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ABSTRACT 

We show that every de Rham cohomology class on a nonsingular quasiprojective complex algebraic 
variety can be realized by a real algebraic differential form. 

1. INTRODUCTION 

In the transcendental theory of nonsingular complex algebraic varieties, one 
often considers the underlying differentiable structure on such varieties. When 
one wants to squeeze properties of the original algebraic structure out of this 
differentiable structure, it is to be expected that one runs into considerable 
technical complications. As an example one may think of the analytic proof of 
the Hodge decomposition of the de Rham cohomology of a nonsingular pro- 
jective complex algebraic variety ([7], Theorem 55.1). Relatively recently, an 
elementary algebraic proof of the Hodge decomposition has been found [2]. To 
my opinion, it is somewhat unsatisfactory that this algebraic proof runs 
through algebraic geometry in positive characteristic. Therefore, it may be 
worth to investigate to what extend the underlying real algebraic structure - 
coarser than the complex algebraic structure but not as coarse as the differ- 
entiable structure - on a nonsingular complex algebraic variety would allow to 
avoid technical complications of the transcendental theory as well as argu- 
ments proper to algebraic geometry in positive characteristic. 

This paper could be considered as a certificate of good character of the un- 
derlying real algebraic structure on a complex algebraic variety. Namely, we 
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show that any de Rham cohomology class on a nonsingular quasiprojective 
complex algebraic variety can be realized by a real algebraic differential form. 

The paper is organized as follows. In Section 2 we explain what it means for a 
de Rham cohomology class to be realizable by a real algebraic differential 
form. We also define the real algebraic de Rham cohomology of a nonsingular 
real algebraic variety. In Section 3 we recall the construction of restriction of 
scalars with respect to the field extension UZ/rW of a complex algebraic variety. 
Restriction of scalars of such a variety X is an algebraic variety over Iw whose 
set of real points is the underlying real algebraic structure on X. This is the key 
fact to the study of the underlying real algebraic structure on a complex alge- 
braic variety [5]. Section 4 contains a statement that will be used in the proof of 
the main result presented in Section 5. We conclude the paper with a question 
in Section 6. 

Conventions and notation. An algebraic variety over @, or a complex algebraic 
variety is an integral separated scheme of finite type over @ [4]. We distinguish 
between real algebraic varieties and algebraic varieties over [w. A real algebraic 
variety is an irreducible separated real algebraic variety in the sense of [l], 
whereas an algebraic variety over [w is an absolutely integral separated scheme 
of finite type over [w. Let X be an algebraic variety over [w. Then, we consider the 
set of real points X(W) of X as a real algebraic variety in the natural way. 

2. REAL ALGEBRAIC DE RHAM COHOMOLOGY 

Let M be a nonsingular real algebraic variety. Since A4 is a nonsingular real 
algebraic variety, we can consider M as a C” differentiable manifold. Let 
E’(M) be the vector space of complex-valued C”” differential i-forms on the 
differentiable manifold M. Let d’: E’(M) + &‘+ l(M) be the exterior derivative. 
Then, (E‘(M), d ‘) is the C” de Rham complex of M. The de Rham cohomol- 
ogy of the differentiable manifold M is, by definition, the homology of the 
complex (E’(M),d.), i.e., 

HLR(M) = h’(E’(M),d’) 

for any integer i. 
Let R’(M) C E’(M) be the vector subspace of complex-valued real algebraic 

differential i-forms on M. Then, (R’(M), d‘) is a complex, the real algebraic de 
Rham complex of M. The homology of this complex does not seem to be well- 
behaved. Indeed, the homology groups h’(R’(M), d’) are, in general, infinite- 
dimensional real vector spaces. This can already be seen in the case of A4 being 
the affine real line Iw: the system 

{$jp=x2+bx+ c, whereb,cEIWandb2-4c<O} 

is a linearly independent system in the real vector space h’(R’([W),d’). There- 
fore, instead of the homology of the real algebraic de Rham complex we rather 
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study its image in the homology of the C” de Rham complex. More precisely, 
let a’: R’(M) ---) E’(M) be the inclusion of the vector space of algebraic differ- 
ential forms on A4 into the vector space of C” differential forms on M. Then, u’ 
induces a map on homology 

(Yi: h”(R’(M), d’) + H&(M) 

for any integer i. We define the i-th real algebraic de Rham cohomology group 

H&(M)+ of the real algebraic variety M by 

H&(M),,, = im(a’). 

We say that a de Rham cohomology class in H,&(M) of ii4 is realizable by a real 

algebraic dlfirentialform if it is contained in H,&(II~),,~. 

Example 2.1. Any de Rham cohomology class in Hi,,(P’ ([w)) of the real pro- 
jective line P”(lQ) is realizable by a real algebraic differential form. Indeed, 
H&(P' (IL!)) is generated by the cohomology class of the real algebraic dif- 
ferential l-form dx/(x* + 1) on P’([w). To put it differently, one has 

%P’tP)),,, = %R(~~(~)). 

3. RESTRICTION OF SCALARS OF COMPLEX ALGEBRAIC VARIETIES 

For the reader’s convenience, we recall some notions related to restriction of 
scalars of a complex algebraic variety. 

Denote by C the Galois group Gal(@/[W). Its nontrivial element is denoted 
by 0: 

Let X be a complex algebraic variety. Let s: X -+ Spec(C) be its structure 
morphism. The complex conjugate variety X” of X is the scheme X endowed 
with the structure morphism 

Spec(a) 0 s: X -4 Spec(C). 

It is clear that X” is again a complex algebraic variety. Note also that the 
complex conjugate variety (X0)” of X” is equal to the complex algebraic vari- 
ety X. 

Example 3.1. Let X be an affine complex algebraic subvariety of A: defined by 
polynomials Fi , . . . , F,,,. Let, for a polynomial F with complex coefficients, Fb 

denote the polynomial obtained from F by letting (T act on its coefficients. Then, 
one easily checks that the complex conjugate variety X” of X is isomorphic to 
the affine complex algebraic subvariety of A: defined by the polynomials 
Fp,...,F,“. 

Let X and Y be complex algebraic varieties. Let f: X --+ Y be a morphism of 
schemes. Then, the morphism f considered as a morphism of schemes from X0 
into Y” will be denoted by f 4 The morphism f u is called the complex conjugate 

morphism off. Of course, if f is a morphism of complex algebraic varieties, 
then f 0 is one as well. 
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Example 3.2. Let X and Y be affine complex algebraic subvarieties of A; and 
A;, respectively. Let f: X -+ Y be a morphism of complex algebraic varieties. 
Let Fi, . . . ,F, E@[X,,... , Xn] be coordinate functions off. Then, one easily 
checks that Fp, . . . , Fl are coordinate functions off”. 

The identity map on X, considered as a morphism of schemes from X into X0, 
will be denoted by L = LX. Then, the complex conjugate morphism Lo: X” -+ X 

of L is equal to the identity map on X considered as a morphism of schemes 
from X” into X. 

Example 3.3. Let X be an affine complex algebraic subvariety of A: defined by 
polynomials Fl , . . . , F,. Identify, in the natural way, X” with the affine complex 
algebraic subvariety of A: defined by the polynomials Flu,. . . , F,“. The map on 
the set of complex points L(C): X(C) -+ X0(C) induced by L = LX is nothing but 
the restriction to X(C) of complex conjugation on 42”. 

Now we are ready to recall the definition of restriction of scalars with respect to 
the field extension C/R of a complex algebraic variety. . 

Let X be a complex algebraic variety. Let Y be the complex algebraic variety 
X x X”. There is a natural action on the scheme Y of the Galois group C of the 
field extension C/W. Indeed, let pr, and pr, be the projections of Y onto the first 
and second factor, respectively. Let T: Y --) Y be the morphism of schemes such 
that pr, o 7 = LO o pr, and pr, o T = L o pr,. Then, the nontrivial element o E C 
acts on Y as the morphism 7. That this defines an action of C on Y follows from 
the fact that 72 = id. 

Example 3.4. Let X be an affine complex algebraic subvariety of A: defined by 
polynomials 1;1, . . , F,,,. Identify, as before, X” with the affine complex alge- 
braic subvariety of A: defined by the polynomials Fi’, . . . , F,“. The map on the 
sets of complex points 7(C): Y(C) ---f Y(C) induced by 7 is equal to the restric- 
tion to Y(C) of the map @” x C” -+ @” x @” defined by (z, w)k(a(w), O(Z)). 

Assume that X is a quasiprojective. Then X” is quasiprojective as well. Hence, 
Y is quasiprojective. Then, the quotient Y/C of Y in the category of locally 
ringed spaces is a scheme. We will denote that scheme by _%. In fact, ,% is a 
scheme over I&’ and’& = Y. Therefore, 2 is an algebraic variety over R. It is 
called restriction of scalars with respect to thejeld extension C/R of X, or also the 
Weil restriction ofX [6]. 

Let A: X 4 Y be the diagonal morphism (L, LO). Let 7r: Y + 2 be the quo- 
tient morphism. Then, the restriction of scalars 2 comes along with the 
morphism of schemes 

This morphism satisfies the following property. For every complex point 
p: Spec(C) -+ X of X, there is a unique real point q: Spec(lR) + 2 of 2 such 
that cp op = qc, where qc: Spec(@) -+ 2 is the complex point of _% induced by q. 
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Indeed, qc = (p,p”) is a complex point of _% which comes from a real point 
since 7 0 (p,p”) = (p,p”). 

Define a map 

by $(q) = pr, o qa: for any q E %(DB). Then the above property satisfied by cp 
implies that 1c, is a bijection. In fact, the map 11, is an isomorphism from the real 
algebraic variety _?([w) onto the underlying real algebraic structure on X(C) 
(see [5] for the definition of the underlying real algebraic structure). This holds 
trivially in case X = A& The general case follows immediately from this trivial 
case. 

Example 3.5. Let X be a nonsingular projective complex algebraic curve and 
let g be its genus. Then, the underlying real algebraic structure on X(C) is an 
orientable compact connected affine real algebraic surface of genus g. If X is 
rational, X(C) is isomorphic to the 2-sphere S2 as a real algebraic variety. If X 
is of genus 1, the underlying real algebraic structure on X(C) is a real algebraic 
torus. The latter class of real algebraic tori has been classified in the paper [5]. 

Finally, we can state and prove the following lemma. 

Lemma 3.4. Let X be a nonsingular quasiprojective complex algebraic variety. 
Let U be an open subset of the restriction of scalars _% of X such that 
U([w) = X(W). Let f: B(R) 4 U(C) be the map defined by f(p) =pc for 
p E %( Iw). Then, the induced map on de Rham cohomology groups 

f ;: I&( U(C)) + H&(2@)) 

is surjective for any integer i. 

Proof. With notation as above, Uc is an open subset of Y. Hence, 
U(C) = UC(@) is a subset of Y(C). Let p: U(C) -+X(C) be the restriction of 
the projection of Y(C) onto the first factor X(C). Then, the diagram 

commutes. Since 11, is a bijection, g = $-’ op is a left-inverse to f, i.e., g of = 
id. It follows that the induced maps on de Rham cohomology groups satisfy 
f i o g’ = id for any integer i. In particular, f i is surjective for any integer i. 0 

4. AFFINE NEIGHBORHOODS OF THE SET OF REAL POINTS OF AN ALGEBRAIC 

VARIETY OVER R 

A well-known fact in real algebraic geometry is that any quasiprojective real 
algebraic variety is affine (see [l], Theo&me 3.4.5 and Proposition 3.2.10). An 
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inspection of the proof of that statement reveals that the following stronger 
statement holds. 

Proposition 4.1. Let X be a quasiprojective algebraic variety over 0% Then, there 
is an afine open subset U of X such that U([w) = X(R). 

5. REAL ALGEBRAIC DIFFERENTIAL FORMS ON COMPLEX ALGEBRAIC 

VARIETIES 

In order to prove our main result, we need to recall a result of A. Grothendieck. 
Let V be a nonsingular affine complex algebraic variety. Let J2k be the sheaf 

of algebraic differential i-forms on V. Let (r( V, O,), d’) be the global algebraic 
de Rham complex of V. 

Recall from the introduction that (&‘( I’(@)), d’) is the C” de Rham complex 
of the differentiable manifold I’(@) and that its homology is the de Rham co- 
homology of the differentiable manifold V(C), i.e., 

HiR(V(C)) = h’(E’(?‘(C)),d‘) 

for any integer i. 
Let b’ be the inclusion of the global algebraic de Rham complex of I/ into the 

Co3 de Rham complex of the differentiable manifold V(C). Then, b’ induces an 
isomorphism on homology; i.e., b‘ induces isomorphisms 

for any integer i [3]. 
Now we are ready to state and prove our main result. 

Theorem 5.1. Let X be a nonsingular quasiprojective complex algebraic variety. 
Then, every de Rham cohomology class of the d@erentiable manifold X(C) can be 
realized by a real algebraic differentialform, i.e., 

ffdRM@))alg = ffd’R(W)) 

for any integer i. 

Proof. Let X be a nonsingular quasiprojective complex algebraic variety. Re- 
call from Section 3 that the underlying real algebraic structure on X(@) is iso- 
morphic to the real algebraic variety X(F8). Therefore, it suffices to prove that 
every de Rham cohomology class of X(Iw) can be realized by a real algebraic 
differential form. 

Since X is quasiprojective, its restriction of scalars X is quasiprojective. By 
Proposition 4.1, there is an affine open subset U of X such that U(R) = X(rW). 

Consider U([w) as a subset of the scheme U. Then, one has a restriction map 
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from the vector space of complex-valued algebraic differential i-forms on U 
into vector space of real algebraic differential i-forms on x(Iw). 

With notation as before, one has a commutative diagram 

I’ I I /* 
wvv a’ &‘(X(R)) 

All these maps induce maps on homology, so that we get a commutative dia- 
gram 

Pi I I f' 
h’(R’(X(R)),d’) 

R’ 
’ fGR Gm) 

By Lemma 3.6, f i is surjective and by the above result of A. Grothendieck, pi 
is an isomorphism. It follows that oi is surjective. Hence, H&(X(W)),,, = 

H&&?([W)). 0 

Remark 5.2. I do not know whether every de Rham cohomology class on a 
nonsingular affine real algebraic variety can be realized by a real algebraic dif- 
ferential form. 

6. A QUESTION 

Let X be a nonsingular projective complex algebraic variety. Let p be any real 
algebraic Kahler metric on X(C) [7]. (Such metrics abound: the restriction of 
the Fubini-Study metric to the image of any embedding of X into projective 
space gives rise to a real algebraic Klhler metric on X.) Let N’(X(C)) be the 
vector space of the harmonic differential i-forms on X(C) relative to /.L. Then, 
one can pose the following question. 

Question 6.1. Is any harmonic differential i-form on X(C) real algebraic, i.e., 
does the inclusion 

?-@-(a=)) c R’@-(C)) 

hold? 

Theorem 5.1 says that there is no cohomological obstruction to an affirmative 
answer to the above question. Indeed, according to Theorem 5.1, for any har- 
monic differential i-form n on X(C) there is a closed real algebraic differential 
form w on X(C) such that [w] = [n] in H&(X(C)). 

There is some evidence for an affirmative answer to Question 6.1. 

69 



Evidence 6.2. If a harmonic differential i-form n on X(C) is real algebraic, then 
its complex conjugate harmonic differential form 7 is real algebraic too. 

Evidence 6.3. All harmonic differential (i, 0)-forms and (0, i)-forms on X(C) 
are real algebraic. Indeed, harmonic differential (i, 0)-forms are complex alge- 
braic and, therefore, real algebraic. The statement for (0, i)-forms then follows 
from Evidence 6.2. 

Evidence 6.4. Let n be the dimension of X. If every harmonic differential i-form 
on X(C) is real algebraic, then every harmonic differential (2n - i)-form on 
X(C) is real algebraic. Indeed, let 

*: E’(X(C)) + E 2”-i(x(@)) 

be the Hodge *-operator (see [7], p. 158) relative to the metric p. It is easy to 
check that * maps the subspace of real algebraic i-forms into the subspace of 
real algebraic (2n - i)-forms. Now, let n be any harmonic differential (2n - i)- 
form. Then, *-in is a harmonic differential i-form ([7], Proposition 5.2.3), and 
therefore, real algebraic. But then, n = * *-’ n is real algebraic. 

Evidence 6.5. Let n be the dimension of X. All harmonic differential i-forms on 
X(C) are real algebraic for i = 0, 1, 2n - 1 and 2n. This follows from Evidence 
6.3 and 6.4. 

Evidence 6.6. Let X be any nonsingular projective complex algebraic curve 
and let p be any real algebraic Kiihler metric on X(C). Then, every harmonic 
differential form on X(C) is real algebraic. This follows from Evidence 6.5. 

Evidence 6.7. Let X be a complex Abelian variety and let ~1 be the flat Kahler 
metric on X(C). Then, p is a real algebraic metric and every harmonic differ- 
ential form on X(C) relative to p is real algebraic. Indeed, by Evidence 6.5, all 
harmonic differential l-forms on X are real algebraic. Since ti’(X(@)) = 
A’3_I’(X(C)), all h armonic differential i-forms are real algebraic for any 
integer i. 

Evidence 6.8. Let X be the complex projective space lF’E and let p be the Fubini- 
Study metric on X(C). Then, every harmonic differential form on X(C) is real 
algebraic. Indeed, p is a real algebraic differential 2-form and 

W(X(C)) = C . nip if i is even, o 
if i is odd. 
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