details of definition for
Qλ(x|a), see [19]. Note that, if we substitute xj = 0 (j > n) for Qλ(x|a) (λ ∈ SPn) we can
recover the polynomial introduced by Definition 5.1. Let hr (respectively er ) denote the r th
complete (respectively elementary) symmetric function.

Proposition 7.1. Let k > � > 0. We have

Qk,�(x|a) = Qk(x|a)Q�(x|a) + 2
�∑

i=1

(−1)iQk+i (x|a)Q�−i (x|a) + Gk,�(x|a), (7.4)

where

Gk,�(x|a) =
k+�−1∑
r=k

k+�−1−r∑
s=0

f
r,s
k,�(a)Qr(x|a)Qs(x|a), (7.5)

and the coefficient f
r,s
k,�(a) is given by

f
r,s
k,�(a) = (−1)�−s

k+�−r−s∑
j=0

2hk+�−r−s−j (ak+1, ak+2, . . . , ar+1)ej (as+2, . . . , a�−1, a�). (7.6)

Proof. We use Eq. (8.2) of [19] that reads

Qk+1,� + Qk,�+1 + (ak+1 + a�+1)Qk,� = QkQ�+1 − Qk+1Q� + (a�+1 − ak+1)QkQ�, (7.7)

for k > � > 0, where we denote Qr,s(x|a) simply by Qr,s . By this equation, it is easy to see
that each function Qk,� is a linear combination of the functions QrQs (r > s � 0). Note that the
functions QrQs (r > s � 0) are linearly independent over the ring Z[a2, a3, . . .] (this fact can be
seen from [19, Proposition 2.11] and [31, III, (8.9)]).

We shall prove the proposition by induction on �. The case � = 1 is true by (7.3). Let � > 1.
Suppose the proposition holds for �. We have an expansion

Qk,�+1 =
∑

g
r,s
k,�+1(a)QrQs, (7.8)
r>s�0
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with coefficients g
r,s
k,�+1(a) ∈ Z[a2, a3, . . .]. Our task is to show g

r,s
k,�+1 = f

r,s
k,�+1. By extracting

the coefficient of QkQ� in both hand sides of (7.7), we have

g
k,�
k,�+1 + (a�+1 + ak+1) = a�+1 − ak+1.

Hence we have g
k,�
k,�+1 = −2ak+1 = f

k,�
k,�+1. Let (r, s) �= (k, �) with r + s < k + �. By comparing

the coefficients of QrQs in both hand sides of (7.7), we have

f
r,s
k+1,� + g

r,s
k,�+1 + (ak+1 + a�+1)f

r,s
k,� = 0. (7.9)

We shall prove g
r,s
k,�+1 = f

r,s
k,�+1 by showing

f
r,s
k+1,� + f

r,s
k,�+1 + (ak+1 + a�+1)f

r,s
k,� = 0. (7.10)

This follows from the equality∏�
α=s+2(1 + aαz)∏r+1
β=k+2(1 − aβz)

+ z(ak+1 + a�+1)

∏�
α=s+2(1 + aαz)∏r+1
β=k+1(1 − aβz)

=
∏�+1

α=s+2(1 + aαz)∏r+1
β=k+1(1 − aβz)

. �

For example, we have

Gk,1 = −2ak+1Qk,

Gk,2 = 2(ak+1 + ak+2 + a2)Qk+1 − 2ak+1QkQ1 + 2
(
a2
k+1 + a2ak+1

)
Qk,

Gk,3 = −2(ak+1 + ak+2 + ak+3 + a2 + a3)Qk+2 + 2(ak+1 + ak+2 + a3)Qk+1Q1

− 2
(
a2
k+1 + ak+1ak+2 + a2

k+2 + (ak+1 + ak+2)(a2 + a3) + a2a3
)
Qk+1

− 2ak+1QkQ2 + 2
(
a2
k+1 + ak+1a3

)
QkQ1 − 2

(
a3
k+1 + a2

k+1(a2 + a3) + ak+1a2a3
)
Qk.

Proposition 7.1 combined with (6.2) gives rise to a polynomial expression for σ(r, s) with
n � r > s > 0 in terms of the special classes σ(k) (1 � k � n). For example, we have

σ(k,2) = σ(k)σ (2) − 2σ(k + 1)σ (1) + 2σ(k + 2) − 2xn−k+1σ(k)σ (1)

+ 2(xn−k+1 + xn−k + xn)σ (k + 1) + 2
(
x2
n−k+1 + xn−k+1xn

)
σ(k)

for 2 < k � n, with σ(j) = 0 for j > n (cf. Proposition A.1).
The next proposition will be used in Section 8.

Proposition 7.2. We have

Qk(x|a)2 + 2
k∑

i=1

(−1)iQk+i (x|a)Qk−i (x|a) +
2k−1∑
r=k

2k−1−r∑
s=0

f
r,s
k,k(a)Qr(x|a)Qs(x|a) = 0.

(7.11)

Proof. The proof of Lemma 7.1 is valid also for k = � with Qk,k(x|a) = 0 for k � 1. �
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8. Presentation of the ring H ∗
T (LGn)

As an application of Theorems 6.2 and 6.3, we obtain a presentation of the ring H ∗
T (LGn)

in terms of generators and relations. Consider the ring Z[a] = Z[a2, a3, . . . , an+1]. Throughout
the section, we identify S = Z[x1, . . . , xn] and Z[a] by the isomorphism ιn : Z[a] → S of rings
given by

ιn(aj ) = xn−j+2 (2 � i � n). (8.1)

8.1. Statement of the result

Let X1, . . . ,Xn denote a set of indeterminates. Set X0 = 1 and Xj = 0 for j > n (cf. Propo-
sition A.1). Let k, � be n � k � � � 0. Consider the following elements of the polynomial ring
S[X1, . . . ,Xn] :

Xk,� = XkX� + 2
min(n−k,�)∑

i=1

(−1)iXk+iX�−i +
min(n,k+�−1)∑

r=k

k+�−1−r∑
s=0

f
r,s
k,�(a)XrXs, (8.2)

where f
r,s
k,�(a) is given by the right-hand side of (7.6). Since we restrict r � n, we can consider

f
r,s
k,�(a) to be in S via the isomorphism ιn. Note also that we also consider the case of � = k.

Define an ideal In = 〈X1,1, . . . ,Xn,n〉 and consider the quotient ring

Rn = S[X1, . . . ,Xn]/In.

We shall define a morphism of S-algebras φ :Rn → H ∗
T (LGn) by setting Xi to σ(i) (1 � i � n).

Lemma 8.1. The map φ is well defined.

Proof. Define a morphism of S-algebras φ̃ :S[X1, . . . ,Xn] → H ∗
T (LGn) by φ̃(Xi) = σ(i). For

k with 1 � k � n, and μ ∈ WP , we have

φ̃(Xk,k)|μ = σ(k)2|μ + 2
min(n−k,k)∑

i=1

(−1)iσ (k + i)|μσ(k − i)|μ

+
min(n,2k−1)∑

r=k

2k−1−r∑
s=0

ιn
(
f

r,s
k,k(a)

)
σ(r)|μσ(s)|μ

= Qk(xμ|x〈n〉)2 + 2
k∑

i=1

(−1)iQk+i (xμ|x〈n〉)Qk−i (xμ|x〈n〉)

+
2k−1∑
r=k

2k−1−r∑
s=0

f
r,s
k,k(x〈n〉)Qr(xμ|x〈n〉)Qs(xμ|x〈n〉),

where in the second equality, we used Theorem 6 and a vanishing property (Proposition A.1).
We can see the last expression is zero by specializing (7.11) (see Definition 6.1). Thus we have
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φ̃(Xk,k)|μ = 0 for all μ ∈ WP , and hence φ̃(Xk,k) = 0. So φ̃ induces φ :Rn → H ∗
T (LGn) such

that φ(Xi) = σ(i) (1 � i � n). �
Definition 8.2. Let λ = (λ1 > · · · > λ2r � 0) be in SPn. We introduce the following Schur-type
Pfaffian:

Xλ = Pf(Xλi,λj
)1�i,j�2r .

Theorem 8.3. There exists an isomorphism of S-algebras:

φ :Rn −→ H ∗
T (LGn)

sending Xi to σ(i) (1 � i � n) and the Pfaffian Xλ to the equivariant Schubert class σ(λ).

By definition of φ and Giambelli formula (6.4), we have φ(Xλ) = σ(λ). Moreover, since
σ(λ) (λ ∈ SPn) generates H ∗

T (LGn) as an S-module, φ is surjective. The rest of this section is
devoted to the proof of injectivity of φ.

8.2. A monomial ordering

Here we give a preliminary discussion to prove Theorem 8.3. The argument below is quite
similar to the one in Macdonald [31, III, 8], however a different ordering on the partitions will
be used, which proves to be useful in our situation.

For any partition λ = (1e12e2 · · ·nen),

Xλ = X
e1
1 · · ·Xen

n .

By deg(λ) we denote the degree
∑n

i=1 ei of the monomial Xλ. Let μ = (1e′
1 · · ·ne′

n) be another
partition. We write λ � μ if

deg(λ) > deg(μ), or

deg(λ) = deg(μ) and there is k such that e1 = e′
1, . . . , ek = e′

k and ek+1 < e′
k+1.

Then we also write Xλ � Xμ. This is a monomial ordering called the grevlex order with X1 ≺
X2 ≺ · · · ≺ Xn. In particular, if we have λ � μ, then λ + ν � μ + ν for any partition ν.

Lemma 8.4. Let λ = (1e1 2e2 · · ·nen) be a partition. If λ is not strict, then Xλ is an S-linear
combination of the Xμ with μ ∈ SPn, and μ ≺ λ. In particular, the monomials Xλ (λ ∈ SPn)

generate Rn as an S-module.

Proof. First note that if λ is strict then we have λ ∈ SPn. We prove the first statement by induc-
tion, assuming the claim for all partition μ such that μ ≺ λ. If λ is not strict then for some k we
have ek � 2. We have the following relation:

X2
k = −2

min(n−k,k)∑
(−1)iXk+iXk−i −

min(n,2k−1)∑ 2k−1−r∑
f

r,s
k,k(a)XrXs. (8.3)
i=1 r=k s=0
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We can see that the monomials appearing in the right-hand side of the above equation are strictly
lower than X2

k in the grevlex order ≺. Replacing the factor X2
k in Xλ by the right-hand side

of (8.3), we can express Xλ as an S-linear combination of the Xμ’s where each μ is a parti-
tion such that μ ≺ λ. By the inductive hypothesis the claim is true for each Xμ, and the proof
completes. �
Lemma 8.5. Let λ ∈ SPn. The Pfaffian Xλ is written in the form

Xλ = Xλ +
∑
μ

bλμ(a)Xμ

with coefficients bλμ(a) ∈ S , where the sum is over μ ∈ SPn such that μ ≺ λ.

Proof. Let λ = (λ1 > · · · > λ2r � 0) be a strict partition in SPn. We proceed by induction on r .
Let r = 1. If λ = (i) with 1 � i � n the lemma is clear. For two-row type the lemma is true
by (8.2). Let r � 2 and assume the lemma holds for all μ = (μ1 > · · · > μ2s � 0) ∈ SPn with
s < r . From the definition of the Pfaffian it follows that

Xλ =
2r∑

j=2

(−1)jXλ1,λj
Xλ2,...,λ̂j ,...,λ2r

.

By the inductive hypothesis, we have

Xλ2,...,λ̂j ,...,λ2r
= Xλ2 · · · X̂λj

· · ·Xλ2r
+ Fj ,

where Fj is a S-linear combination of Xμ’s with μ ∈ SPn such that μ ≺ (λ2, . . . , λ̂j , . . . , λ2r ).
Then it is easy to see that the lemma holds for λ. �

From Lemmas 8.4 and 8.5, we have the following.

Lemma 8.6. The Pfaffians Xλ (λ ∈ SPn) generate Rn as an S-module.

8.3. Completion of the proof of Theorem 8.3

It remains to prove the injectivity of φ. Let F be in Ker(φ). By Lemma 8.6 we have

F =
∑

λ∈SPn

cλ(a)Xλ

with coefficients cλ(a) ∈ S . We know φ(Xλ) = σ(λ). So we have 0 = ∑
λ ιn(cλ(a))σ (λ). Since

σ(λ) are linearly independent over S , ιn(cλ(a)) = 0 for all λ ∈ SPn. Hence we have cλ(a) = 0
(λ ∈ SPn) and F = 0.
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Appendix A

For the reader’s convenience, we provide a summary of some properties of Qλ(x|a). We also
prove a vanishing property (Proposition A.1) essentially used in the main body of the paper.

We use standard notation for symmetric functions as in Macdonald’s book [31]. Let Λ denote
the ring of symmetric functions in infinitely many indeterminates x = (x1, x2, . . .). The ring Λ

is graded as Λ = ⊕∞
k=0 Λk and each graded part Λk has a Z-basis consisting of the monomial

symmetric functions mλ = mλ(x) (for all partitions λ of k).
Recall an expression for the Qk(x) the Schur’s Q-functions for the one-row partition

Qk(x) =
∑
λ

2�(λ)mλ(x),

where the sum runs over the all partitions λ of k and �(λ) is the length of λ, the number of
non-zero parts of λ. Let Γ be the subring of Λ generated by Qk :

Γ = Z[Q1,Q2,Q3, . . .].
We have a gradation Γ = ⊕∞

k=0 Γ k where Γ k = Γ ∩ Λk . The Schur’s Q-functions Qλ(x), with
λ strict partition of k, form a distinguished Z-basis of Γ k .

Let a2, a3, a4, . . . be an infinite sequence of independent variables. We set a1 = 0. Ivanov
introduced a factorial analogue of Q-functions Qλ(x|a) defined for any strict partition λ. Each
Qλ(x|a) is an element of the ring Z[a2, a3, . . .] ⊗Z Γ . In particular, we have, by Ivanov [19,
Theorem 8.2],

Qk(x|a) =
k−1∑
j=0

(−1)j ej (a2, a3, . . . , ak)Qk−j (x).

For k > � > 0, we can define Qk,�(x|a) by Proposition 7.1. Moreover, for arbitrary strict parti-
tion λ, we have

Qλ(x|a) = Pf
(
Qλi,λj

(x|a)
)

1�i<j�2r
, (A.1)

where we write λ = (λ1, λ2, . . . , λ2r ) with λ1 > · · · > λ2r � 0.
The following result is very important. See Section 6.1 for the meaning of the specialization

Qλ(xμ|x〈n〉).
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Table 1
[Xw]|v for LG3

v\w 3̄2̄1̄ 32̄1̄ 23̄1̄ 13̄2̄ 231̄ 132̄ 123̄ 123

3̄2̄1̄ 1 0 0 0 0 0 0 0
32̄1̄ 1 2x3 0 0 0 0 0 0
23̄1̄ 1 2x2 2x2x23̄ 0 0 0 0 0
13̄2̄ 1 2x1 2x1x13̄ 2x1x12̄x13̄ 0 0 0 0
231̄ 1 2x23 2x2x23 0 4x2x3x23 0 0 0
132̄ 1 2x13 2x1x13 2x1x12̄x13 4x1x3x13 4x1x3x12̄x13 0 0
123̄ 1 2x12 2x12x123̄ 2x1x12x13̄ 4x1x2x12 4x1x2x12x13̄ 4x1x2x12x13̄x23̄ 0
123 1 2x123 2x12x123 2x1x12x13 4Δ 4x1Δ 4x1x2Δ 8x1x2x3Δ

Proposition A.1. Qλ(xμ|x〈n〉) vanishes identically unless λ ∈ SPn.

Proof. We prove the proposition for λ = (k). In [19], Ivanov derived the following equation [19,
Theorem 8.2]:

∞∑
k=0

Qk(x|a)zk∏k
j=1(1 − aj+1z)

=
∞∏
i=1

1 + xiz

1 − xiz
. (A.2)

If we specialize the variables as in the statement of the proposition, we have

n∑
k=0

Qk(xμ|x〈n〉)zk∏k
j=1(1 − xn+1−j z)

+
∑

k>n Qk(xμ|x〈n〉)zk∏n
j=1(1 − xj z)

=
∏

1�i�n,δi=1

1 + xiz

1 − xiz
.

Multiplying by
∏

1�i�n(1 − xiz) the both hand sides, we have

∑
k>n

Qk(xμ|x〈n〉)zk = −
n∑

k=0

Qk(xμ|x〈n〉)zk
n−k∏
j=1

(1 − xj z) +
n∏

i=1

(
1 + (−1)δi+1xiz

)
.

The right-hand side of the equation is a polynomial in z of degree lower than n and we are done.
For general λ, the proposition follows from Proposition 7.1 and the Pfaffian formula (A.1) for
Qλ(x|a). �

Here we record Table 1 for [Xw]|v in the case of LG3. We set xij = xi +xj , xijk = xi +xj +xk

and Δ = x12x13x23. For example x12 = x1 + x2, x123̄ = x1 + x2 − x3, etc.
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