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1. INTRODUCTION

The following theorem contains the integral inequality which is known in the literature as Os-
trowski’s inequality (1, p. 469)].

THEOREM 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose derivative is
bounded on (a,b) and denote || f'|lco = SUpse(q,p) |f'(t)| < 00. Then for all z € [a,b] we have the

inequality
4 & (a+b)/2) '
| s [ s < [ " ]@—@Wﬂu

The constant 1/4 is sharp in the sense that it can not be replaced by a smaller one.

In this paper, we prove that Ostrowski’s inequality also holds for Lipschitzian mappings and ap-
ply it in obtaining a Riemann’s type quadrature formula for this class of mappings. Applications
for Euler’s Beta function are also given.

2. OSTROWSKI'S INEQUALITY
FOR LIPSCHITZIAN MAPPINGS

The following inequality for Lipschitzian mappings holds.

THEOREM 2.1. Let u : [a,b] — R be an L-Lipschitzian mapping on |[a,b], i.e.,

u(z) —u()| < Lle —yl,  for all &,y € [a,b].
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Then we have the inequality

b _ 2
/a u(t) dt — u(z)(b = a){ < L(b — a)? [i + (—“’—%%yi)] , (2.1)

for all z € [a,b]. The constant 1/4 is the best possible one.
ProOOF. Using the integration by parts formula for Riemann-Stieltjes integral, we have

/z(t —a)du(t) = u(z)(z — a) — /r u(t) dt

and
b b
/ (t—b)du(t) = u(z)(b—z) - / u(t) dt.

If we add the above two equalities, we get

b b
w(z)(b—a) - / w(t) dt = / p(z, t) du(t), (2.2)
where . it € [a,2)
P(@,t) :z{t—b, if € [z, ],

for all z,t € [a, b].

Now, assume that A, : a = z;
with v(A,) — 0 as n — oo, where v(Ay) == maxie{o,_.,,n_l}( £+)1 —z™) and ¢™ € [x("),xg‘_)l .
If p: [a,b] — R is Riemann integrable on [a,b] and v : [a,b] — R is L-Lipschitzian on [a, b], then

y Ahrgn_,oz p(6) [0 (=) - v ()]
(n)Y _ (n)
<, 5 (e e o) [ )

a:(-") _ a:(-")

M < g < .. <z, <z = b is a sequence of divisions

b
p(z) dv(z)

(2.3)

u(il,f?qoz \p (g(n))’( 51)1 (") =L / lp(z)| dz.

Applying the inequality (2.3) for p(z,t), as above and v(z) = u(z), = € [a,b], we get

b
<L / Ip(z, )] dt
a

’ p(z, t) du(t)

=L{/:|t—a| dt+/:|t—b| dt] =§[(x-—a)2+(b—m)2] (2.4)

3 1 (z—(a+b)/2)*
= L(b—a)2 [Z + _6——(1)2_:'

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).
Now, assume that the inequality (2.1) holds with a constant C > 0, i.e.,

C+@_M} @5)

< L(b-a)? oy

/bu(t) dt — u(z)(b—a)
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for all z € [a,b]. Consider the mapping f : [a,b] — R, f(z) = z in 2.5. Then

(¢~ (a +0)/2)°

<C+
(b-a)?

T - s

a+b’

for all x € [a,b]; and then for z = a, we get
b—a 1
< — —
5 < (C-}- 4) (b—a)

which implies that C' > 1/4 and the theorem is completely proved. ]

The following corollary holds.

COROLLARY 2.2. Let u: [a,b] — R be as above. Then we have the inequality:

/abu(t)d:c—u (“—;“—’3) (b~ a)

REMARK 2.3. It is well known that if f : {a,b] — R is a convex mapping on [a, b], then

b
1(557) <55 [ 1o < HIE =0

< iL(b —a)% (2.6)

Now, if we assume that f : ] C R — R is convex on I and a,b € Int (I), a < b; then f} is
monotonous nondecreasing on [a, b], and by Theorem 2.1 we get

R +b\ 1
0< —/ f(z)dz - f (——“ ) <lrme-a (2.8)
b-a J, 2
which gives a counterpart for the first membership of Hadamard’s inequality.

3. A QUADRATURE FORMULA OF RIEMANN TYPE

LetIn:a =19 <z <+ <Zyp_) <y = bbe adivision of the interval [a,b] and &; € [z;, T;41]
(i=0,...,n— 1) a sequence of intermediate points for I,,. Construct the Riemann sums

n-1
Ra(f,10,6) = D f(i)hs,
i=0

where h; 1= ;41 — z;.
We have the following quadrature formula.

THEOREM 3.1. Let f : [a,b] — R be an L-Lipschitzian mapping on {a,b] and I,,&; (1 = 0,...,n—
1) be as above. Then we have the Riemann quadrature formula

b
[ ni(@)de = Rl 1) + Walf, s, (3.1)
a
where the remainder satisfies the estimation
1,2 ety i+ LR Rt
< = 2 ALt T 2
[Wa(f, In, €)] < 4L§hz +Li§ (Ez 5 > < QL;h, (3.2)

forall §; (i =0,...,n — 1) as above. The constant 1/4 is sharp in (3.2).
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PROOF. Apply Theorem 2.1 on the interval [z;, z;+1] to get

Tit1 . . 2
/z 1_ flz)dz — f(&)hi| < L [%h? + (e — ?i;—ﬂ) ] . (3.3)

Summing over ¢ from 0 to n — 1 and using the generalized triangle inequality, we get

= Ti + Tit1 2
Wl I8l < 1 <LZ o (6- 2tz ),

/ f(z)dz — ()

Now, as
2
T;+ Tiql 1.,
AT Al ) o g2
(51 2 ) - 4h1,
for all &; € [zi,Ti4+1] (1 =0,...,n—1) the second part of (3.2) is also proved. ]

Note that the best estimation we can get from (3.2) is that one for which & = (z; + zi+1)/2
obtaining the following midpoint formula.

COROLLARY 3.2. Let f, I, be as above. Then we have the midpoint rule

b
/f@MwﬂmU%J%%MML
where

= Z; + Tiy1
My(f,I,) = Zf —5‘—) hi
i=0

and the remainder Sy, (f, I,) satisfies the estimation
I&LI<LZH

REMARK 3.3. If we assume that f : [a,b] — R is differentiable on (a, b), and whose derivative f’
is bounded on (a,b) we can put instead of L the infinity norm || f'[|c obtaining the estimation
due to Dragomir-Wang from the paper [2].

4. APPLICATIONS FOR EULER’S BETA MAPPING

Consider the mapping Beta for real numbers
1
B(p,q) = / t*l(1-t)""dt,  p,g>0
0

and the mapping ey q(t) :=tP~1 (1 - £)971, t €[0,1]. We have for p,q > 1 that
e;nq(t) = €p-1,q— () p—-1-(p+q—2)t.

£t € 0,(p—1)/(p+g—2), then e, 4(t) > 0 and if t € ((p — 1)/(p+q — 2), 1], then e} 4(£) <
0, which shows that for to = (p — 1)/ (p + ¢ — 2) we have a maximum for e; 4 and then

(p= 1)~ (g = 1)""!

SUp ep,q(t) = epq(to) = ——, pg>L
teo,1] pal (p+q—2)pte-2
Consequently,
p—2)P2(g—2)92
e o)) < L= OB v p 1~ (p 4 - 21

(p+q— 4P b

(p—-2)P%(g—2)7"*
(p+gq—4)pra=t

=max{p—1,4-1} p,q>2,

for all t € [0,1} and then

2)P~3(g —2)972
(p+gq—4pta-t '
The following inequality for Beta mapping holds.

llepalloe < max{p—1, q—l}(p p,g>2. (4.1)
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PROPOSITION 4.1. Let p,q > 2 and z € [0,1]. Then we have the inequality
|B(p,q) — 2°71(1 - z)?7Y|

2)P=2(q —2)7-2 [1 1\2 (42)
s maxdp—1a- 1}(p(p )q (j)”’“")4 [Z * <:1: - 5) ] '

The proof follows by Theorem 2.1 applied for the mapping e, , and taking into account that
He;,,quo satisfies the inequality (4.1).

COROLLARY 4.2. Let p,q > 2. Then we have the inequality

)P~*(g — 2)772
+q — 4)pte—4

1 1 (p 2
B(p,a) - gprgmg| < ymax{p —1,¢ -1}
Now, if we apply Theorem 3.1 for the mapping e, , we get the following approximation of Beta
mapping in terms of Riemann sums.

PROPOSITION 4.3. Let I, :a =29 < x1 < -+ < Zp_1 < Tn, = b be a division of the interval
[a,bl¢; € (s, zit1], (¢ =0,...,n — 1) a sequence of intermediate points for I, and p,q > 2. Then
we have the formula

Zf” Y1 = £)7 MRy + Tulp, 0),
where the remainder T, (p, q) satisfies the estimation

(p-2)P%(g—2)172
p+q 4)P+q -4

2
2 T +Tig1
[ (o2
=0 i=0
g n—1

|Ta (P> g)| < max{p—1,q -1}

1 P—22(q-2)"% 2
< §max{p—1 g-1} (ot q = d)prai ghi.
Particularly, if we choose above §; = (z; + zi41)/2 (i =0,...,n — 1) then we get the approxima-
tion
n—1

1 _ -
B(p,q) = CrT) S @it zu) @ -2 - 3i)" T + Ve (p,4),
i=0

where

L (p=2P*(g~2)"72 (=
Valpr)l < gmaxip - Lo - ) Ze 0 3 Al
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