
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 37, 79-100 (1988) 

How Easy Is Local Search? 

DAVID S. JOHNSON 

AT & T Bell Laboratories, Murray Hill, New Jersey 07974 

CHRISTOS H. PAPADIMITRIOU 

Stanford University, Stanford, California and National Technical University of Athens, Athens, Greece 

AND 

MIHALIS YANNAKAKIS 
AT & T Bell Maboratories, Murray Hill, New Jersey 07974 

Received December 5, 1986; revised June 5, 1987 

We investigate the complexity of finding locally optimal solutions to NP-hard com- 
binatorial optimization problems. Local optimality arises in the context of local search 
algorithms, which try to find improved solutions by considering perturbations of the current 
solution (“neighbors” of that solution). If no neighboring solution is better than the current 
solution, it is locally optimal. Finding locally optimal solutions is presumably easier than 
finding optimal solutions. Nevertheless, many popular local search algorithms are based on 
neighborhood structures for which locally optimal solutions are not known to be computable 
in polynomial time, either by using the local search algorithms themselves or by taking some 
indirect route. We define a natural class PLS consisting essentially of those local search 
problems for which local optimality can be verified in polynomial time, and show that there 
are complete problems for this class. In particular, finding a partition of a graph that is locally 
optimal with respect to the well-known Kernighan-Lin algorithm for graph partitioning is 
PLS-complete, and hence can be accomplished in polynomial time only if local optima can be 
found in polynomial time for all local search problems in PLS. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

One of the few general approaches to diffkult combinatorial optimization 
problems that has met with empirical success is local (or neighborhood) search. In a 
typical combinatorial optimization problem, each instance is associated with a finite 
set of feasible solutions, each feasible solution has a cost, and the goal is to find a 
solution of minimum (or maximum) cost. In order to derive a local search 
algorithm for such a problem, one superimposes on it a neighborhood structure that 
specifies a “neighborhood” for each solution, that is, a set of solutions that are, in 
some sense “close” to that solution. For example, in the traveling salesman problem 
(TSP), a classical neighborhood is the one that assigns to each tour the set of tours 
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that differ from it in just two edges (this is called the 2-change neighborhood). In 
the graph partitioning problem (given a graph with 2n vertices and weights on the 
edges, partiton the vertices into two sets of n vertices such that the sum of the 
weights of the edges going from one set to the other is minimized) a reasonable 
neighborhood would be the so-called “swap” neighborhood: Two partitions are 
neighbors if one can be obtained from the other by swapping two vertices. 

Given a combinatorial optimization problem with a superimposed neighborhood 
structure, the local search heuristic operates as follows. Starting from an indepen- 
dently obtained initial solution, we repeatedly replace the current solution by a 
neighboring solution of better value, until no such neighboring solution exists, at 
which point we have identified a solution that is “locally optimal.” Typically, we 
repeat this procedure for as many randomly chosen initial solutions as is com- 
putationally feasible and adopt the best local optimum found. Variants of this 
methodology have been applied to dozens of problems, often with impressive 
success. The much-publicized “simulated annealing” approach of [S] is just a new 
twist on this classical theme. 

In local search, one is of course not limited to such simple neighborhood struc- 
tures as those described above. Neighborhoods can be complex, asymmetric, and 
cost-dependent. For example, the most successful algorithm known for the TSP is 
the “l-change” or “Lin-Kernighan” heuristic [7], in which the neighborhood of a 
tour consists of all tours that can be reached from it by a sequence of changes of 
edges, going to arbitrary depth, with the exponential explosion of the neighborhood 
controlled by a complex “greedy” criterion. Similarly, for the graph partitioning 
problem, the champion is the “Kernighan-Lin” local search algorithm [4], in 
which we go from a partition to a neighbor by a sequence of swaps. At each step of 
the sequence we choose a swap involving as-yet-unswapped vertices that yields the 
best cost differential (most positive, or least negative). Although the first few swaps 
may possibly worsen the solution, later swaps may more than make up for any 
initial loss. We can stop at any point with positive gain. 

In all reported studies of the above-cited local search algorithms and their 
variants, local optima have been obtained from arbitrary initial solutions in very 
reasonable amounts of time (typical observed growths are low-order polynomials 
[7, 121). There has been a debate on the quality of the optima [7,9, 111, but the 
fact that local optima are easy to obtain has never been challenged. It has been 
shown [S] that in the 2-change neighborhood for the TSP we can have an 
exponentially long sequence of successive improvements, but the examples showing 
this are contrived and complex, and require that the procedure repeatedly choose 
the worst of its alternatives. There are no analogous examples known for A-changes, 
or even for 3-changes (where neighboring tours differ by three edges, rather than 
just two). 

Moreover, this exponential counterexample only rules out the obvious algorithm 
for finding a local optimum. There is no evidence that a clever criterion for 
choosing the next neighbor, or even a totally different constructive technique, might 
not produce a local optimum in polynomial time. The analogy with the simplex and 



HOW EASY IS LOCAL SEARCH? 81 

ellipsoid algorithms for linear programming is instructive here. The simplex 
algorithm is essentially a local search algorithm, where the “solutions” are vertices 
of a polytope and the neighbors of a solution are those solutions that can be 
reached from it by a single “pivot.” The precise nature of the algorithm depends on 
the method used for choosing among neighbors when more than one neighbor 
offers an improvement. Most such “pivoting rules” have been shown to yield an 
exponential number of steps on certain pathological examples, and no pivoting rule 
has been proved to be immune from such examples. There are, however, 
polynomial-time algorithms for finding solutions that are locally optimal with 
respect to the simplex neighborhood structure, and the ellipsoid algorithm is one 
such. It differs from simplex algorithms in that it proceeds by an indirect approach 
and does not examine any vertices of the polytope except for the locally optimal 
one with which it terminates. 

The example of linear programming is also interesting for another reason. Under 
the simplex neighborhood structure, local optimality implies global optimality. 
Thus determining a local optimum is a goal sufficient in itself. Another interesting 
problem in which local optimality suffices was suggested to us by Don Knuth [6] 
(and in fact was our initial motivation for this work). In this problem local 
optimality does not imply global optimality, but it is all we need for our desired 
application. We are given an m x n real matrix A, m < n, and we wish to find a non- 
singular m x m submatrix B of A such that the elements of B-IA are all of absolute 
value at most 1. Since the elements of BP ‘A are ratios of determinants, finding the 
submatrix B with the largest determinant would do, but this is NP-complete [lo]. 
However, it is easy to see that, according to Cramer’s rule, all we need is a IocalZy 
optimal submatrix, with column swaps as neighborhood. So, here is an NP-com- 
plete problem in which the important goal is to find any local optimum! No 
polynomial algorithm is known, but the local search heuristic (improve until locally 
optimum) has been observed always to converge after only a few iterations. 

How easy is it to find a local optimum (in any and all of the above situations)? 
We can formalize this question by defining a new complexity class. This class, called 
PLS for polynomial-time local search, is made up of relations (“search problems” in 
the terminology of [ 11) that associate instances of a combinatorial optimization 
problem (under a given neighborhood structure), with the local optima for those 
instances. To make this class meaningful, we must make certain assumptions on the 
problem and the neighborhood structure: First, given an instance (e.g., an n x n dis- 
tance matrix in the traveling salesman problem), all solutions must have size boun- 
ded by a polynomial in the instance size, and we must be able to produce some 
solution (e.g., a cyclic permutation of n objects) in polynomial time. Second, given 
an instance and a solution, we must be able to compute the cost of the solution in 
polynomial time. Finally, given an instance and a solution, we must be able in 
polynomial time to determine whether that solution is locally optimal and, if not, to 
generate a neighboring solution of improved cost. 

The resulting class PLS of relations lies somewhere between the search problem 
analoges P, and NP, of P and NP. (We shall define these classes more formally in 
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Section 2.) Where eaxtly is PLS? In particular, is it true that PLS = P, (and thus 
we can always find local optima in polynomial time). Is it true that PLS = NP, 
(and thus for some problems in PLS, local optima cannot be found in polynomial 
time unless P = NP). Or is it possible that PLS is distinct from both P, and NP,? 
Practically all the empirical evidence would lead us to conclude that finding locally 
optimal solutions is much easier than solving NP-hard problems. Moreover, as we 
shall see in Section 2, no problem in PLS can be NP-hard unless NP = co-NP. 
Thus it seems unlikely that PLS =NP,. On the other hand, if PLS= P,, then 
presumably there must be some general approach to finding local optima, and no 
such approach has yet been discovered. Note that such an approach would have to 
be at least as clever as the ellipsoid method, since linear programming is in PLS. 

The question of P, = ?PLS = ?NP, thus has no obvious answers and suggests no 
natural conjectures, a property it shares with the more general open question of 
how hard a “total function” in NPs can be. (PLS-problems are total since locally 
optimal solutions must exist by definition, given that the set of solutions is finite.) 
In the interest of understanding these issues, we proceed as any complexity theorist 
would with a new class: We look for complete problems. 

Of course, in this situation the conventional concepts of reduction are inade- 
quate. Intuitively, to reduce a local search problem A to another one B, we must 
not only be able to map instances of A to instances of B, we must also be able to 
recover a local optimum of A from a local optimum of B. In Section 2 we formalize 
this notion of reduction together with that of PLS, P,, and NP,, and make some 
elementary observations about the relations between these classes. In Section 3 we 
sketch a proof that the following “generic” problem is complete for PLS: Given a 
circuit with many inputs and outputs, find an input whose output (when viewed as 
a binary integer) cannot be reduced by flipping any single bit of the input. The 
proof is unusually complex for a generic problem. This is because, in our definition 
of a problem in PLS, we use three algorithms, not one. Much of the complexity of 
the reduction lies in “absorbing” two of them into the third (the computation of the 
cost). 

Proving the existence of a generic complete problem is only the first step in 
establishing the significance of a new complexity class. We must also tie the class to 
problems that are of interest in their own right, either for theoretical or practical 
reasons. In Section 4 we exhibit our first such discovery, a natural and well-studied 
local search problem that is complete for PLS: the one based on the KernighanLin 
neighborhood structure for the graph partitioning problem [4]. The proof is rather 
subtle, in that it must deal with delicate issues not present in ordinary reductions. 
In Section 5 we conclude by mentioning some additional results and open 
problems. 

2. THE CLASS PLS 

A polynomial-time local search (PLS) problem L can be either a maximization or 
a minimization problem and is specified as follows: As with all computational 
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problems, L has a set D, of instances, which can be taken to be a polynomial-time 
recognizable subset of (0, 1 }*. For each instance x (in the TSP, the encoding of a 
distance matrix), we have a finite set FL(x) of solutions (tours in the TSP), which 
are considered also as strings in (0, 1) *, without loss of generality all with the same 
polynomially bounded length p( 1x1). For each solution soFL(x) we have a non- 
negative integer cost cL(s, x) and also a subset N(s, x)EF~(x) called the 
neighborhood of s. The remaining constraints on L are provided by the fact that the 
following three polynomial-time algorithms A,, B,, and CL, must exist. Algorithm 
A,, given x E D,, produces a particular standard solution AL(x) E FL(x). Algorithm 
B,, given an instance x and a string s, determines whether s E FL(x), and if so com- 
putes cL(s, x), the cost of the solution. Algorithm C,, given an instance x and a 
solution s E F;(x), has two possible types of output, depending on s. If there is any 
solution s’ E N(s, X) with better cost than that for s (i.e., such that cL(s’, x) < 
cJs, x) if L is a minimization problem or such that cL(s’, x) > cL(s, x) if it is a 
maximization problem), C produces such a solution. Otherwise it reports that no 
such solutions exist and hence that s is locally optimal. 

Observe that there is a “standard” local search algorithm implicit in the 
definition of L: 

1. Given x, use A, to produce a starting solution s= A(x). 
2. Repeat until locally optimal: 

Apply algorithm CL to x and s. 

If C, yields a better cost neighbor s’ of s, set s = s’. 

Since the set of solutions is finite, this algorithm must halt, i.e., there always 
exists at least one local optimum for a PLS problem L. But how long does it take 
to find one? If the set of solution values is polynomially bounded, as it would be in 
the unweighted versions of many optimization problems (e.g., find the independent 
set with the most vertices), then the algorithm will clearly terminate in polynomial 
time. Many interesting PLS-problems have exponential ranges of solution values, 
however. As remarked in the Introduction, for some of these problems the standard 
algorithm has been shown to take exponential time. (The next proof contains an 
example.) However, although the algorithm itself might take exponential time, one 
might hope to obtain its output more quickly by other means. This gives rise to the 
following “standard algorithm problem”: “Given x, find the local optimum s that 
would be output by the standard local search algorithm for L on input x.” Unfor- 
tunately, a general shortcut yielding polynomial-time algorithms for standard 
algorithm problems seems unlikely, given the following observation: 

LEMMA 1. There is a PLS problem L whose standard algorithm problem is NP- 
hard. 

Proof Consider the following local search problem L with the same instances as 
SATISFIABILITY. The “solutions” for an instance x with n variables are truth 
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assignments to those variables, viewed as elements of (0, 1 }‘I, and hence as integers 
from 0 to 2” - 1. The neighborhood of a solution s > 0 is simply N(s, x) = {s - 1 }; 
the neigborhood of the 0 solution is empty. The cost cL(s, x) is 0 ifs corresponds to 
a satisfying truth assignment, and otherwise is the integer s itself. The initial 
solution A(x) is simply 2” - 1, the truth assignment with all variables true. The goal 
is to minimize cost. Given these definitions, it is clear that L is a PLS problem. 
Now observe that, given an instance x of SATISFIABILITY (for which we may 
assume without loss of generality that 0 is not a satisfying truth assignment), the 
standard local search algorithm for L will output 0 if and only if x is not satisfiable. 
Thus the standard algorithm problem for L is NP-hard, and L is the desired mem- 
ber of PLS. m 

Note that even if finding thge precise local optimum output by the standard 
algorithm is hard, this does not imply that it is hard to find some local optimum. In 
the above problem, 0 is always a local optimum. Thus the most interesting com- 
putational problem associated with a PLS problem L is the following: Given x, find 
some locally optimal solution sofa (any one). The proper formal context for 
studying the complexity of PLS problems is thus not in terms of decision problems 
or of function computations, but in terms of relations and (in the terminology of 
[ 11) “search problems.” 

A search problem is simply a relation R over (0, 1 } * x (0, 1) *. An algorithm 
“solves” a search problem R if, when given an x E (0, 1 } *, it either returns a y such 
that (x, y)~ R or reports (correctly) that no such y exists. In the case of a PLS 
problem L, the relation is R, = {(x, y): XE D, and y~F~(x) and is locally 
optimal}. With a slight abuse of notation, let PLS denote the class of all relations 
R, arising from PLS-problems. 

PLS is related to the search problem analogs of P and NP as follows. P, and 
NP, are both classes of relations R E (0, 1) * x (0, I} * such that if (x, y) E R, then 
1 yl is polynomially bounded in 1x1. Such a relation R is in P, if there is a 
polynomial-time algorithm that solves it. It is in NP, if there is a polynomial-time 
nondeterministic algorithm that recognizes D,= {x: there is a y such that 
(x, y) E R} and is such that every accepting computation outputs a y satisfying 
(x, y) E R. It is not difficult to show the following: 

LEMMA 2. P, = NP, if and only if P = NP. 

Note that any REP, can be formalized as a PLS problem: Let A be a 
polynomial time algorithm that solves R. If x E D,, then FR(x) is defined to be the 
singleton set consisting of the y returned by A on input x. If A reports that there is 
no y such that (x, y)~ R, then FR(x) is the singleton set {y}, where y is some 
special symbol. We define N( y, x) to be the empty set in both cases, thus making y 
a trivial local optimum. Furthermore, any relation in PLS is in NP, by the 
existence of the third algorithm in the definition of “PLS problem.” Thus we have 
the following: 



HOWEASYISLOCAL SEARCH? 85 

LEMMA 3. P, G PLS E NP,. 

A second observation is the following, which in light of Lemma 1 strongly 
suggests that &ding some local optimum for a PLS problem L is an “easier” task 
than finding the local optimum that is output by the standard algorithm for L. 

LEMMA 4. If a PLS problem L is NP-hard, then NP = co-NP. 

Proof: If L is NP-hard, then by definition there is an algorithm A for an NP- 
complete problem X that calls an algorithm for L as a subroutine and takes 
polynomial time (if the time spent executing the subroutine is ignored). But the 
existence of such an algorithm implies that we can verify that x is a no-instance for 
X in nondeterministic polynomial time: simply guess a computation of A on input 
x, including the inputs and outputs of the calls to the subroutine for L. The validity 
of the computation of A outside of the subroutines can be checked in polynomial 
time because A is deterministic; the validity of the subroutine outputs can be 
verified using the polynomial-time algorithm C, (whose existence is implied by the 
fact that L is in PLS) to check whether the output is really a locally optimal 
solution for the input. Thus the set of “no’‘-instances of X is in NP, i.e., XE co-NP. 
Since X was NP-complete, this implies that NP = co-NP. 1 

(We remark in passing that the above proof can be modified to work for any 
“total” function in NP,, not just members of PLS. Technically, we say a relation R 
in NP, is total if its domain D, = {x: there is a y such that (x, y) E R} is in P. We 
have already observed that problems in PLS are total in this sense. Note, however, 
that there are relations in NP, that do not appear to be total. For example, con- 
sider the relation ((x, y): x is a graph and y is a Hamiltonian cycle in x}. Although 
this relation is in NP,, its domain will be in P only if P = NP.) 

We say that a problem L in PLS is PLS-reducible to another, K, if there are 
polynomial-time computable functions f and g such that (a) f maps instances x of 
L to instances f(x) of K, (b) g maps (solution of f(x), x) pairs to solutions of x, 
and (c) for all instances x of L, if s is a local optimum for instance f(x) of K, then 
g(s, x) is a local optimum for x. Note that this notion of reduction has the standard 
desirable properties. 

LEMMA 5. If L, K, and J are problems in PLS such that L PLS-reduces to K and 
K PLS-reduces to J, then L PLS-reduces to K. 

LEMMA 6. If L and K are problems in PLS such that L PLS-reduces to K, and if 
there is a polynomial-time algorithm for finding local optima for K, then there is also 
a polynomial-time algorithm for finding local optima for L. 

We say that a problem L in PLS is PLS-complete if every problem in PLS is 
PLS-reducible to L. In the next section we prove our first PLS-completeness result. 
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3. A FIRST PLS-COMPLETE PROBLEM 

The circuit computation problem introduced informally in the previous section 
will be called “FLIP.” It can be described in terms of the formal definition of PLS 
as follows: Instances are interpreted as feedback-free Boolean circuits made up of 
and, or, and not gates. Given such a circuit x with m inputs and n outputs, a 
solution in FFLIp(x) is any bit v ec or s with m components. It has m neighbors: the t 
m strings of length m with Hamming distance one from s, i.e., the strings that can 
be obtained from x by changing exactly one bit. Having fixed x, the cost of a 
solution s is defined as I;= i 2jyj, where y, is the jth output of the circuit with input 
s. Intuitively, this PLS problem asks for an input such that the output cannot be 
improved lexicographically by flipping a single input bit. To complete the 
specification of FLIP: algorithm A,,,, returns the all-l vector, the cost-com- 
putation algorithm B,,,, is straightforward from the above, and algorithm C,,,, 
returns the best of the m neighbors of s (ties broken lexicographically) if s is not 
locally optimal. 

Formally, we view FLIP as a minimization problem. Note, however, that the 
minimization version of the problem and the corresponding maximization version 
(MAXFLIP) are equivalent as local search problems. To convert an instance of one 
to an instance of the other that has the same local optima, simply add an extra level 
of logic to the circuit x that flips each output variable (changing l’s to O’s and vice 
versa). This fact will be used in the proof of the following theorem, and also implies 
that the theorem holds for MAXFLIP as well as FLIP. 

THEOREM 1. FLIP is PLS-complete. 

Proof: Consider a PLS problem L. Without loss of generality, we assume that L 
is a minimization problem, and show how to PLS-reduce it to FLIP. (If L is a 
maximization problem, an analogous argument will PLS-reduce L to MAXFLIP, 
and this reduction composed with the reduction from MAXFLIP to FLIP will yield 
the desired PLS-reduction from L to FLIP.) Also without loss of generality, we 
assume that, for each instance x, FL(x) consists entirely of strings of length p(x), no 
two of which are within Hamming distance 1 of each other. We first PLS-reduce L 
to an intermediate PLS problem M that differs from L only in the neighborhood 
structure: in M no solution has more than one neighbor. Ifs is locally optimal for x 
then N,(s, x) is empty; otherwise the single neighbor of s is the output of C, given 
inputs s and x. Note that we can take A,,,, = A,, B, = B,, and C, = C,. 

We next PLS-reduce M to a second intermediate problem Q that has the same 
instances as L and M, but has the same neighborhood structure as FLIP, i.e., all 
strings of a given polynomially bounded length are solutions and any two strings at 
Hamming distance 1 are mutual neighbors. Suppose that the stipulated length of 
solutions for instance x of L (and hence of M) is p = p( 1x1). Then solutions for x in 
Q are of length 2p + 2. Although all such strings will be called “solutions,” only 
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certain specified ones will be inexpensive enough to be candidates for local optima. 
For a solution u of L, the possible candidates are as follows: 

(a) ~11, in which case co(uul1, x) = (2~ + 4) c,(u, x) + 2. 
(b) ~10, in which case co(uul0, x) = (2~ + 4) c,(u, x) + 1. 
(c) ~~00, in which case co(uuO0, x) = (2~ + 4) c,(u, x). 
(d) u&O, where u is not a local optimum and u is a string on the shortest 

Hamming path from u to its (single) neighbor w in M. The cost co(~uOO, x) is 
(2~ + 4) cL(w, x) + (p + 2) + h + 2, where h is the Hamming distance between u and 
w (h = 0 is allowed). 

(e) ~~10, where w is as above and co(uwl0, x)= (2p+4) cL(w, x) + 
(p+2)+ 1. 

(f) uwll, where w is as above and co(uwl1, x) = (2~ + 4) cL(w, x) + (h + 2). 
(g) ~11, where u is any string of length p other than u. The cost co(uul1, x) 

is (2p+4) cL(u, x)+/r +2, where h is the Hamming distance between u and U. 

Each “noncandidate” s will have its cost determined as follows. Recall that since L 
is in PLS, there is a polynomial-time algorithm B, for computing c~(s, x), Let 
q(jxl) be a polynomial bound on the running time of B, in terms of 1x1 (since IsI is 
polynomially bounded in 1x1, such a q must exist). Then all solutions s for x satisfy 
cL(s, x) < 24(I-‘I). Let Z= (4~ + 4)(2y(ixI) ), and let a be the standard solution retur- 
ned by algorithm A,. If s is a noncandidate solution and h is the Hamming dis- 
tance between s and aal 1, then c&s, x) = Z + h. Thus there is a downhill path from 
any noncandidate solution to aall, and so only candidate solutions can be locally 
optimal. Furthermore, (a) through (g) have been designed so that once a candidate 
solution has been reached, a local optimization algorithm based on the flip 
neighborhood must simulate the standard algorithm for M, with the set of local 
optima being precisely those solutions WOO for which u was locally optimal for L. 
(Readers may verify this for themselves, using the fact that all solutions of L are at 
least Hamming distance 2 apart by assumption.) (This one-to-one correspondence 
between local optima is actually a stronger property than we need for a PLS-reduc- 
tion from A4 to Q, but will certainly suffice, and has additional consequences; see 
Corollary 1.1.) To complete the definition of Q, let algorithm A, return the “stan- 
dard” solution l**+ *, and observe that a polynomial-time algorithm B, can be 
derived in a straightforward manner from the polynomial-time algorithms B, and 
C,, and that a polynomial-time C, is a straightforward adaption of B,. 

The last step of our proof is a PLS-reduction from Q to FLIP. This is now 
relatively straightforward, as all the complexity of Q resides in computing its cost 
function. Our reduction works by constructing, for a given instance x of Q, a 
polynomial-size circuit with 2p( 1x1) + 2 inputs that computes co(s, x) for all 
solutions s of x, with its outputs describing the answer in binary notation. This can 
be done since the algorithm B, for computing costs runs in polynomial-time (by 
construction). 1 
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COROLLARY 1.1. (a) The standard algorithm problem for FLIP is NP-hard, and 
(b) There are instances of FLIP for which the standard algorithm requires exponen- 
tial time. 

Proof: These follow from Lemma 1, the one-to-one correspondence between 
local optima implicit in our proof of Theorem 1, and the fact that our construction 
in the proof of Lemma 1 forces the standard algorithm for FLIP to simulate the 
standard algorithm for the problem being reduced to FLIP, provided that the 
starting solution for the FLIP standard algorithm, lzpt2, is precisely aal 1, where a 
is the starting solution for the problem being reduced to FLIP. (Note that this is 
the case for the problem L of Lemma 1.) m 

4. A WELL-KNOWN LOCAL SEARCH PROBLEM THAT Is PLS-COMPLETE 

The local optimum for Kernighan-Lin (LOKL) problem is based on a famous 
local search heuristic for the well-studied graph partitioning problem. In the graph 
partitioning problem, we are given a graph G = (V, E) with weights w(e) on the 
edges. A solution is any partition of V into two equal subsets A and B, and the cost 
c(A, B) is the sum of the weights of all edges going from A to B. Our. goal is to find 
a partition of minimum cost. 

The LOKL neighborhood structure for this problem is highly data-dependent, 
and its definition is built up as follows. A swap of partition (A, B) is a partition 
(C, D) such that A and C have symmetric difference 2, i.e., such (C, D) is obtained 
from (A, B) by swapping one element of A with one element of B. (C, D) is a greedy 
swap if c(C, D) - c(A, B) is minimized over all swaps of (A, B). If in fact (C, D) is 
the lexicographically smallest over all greedy swaps, we say that (C, D) is the 
lexicographic greedy swap of (A, B). Let (A,, Bi) be a sequence of partitions, each 
of which is a swap of the one preceding it. We call it monotonic if the differences 
Ai - A, and Bi- B, are monotonically increasing (that is, no vertex is switched 
back to its original set). Finally, we say that a partition (C, D) is a neighbor of 
(A, B) in the LOKL neighborhood structure if it occurs in the (unique) maximal 
monotonic sequence of lexicographic greedy swaps starting with (A, B). Note that 
such a sequence will consist of 1 VI/2 + 1 partitions, with the last one equalling 
(B, A). Thus each partition has 1 VI/2 neighbors. The Kernighan-Lin algorithm 
performs local search over this neighborhood structure, with the added proviso that 
if more than one neighbor offers an improvement over the current partition, we 
must choose a neighbor that offers the best improvement. 

(The above description is not enough to allow us to specify the output of 
algorithms ALOKL and CLoKL. The original paper [4] does not specify a unique 
starting partition, nor does it say what is to be done when there is more than one 
neighbor offering the best improvement. In consequence, various implementations 
differ on these points. The paper also fails to specify the underlying neighborhood 
structure as precisely as we do here; it does not say what to do when ties are 
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encountered in the process of building a maximal monotone sequence of swaps, 
whereas we .have specified a lexicographic tie-breaking rule. Our PLS-completeness 
result will in fact be independent of the choice of tie-breaking rules and the precise 
definitions of ALOKL and CLOKL.) 

As an intermediary in our proof, we consider a variant on LOKL with a 
considerably larger neighborhood structure, called the weak LOKL problem, or 
WLOKL. WLOKL is like LOKL, except that a partition (C, D) is a neighbor of 
(A, B) if it can be obtained from it by a monotonic sequence of greedy swaps, all 
except the first of which are lexicographic. In other words, we exhaust all ties at the 
first step, although we resolve ties lexicographically from then on. Since there can 
be at most 0( 1 VI ‘) swaps tied at the first step, each partition has at most 0( 1 I’/( 3, 
neighbors in the WLOKL neighborhood structure. (Note that all the LOKL 
neighbors are contained in the WLOKL neighborhood, and so if a partition is 
locally optimal with respect to WLOKL, it must also be locally optimal with 
respect to LOKL.) 

THEOREM 2. WLOKL is PLS-complete. 

Proof: As with FLIP, the maximization and minimization versions of WLOKL 
are equivalent (the same also holds for LOKL). To transform an instance 
G = (V, E), w of one version to an instance G = (V, E’), w’ of the other with the 
same local optima, simply replace E by E’ = {(u, u): u, u E I/ and u # v}, extend w to 
the larger set by defining w(e) = 0 for all eE E’- E, and then define 
w’(e) = W- w(e) for all e E E’, where W = C,, E w(e). We prove that WLOKL is 
PLS-complete by PLS-reducing MAXFLIP to the maximization version of 
WLOKL (using maximization versions simplifies our notation). 

Let the circuit C be an instance of MAXFLIP. We will show how to construct a 
corresponding instance of the maximization version of WLOKL. Let N be the 
number of and and or gates contained in C (as we shall see, we can ignore the not 
gates). We assume without loss of generality that N > 6. 

The first step of our construction is designed to get around the fact that, while 
the sets A and B are interchangeable in the definition of graph partitioning (i.e., 
c(A, B) = c(B, A)), the truth values in MAXFLIP are not. (If y is the input vector 
to circuit C obtained from x by changing each “true” variable to “false” and vice 
versa, then it need not be the case that cMMAXFLIP( v) equals cMAXFLIP(x).) To “sym- 
metrize” MAXFLIP, we represent the circuit C by an instance of NOT-ALL- 
EQUAL-SATISFIABILITY (NAES), which does display a symmetry between 
“true” and “false.” As with the standard SATISFIABILITY problem, instances of 
NAES are defined over a set U of variables, each instance being a collection X of 
clauses, each clause being a subset of the set (u, U: u E U} of literals over U. The 
definition of “satisfying truth assignment” is different from that for ordinary 
SATISFIABILITY, however. A truth assignment to the variables satisfies an 
instance X if and only if every clause has at least one true and one false literal. 
(Thus interchanging the values of true and false in an NAES-satisfying truth 
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assignment yields another NAES-satisfying truth assignment.) Given our circuit C, 
we shall construct an NAES instance Xc whose satisfying truth assignments 
correspond to the valid computations of C. 

In addition to the variables .Y;, 1 d id m, for the inputs to the circuit C, we will 
have variables zi. 1 d i G m, for the implicit bottom level input “gates” of the circuit 
that take the input variables and propagate them upwards. Rounding out our set of 
variables, we will also have a variable a, for the output of each and and OY gate in 
the circuit. (We do not need variables for the not gates, since if a is the variable 
associated with one of the inputs to a not gate of C, we can simply use ti for the 
output of the not gate, noting that ;=a.) The NAES clauses are specified as 
follows: 

(i) For each bottom level gate, we will have two NAES clauses: (x,, 5,) and 
(Xi, z,), 1 < i < m. 

(ii) For each or gate “a = h or c” (with a the variable for the gate, and h and 
c the literals for its inputs), we have three NAES clauses: (a, h, c), (a, h, 0), and 
(4 6 0). 

(iii) For each and gate “u = h and c,” we have three NAES clauses: (a, h, F), 
(ti, 6, 0), and (a, c, 0). 

It is easy to verify that a truth assignment of the variables gives consistent values 
to the input(s) and output of a gate if and only if it satisfies the corresponding 
NAES clauses, and hence the desired correspondence holds between satisfying truth 
assignments and valid computations of C. 

We now construct a weighted graph G = ( V, E) corresponding to Xc and hence 
to C. In specifying G, we will make reference to the levels of various circuit elements 
(and their corresponding NAES clauses). These are defined as follows. The bottom 
level gates (the zi) will be assigned level 1. Thereafter, the level of an and or an or 
gate is one more than the level of its highest level input, and the level of a not gate 
(for which there are no corresponding clauses) is the same as the level of its input. 
The maximal level attained by any gate will be called the depth of the circuit and 
will be denoted by d, Let M= N2N. 

The vertices in V are specified as follows: First, there are vertices TO, T,, F,, and 
F, (T for “true,” F for “false”). Then, for each input variable xi we have two ver- 
tices, xi and Zj. Finally, for each “gate” variable g (where g is either an ui or a z,), 
we have four vertices, g, g, g’, and g’. (The extra “primed” vertices are introduced 
so that each pair of gate vertices {g, g} will initially be more expensive to swap 
than the {x, X} input pairs.) 

The edges in E are divided into two classes. First, there are the edges in the non- 
problem-specific superstructure: Connecting each {T,, F,) pair is an edge of weight 
M2. Connecting each remaining pair of complementary vertices (x, and X,, g and 
2, g’ and g’) is an edge of weight M. Connecting each pair {g, 2’) and { 2, g’} is 
an edge of weight N’(“-- ‘) + ( 1/M2). 

Next, we have edges that reflect the precise contents of the NAES clauses: For 
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each clause of level i, 1~ i 6 d, we connect the unprimed vertices corresponding to 
each pair of literals in that clause by an edge of weight NZcd- i). (If the constant “0” 
appears in the clause, the “literal” representing it in the above specification is the 
vertex F,. If a given pair of literals is contained in more than one clause, the weight 
of the edge joining them is the sum of the weights arising from all clauses that 
contain them both.) Finally, we connect the variable representing the jth output 
gate of C to F, with an edge of weight 2jJM. 

This concludes the construction of G. Note that it can be accomplished in 
polynomial time. Thus, to complete the proof that WLOKL is PLS-complete, we 
must show that there is a polynomial time algorithm that can construct a local 
optimum for C as an instance of MAXFLIP, given a local optimum for G as an 
instance of WLOKL. The existence of such an algorithm will be immediate once we 
show that a locally optimal partition (A, B) for G (with respect to the WLOKL 
neighborhood) has the following properties: 

(1) The vertices r, and T, are in the same set, say A, and the vertices F,, and 
F, are in the other set, B. Also, the vertices xi and X, are in opposite sets, and, for 
each gate variable g, the vertices g, g’ are in the same set and the vertices 2, 2’ are 
in the opposite set. Thus the partition induces a truth assignment for all the 
variables: g (or xi) is true if and only if g (xi) is in A. 

(2) The truth assignment induced by the partition satisfies the NAES 
instance X, and hence is consistent with the circuit C. 

(3) The values of the input variables form a local optimum for the 
MAXFLIP instance. 

We shall prove these properties in turn, starting with property (1). The proof of 
the theorem will be complete once we have proved that property (3) holds. We 
shall in fact show that (1) and (2) hold for the LOKL neighborhood, which implies 
that they hold for WLOKL (and which will prove useful in our eventual proof that 
LOKL is PLS-complete). Only property (3) will require the full generality of 
WLOKL. 

First we make some observations concerning the weights of the edges. Consider a 
vertex u corresponding to a gate variable g or its negation g, and an adjacent ver- 
tex u other than the complementary vertex U or its mate U’. That is, u either is F, or 
corresponds to another variable. If u corresponds to an input variable xi, then u 
corresponds to the level 1 gate variable zi, and the weight of the edge is N2d- *. If u 
corresponds to another gate variable or is F,, then the literals u and u can coexist 
in at most N clauses, all of level 2 or greater, so the weight of the edge {u, u} is at 
most N . N2cd- 2) < NZdp *. 

We now show that (1) holds if the partition (A, B) is locally optimal with respect 
to the LOKL neighborhood. First, suppose that Ti. and Fj are in the same set, say 
A, for some i and j. If T, ~ i and F, pj are in the other set B, then swapping Fj and 
T1 _ i will add the edges {T;, F,} and { T1 _ ir F, pi} to the partition, for a cumulative 
gain of 2M2. Since each of the edges we might lose from the partition (at most 4N 
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of them), has weight less than M, this swap (and hence a greedy swap) will improve 
the partition, contradicting the assumption of local optimality. If T, i is in set A 
along with T, and F,, then swapping F, with any member of B other than F, , will 
gain the edges { To, F,} and ( T, , F,}, again for a local gain of 2M’ and a global net 
profit. An analogous argument holds if A contains F, ~~, as well as T, and F,. We 
thus conclude that Ti and F, cannot be in the same set for any i, j, and hence To 
and T, are in one set, say A, and F, and F, are in the other set B. 

Suppose now that two complementary vertices u and U are in the same set, say A; 
u is g or g’ for some gate variable g, or xi for some i, 1 d i < m. Since A and B have 
equal size, there are two complementary vertices v and V in B. If we swap u and v 
we will gain the edges {u, ii} and {v, v}, each of weight M, and lose only at most 
4N edges of weight less than NZd. Since (4N)(N2d) = 4N2d+ ’ < M, this means that 
(A, B) would not be locally optimal, a contradiction. Thus, all complementary ver- 
tices are separated. Suppose finally that g and g’ are in different sets for some gate 
variable g, say g E A and g’ E B. Then 2 is in B and 2’ is in A. If we swap g’ and g’, 
we gain the edges {g, 2’) and { 2, g’}, each of weight exceeding N2’“- “, and do 
not lose any edges, again an improvement and a contradiction. It follows that for 
every gate variable g, vertices g and g’ are in the same set and vertices g and 2’ are 
in the other set. This establishes property (1) for LOKL and hence for WLOKL. 

We now show that property (2) holds for any locally optimal partition (A, B), 
i.e., that the truth assignment induced by the partition satisfies the NAES instance 
X,. Suppose that the induced truth assignment is not satisfying. We first observe 
that all the level 1 clauses must be satisfied. If not, then there would be some pair 
x;, 2, on the same side of the partition, with Z, and Z, on the other. But then we 
could swap x, and X, (flip the truth value of x,), gaining edges {x,, -?,} and (x,, z,} 
of weight N2’dP ‘) each while losing no edges, implying that (A, B) is not locally 
optimal. Thus, any unsatisfied clause must be at level 2 or above. We will argue 
that a greedy swap from (A, B) must swap vertices g and 2 for some violated gate g 
at the lowest possible level, and that once this swap is made, swapping g’ and g’ 
will lead to a partition better than (A, B), once again violating local optimality of 
the definition of the LOKL neigborhood. 

Consider possibilities for a greedy first swap. If we swap any two complementary 
vertices u and U, we will incur a loss of at most 2(N2’d-‘) + (l/M*)) + 
4N(N*‘d- 1) ) < M; the first term is from the loss of edges {u, U’} and {U, u’} and the 
second is from all other lost edges. On the other hand, if we swap two noncom- 
plementary vertices, then, by the arguments in support of (l), the net loss will be at 
least M. Thus any greedy swap from (A, B) must involve complementary vertices. 

Consider the clauses at levels i z 2. Note that each of these corresponds to an and 
or or gate and hence contains 3 literals. If such a clause is satisfied (i.e., has at least 
one true and one false literal), then the triangle of the clause contributes two edges 
of weight N *td-‘) to the weight of the partition. If the clause is not satisfied, then all 
three vertices are in the same set and the clause contributes nothing. Let us say that 
an and or or gate is “satisfied” if all three of the corresponding clauses are satisfied, 
and is “violated” otherwise. By the above arguments, our assumption that the truth 
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assignment induced by (A, B) is not satisfying means that there is at least one 
violated gate, and all violated gates have level i > 2. Note that a gate of level i 2 2 
that is satisfied contributes weight 6N2(“-‘), whereas a violated gate contributes at 
most 4N2’d- i). 

Suppose g is the variable for a violated gate at level i> 2. If we flip the truth 
value of g (swap g and g), we gain at least 2 (and at most 6) edges of weight 
NZcd-“, as each clause for that gate contains either g or g. We lose the edges 
{g, g’> and { 2, g’}, each with weight N2’d-1) + ( 1/M2). In addition, flipping the 
value of g may result in the violation or satisfaction of other gates at higher levels 
(those with g or g as input). The loss or gain due to these new violations is at most 
6N. NZcdp ‘i+ “’ < NZcdpi’, given our assumption that N> 6. (If g is an output gate, 
there is a possible extra loss or gain of 2N/M < 1 for the edge {g, F,}, but this is 
negligible.) Thus flipping the value of a violated gate at level i > 2 results in a loss L 
satisfying 

2 
L&B=~N~(~-I) f i2 7N2(d-ii)<L<2jj,dk-1)+ jp(d-i’=~I(/B. I M2 

Note that if h > i, then LiB - L,VB> N2(d-i)- 7N2(d-h), which is greater than 0 since 
N2 > 7 when N > 6. Thus the smallest loss that can be incurred by flipping a 
violated gate’s variable occurs for a violated gate of minimum level. 

This loss is also less than the loss incurred by flipping a variable corresponding 
to a satisfied gate at any level i, for the latter loss will be at least 2N2’dp ‘) + 
(2/M2) + 2jpd- i) _ N%- i), which exceeds L,UB for all j 2 2. Similarly, all the LuB 
are less than the cost of flipping an input variable xi (2N2’d- ” due to the loss of the 
two edges {xi, Zi} and {Xi, zi}) and are less than the cost of flipping vertices g’ and 
2’ for some g, (because such a flip incurs a loss of at least 2NZcd- “+ (2/M2)). 
Therefore, the first greedy swap (in the sequence of swaps generating LOKL 
neighbors of (A, B)) must swap two vertices g and g, where g is a violated gate at 
the lowest possible level k, for a loss of at most LvB. 

If, after swapping such an g, 2 pair, we next swap the corresponding vertices g’ 
and g’, we will regain the edges {g, g’} and { 2, g’} for an increase of 
2N2(d-” + (2/M’) and a net total gain of at least N2’d-k’. This means that (A, B) 
has a neighbor of higher weight, a contradiction of its local optimality. Thus 
property (2) is established for LOKL (and hence for WLOKL). 

Call a partition that satisfies properties (1) and (2) a consistent partition, To 
prove property (3), we shall show first that the weight of a consistent partition is 
equal to a constant term, depending only on the circuit C, plus l/M times the cost 
of the solution to the MAXFLIP instance induced by that partition. The following 
edges contribute to the weight of a consistent partition: edges between Fi and T, 
vertices with a total weight of 4M2; edges between the 2N + 3m pairs of com- 
plementary variables (two for each and and or gate plus three for each input 
variable) with a total weight of (2N + 3m)M; edges ( g, g’} and { g, g’} with a total 
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weight of 2(N + m)(N”“ ‘) + (l/M’)); edges connecting vertices in the same NAES 
clause with a total weight of 2mN2’d ’ ) + Cf= z 6cj(N2’” ‘I), where ci is the number 
of and and or gates in C at level i, 2 < i < d. All these weights sum up to a constant 
independent of the partition. In addition we have the edges connecting the true out- 
put variables to F,. The total weight of these edges is the cost of the associated 
solution to the MAXFLIP instance, divided by M. 

Suppose now that the solution to MAXFLIP instance induced by the locally 
optimal partition (A, B) is not a local optimum, i.e., flipping the value of some 
input variable xk to the circuit C yields an output of higher value. We shall again 
derive a contradiction. By (1) and (2) we know that (A, B) is a consistent partition. 
What are its neighbors under the WLOKL neighborhood? We first argue that any 
greedy swap from (A, B) must be between an input variable and its complement, 
and in fact all such swaps tie for best. The loss for such a swap is 2N2’d- ‘I, indepen- 
dently of which input variable is involved. By the argument for property (2), the 
only competitors are swaps between complementary vertices. However, by the same 
argument (and the fact that all gates are satisfied by a consistent partition), any 
such swap must cost at least 2Nzcdp ‘) + (2/M’). 

Thus the pair xk, Xk is eligible to be the first swap in a sequence of greedy swaps 
leading to WLOKL neighbors of (A, B). We now argue that subsequent swaps in 
that sequence will lead to a new partition consistent with the new input assignment 
obtained by flipping the truth value of xk. If flipping xk improves the solution cost 
in the MAXFLIP instance, the new partition will have better cost itself. 

After flipping the value of xk, the gate zk = xk becomes violated. If we flip zk (i.e., 
swap zk and Zk), we incur an additional loss of at most 2NZcdp ‘I + (2/M2) - N2’“- ‘) 
(by analogy with the arguments for levels i> 1 in the proof of property (2)). Since 
all other gates are satisfied, swapping g and g (or g’ and 2’) for any other gate will 
result in a larger loss. Also, swapping -xi and X, for any i # k will result in a loss of 
2NZcd- I), again larger than the loss for flipping zk. The only better swap is to flip 
back xi and Xi, but this is not allowed by the WLOKL definition of neighborhood. 
Thus, in the second step of our swap sequence we will swap zk and 2,. In the third 
step the best choice is to swap z; and Z; for a gain of 2NZcJp ‘) + (2/M2); any other 
swap incurs a loss. 

At this stage, all gates at level 1 have consistent values. From now on, as long as 
the partition is inconsistent but all level 1 gates are satisfied, the next greedy swap 
will involve a variable a for a violated gate at the lowest possible level: first we will 
have to swap a and ti and then we will have to swap a’ and 5’. By the proof of 
property (2), such a swap will be best as far as cost is concerned. We only‘have to 
show in addition that the vertices are eligible for swapping, i.e., have not already 
been swapped once earlier in the sequence of swaps. This follows from the fact that 
violations only propagate upwards, and hence the lowest level of a violated gate is 
monotonically increasing. Thus the sequence of greedy swaps will continue until a 
partition is arrived at that is consistent with the new assignment to the input 
variables, and hence has better cost than (A, B). This contradicts the local 
optimality of (A, B), and hence proves that property (3) holds. 1 
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We shall now extend our result for WLOKL to the LOKL neighborhood struc- 
ture. 

THEOREM 3. LOKL is PLS-complete. 

Proof: In the previous construction, if we had a consistent partition then there 
was an m-way tie for the best first swap: flipping each of the m input variables. If 
the partition did not correspond to a local optimum for the corresponding 
MAXFLIP instance, then one of these m swaps led to an improved partition. We 
shall modify our construction so that there is no tie, i.e., so that there is a unique 
best first swap, one that flips an input variable xk that improves the cost in the 
MAXFLIP instance. We do this by simulating a more elaborate circuit than C. 

Our circuit K will have m inputs (x1, . . . . x,, as in C), and n + m outputs (the cost 
outputs y1, . ..) y, of C plus m additional outputs w,, . . . . w,). It is constructed as 
follows: K contains m + 1 copies of C; the ith copy computes the cost of the input 
vector obtained from (x,, . . . . x,) by flipping xi, and the m + 1st copy computes the 
cost of (x1, . ..) x,) itself. This last value goes to the outputs y,, . . . . y,. However, on 
top of the m + 1 copies of C is another circuit which compares the costs found by 
each and writes the input vector that gave the best value to the outputs w 1, . . . . w,. 
Ties are resolved lexicographically with the input vector (x1, . . . . x,) preceding all its 
neighbors. Hence the outputs wl, . . . . w, contain (x1, . . . . x,) if and only if it was 
locally optimal, and otherwise they contain the input variable values for a neighbor 
with better cost. 

As described, K can clearly be constructed in polynomial time, given C. Given 
the circuit K, we construct a graph G as in the previous theorem. The only dif- 
ference is that the new output variables w,, . . . . w, are not connected to F,. Rather, 
for 1 < i < m, we have “tie-breaking” edges { wi, Xi} and { Wi, xi} with weight l/M3 
each. This weight is too small to play any role in almost all the arguments, Thus, as 
before, a locally optimal partition (with respect to the LOKL neighborhood) 
induces a consistent truth assignment. (Recall that properties ( 1) and (2) in the 
previous proof were shown to hold for LOKL as well as WLOKL.) 

Regarding property (3), the cost of a consistent partition is some constant, plus 
l/M times the cost of the solution to the associated solution for MAXFLIP, plus at 
most 2m/M3 for tie-breaking edges. The last term clearly will not effect the relative 
rankings of two consistent partitions unless both have the same value for the first 
two terms. The only place where the tie-breaking edges come into play is in 
breaking a tie for the first swap in the definition of the LOKL neighborhood. 
Suppose (A, B) is a consistent partition, and let x be the associated truth 
assignment to the inputs of MAXFLIP. We shall show that if (A, B) is locally 
optimal for LOKL, then x is locally optimal for MAXFLIP. 

Suppose that x is not locally optimal for the MAXFLIP instance. Then there is a 
single k such that wk # xk. By the same arguments,used in the proof of the previous 
theorem, the first swap in the monotonic sequence of lexicographic swaps that 
determines the LOKL neighbors of (A, B) must involve xi and Xi for some i. If 

571/37/l-7 
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i # k, we incur a loss of 2NZCd ” + (2/M3); the first term comes from the edges con- 
necting x,, Xi to zi, Z,, and the second comes from the edges to u‘,, Gi. On the other 
hand, since VV~ # xk, if we swap xk and Xk we will lose only 2N2’“- I)- (2/M’). 
Thus, if x is not locally optimal for MAXFLIP, the first swap will flip an input 
variable that yields a better solution x’ for MAXFLIP. Then, as in the previous 
proof, the sequence of swaps will progressively rectify the values of the violated 
gates until we reach the consistent partition associated with x’, and this partition 
will have better cost than that for x, implying that (A, B) was not locally optimal, a 
contradiction. 

Thus if (A, B) is locally optimal for our graph partitioning instance with respect 
to the LOKL neighborhood, its associated x is locally optimal for the original 
MAXFLIP instance. Hence our derivation of G from the MAXFLIP instance 
provides the required PLS-reduction, and LOKL is PLS-complete. a 

Note that the proof of PLS-completeness does not depend on the tie-breaking 
rule for greedy swaps (the lexicographic tie-breaking rule we specified for LOKL is 
not used in our proof since we manage to avoid all ties). Also, completeness does 
not depend on our method for choosing the neighbor to move to when there is 
more than one better neighbor (another detail left to particular implementations of 
the Kernighan-Lin algorithm). It also extends to any generalization of LOKL to 
larger neighborhoods, so long as the neighborhood of a partition contains all 
LOKL neighbors. (A natural example would be the generalization in which a 
partition is a neighbor of (A, B) if it can be reached from (A, B) by a sequence of 
swaps, all but the first of which are greedy.) 

We remark that although a locally optimal partition induces a locally optimal 
solution to the FLIP instance being simulated in our construction, the converse is 
not true. That is, it is possible that an input vector x is locally optimal for the FLIP 
instance but the corresponding partition is not locally optimal. The reason is the 
following: Starting from the consistent partition (A, B) corresponding to x, the 
Kernighan-Lin algorithm will flip some input variable xi (swap xi and Xi), 
depending on the tie-breaking rule in use. (Since x is locally optimal, we have 
wi= xi for all i, and so all such flips generate the same loss.) The algorithm will 
then propagate the new values through the circuit until the consistent partition 
corresponding to the new input x’ is reached. Since x is locally optimal, this new 
partition will be no better than the one for x. However, the algorithm does not stop 
here; it must continue until every vertex has been swapped exactly once. Thus, the 
algorithm will next flip some other input variable x,, and then try to propagate the 
new values up the circuit. The propagation will not succeed if it encounters some 
violated gate variable that was already flipped in the first propagation. If this 
happens, then the partition will contain a violated gate forever after (or rather, until 
the Ti and Fi are swapped on the last two steps, returning us to the reversal (B, A) 
of our original partition). The presence of a violated gate will cause the cost to 
exceed that for any consistent partition, and so (A, B) will be locally optimal so 
long as the second propagation fails. That second propagation might succeed, 
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however, in which case the Kernighan-Lin algorithm will construct a consistent 
partition corresponding to an input vector that differs from x in two positions, and 
that hence is not a neighbor of x in MAXFLIP. Such a solution could have better 
cost than x even though x is locally optimal. 

The above observation does not effect the validity of our proof of Theorem 2, 
since for a PLS-reduction between PLS problems we only need to have a mapping 
from local optima of the target problem to local optima of the source. Howver, our 
construction can be modified so that the correspondence is one-to-one, thus 
allowing us to prove that an analog of Corollary 1.1 holds for LOKL. The 
modification consists of augmenting the circuit K with an additional circuit that 
computes the parity of the input vector x, i.e., determines whether x has an even or 
odd number of 1’s. When Kernighan-Lin flips an input variable, the output of this 
circuit will also flip. When Kernighan-Lin flips a second input variable, the output 
of the circuit will want to flip back, but this would involve swapping some vertex a 
second time, which is not allowed. Thus the second input flip can no longer be 
successfully propagated, and it follows that with this modification in our construc- 
tion there is a one-one correspondence between local optima. Moreover, this 
modified construction forces the Kernighan-Lin algorithm to simulate the standard 
algorithm for MAXFLIP, provided we are given an appropriate starting partition 
(with all the xi on the “True” side of the partition). Consequently we can conclude 
the following. 

COROLLARY 3.1. (a) It is NP-hard to find the solution constructed by the 
Kernighan-Lin algorithm from a given starting point, and (b) there are instances of 
(weighted) graph partitioning with starting partitions such that the Kernighan-Lin 
algorithm will take exponential time if started from those partitions. 

5. FURTHER RESULTS AND OPEN PROBLEMS 

We have shown that one well-known local search algorithm, the Kernighan-Lin 
algorithm for graph partitioning, gives rise to a PLS-complete local search problem. 
One can naturally ask if such results can be proved for other algorithms and other 
optimization problems. 

Such a result can, for instance, be proved for a “Kernighan-Lin-like” algorithm 
for the weighted independent set problem. Instances of this problem are graphs 
G = (V, E) with weights assigned to the vertices (rather than to the edges as in 
graph partitioning). A solution is an independent set, i.e., a set V’ E V such that no 
two vertices in v’ are joined by an edge in E. The cost of a solution I” is the sum of 
the weights of the vertices in V’. We wish to find an independent set of maximum 
weight. 

Our local search algorithm, which we shall call “K-L,” is based on a slightly 
different concept of “swap” than that used for graph partitioning by Kernighan and 
Lin. Here a swap involves taking a vertex v not in V’, placing v in v’, and then 
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removing from v’ all vertices that are adjacent to u in G. By analogy with the 
KernighanLin algorithm, our algorithm considers neighborhoods based on 
sequences of swaps. Call a swap greedy if it gives rise to the biggest possible 
increase in cost (or least possible loss, if no increase is possible). A monotonic 
sequence of greedy swaps will be one in which no vertex that is swapped into I/ 
during the sequence is ever swapped out, with ties broken, say, lexicographically. 
The neighborhood used in the K-L algorithm consists of all those independent sets 
reachable by monotonic sequences of greedy swaps. Using techniques analogous to 
those used for proving Theorems 2 and 3, we can show that the local search 
problem for this neighborhood is PLS-complete. 

Unfortunately, it is not clear that this result has much relevance in practice, 
because it is not clear that the K-L algorithm for a weighted independent set finds 
very good solutions (no one has yet investigated its performance in practice). What 
we would most like to prove is that the Lin-Kernighan i-change algorithm for the 
traveling salesman problem is PLS-complete. There is ample evidence that this 
algorithm produces very good solutions [3, 73, so there is significant interest in 
understanding the complexity of its neighborhood structure. Moreover, like the 
Kernighan-Lin algorithm for graph partitioning (which, in fact, inspired it), the 
Lin-Kernighan algorithm has a neighborhood structure based on sequences of 
“greedy swaps,” although here the definition of swap is of course different. Unfor- 
tunately, we at present see no way of extending our techniques to this problem. 

Another open problem is the complexity of local search problems with simpler 
neighborhood structures involving a bounded number of “swaps,” such as the 2- 
change and 3-change neighborhood structures for the TSP, the simple single-swap 
neighborhood for graph partitioning and independent set, and the problem of sub- 
determinant maximization mentioned in the Introduction. For only one of these 
five examples is it known that local optima can be found in polynomial time. (An 
0( 1 VI ‘) greedy algorithm is sufficient to construct an independent set that is locally 
optimal with respect to single swaps.) On the other hand, it is unlikely that any of 
the four remaining problems can be PLS-complete. 

This is because for these problems the algorithms A,, B,, and C, all run in 
logarithmic space, and thus do not appear to make full use of polynomial time local 
search. We conjecture that a local search problem cannot be PLS-complete unless 
the subproblem of verifying local optimality is itself logspace complete for P. 
Although this does not seem to follow directly from our definitions, we can at least 
show that both FLIP and LOKL have P-complete local optimality verification 
problems (“verification problems,” for short). 

The result for FLIP follows from the fact that it is P-complete to determine 
whether the output of a single-output monotone Boolean circuit is 1 or 0 [2]. 
(Recall that in a monotone circuit there are no not gates.) We actually give a trans- 
formation to MAXFLIP, but that will imply the result for FLIP as well. Suppose 
we are given a monotone circuit C with input values xi, . . . . x, as an instance of the 
monotone circuit value problem. Augment that circuit with an additional “latch” 
input that is and’d with each input before that input is fed to the-later gates of C, 
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and set the latch input to 0. Note that this modified circuit c’ can be constructed 
using logspace given C, and that the output value for C’ must be 0. Further note 
that the output value will continue to be 0 as long as the latch input is not flipped. 
Thus the input x,, . . . . x,, 0 will be locally optimal if and only if the output is 0 when 
the latch input is 1. But this will be true if and only if the output of C on inputs 
x,, . . . . x, is 0. Thus we have reduced the monotone circuit value problem to the 
local optimality verification problem for MAXFLIP, and the latter is complete 
for P. 

To see that a similar result holds for LOKL, we look at the proof of Theorem 2 
for WLOKL. The construction of the graph corresponding to the augmented circuit 
C’ can be accomplished in logspace, given C’. Moreover, the consistent partition 
corresponding to the input xi, . . . . x,, 0 can also be constructed in logspace. (Note 
that in general the construction of the consistent partition corresponding to a par- 
ticular input is itself P-complete, since it solves the circuit value problem as a 
byproduct. With the latch input at 0, however, all gates except those corresponding 
to the xi will have their outputs set to 0, and so the assignment of vertices to A and 
B is automatic.) By the proof of Theorem 2, this consistent partition will be locally 
optimal for WLOKL if and only if the given inputs were locally optimal for 
MAXFLIP, which is true if and only if the output of C was 0, so P-completeness 
holds for the WLOKL verification problem. The result can be extended to LOKL 
by a simple modification to the weights that break initial ties in favor of the swap of 
the vertices x, + 1, X,, + i corresponding to the latch input. 

Note that neither of the above P-completeness results for local optimality 
verification followed immediately from the corresponding PLS-completeness results; 
both required modification of the proofs. However, at present we do not see how 
one could prove PLS-completeness for a problem L without using a proof that 
could be modified to show that the verification problem for L is P-complete. It 
thus seems unlikely to us that a neighborhood structure based on a bounded 
number of “swaps,” like TSP 2-changes or graph partitioning single-swaps, could 
be PLS-complete. (Their verification problems are solvable in logspace and hence 
P-complete only if P = logspace.) 

On the other hand, it can be shown that the single-swap graph partitioning PLS- 
problem is itself P-hard, even if its verification problem is not. This holds even if we 
restrict costs to be polynomially bounded in the input size (although it then 
requires a new proof of equivalent complexity to that of Theorem 2). Under such a 
restriction the PLS-problem is of course in P, since the standard local search 
algorithm will run in polynomial time. Thus the result essentially says that, under 
this restriction, there is no better way to find a local optimum than simply running 
the standard algorithm. If such a conclusion were to hold when there is no bound 
on costs, it would imply that the general single-swap graph partitioning PLS- 
problem is not in P. One might obtain additional support for such a conclusion by 
identifying a natural subclass of PLS for which the unbounded-cost problem is 
complete. Unfortunately, we have been unable to do so and must leave this as an 
open problem for the reader. 
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