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Abstract

We prove that the projective completigii+, X ~) of the Jordan paitgq, g_1) corresponding to
a 3-graded Lie algebrg= g1 @ go © g1 can be realized inside the spa€eof inner 3-filtrations of
g in such a way that the remoteness relationkonx X~ corresponds to transversality of flags. This
realization is used to give geometric proofs of structure results which will be used in Part Il of this
work in order to define ok and X~ the structure of a smooth manifold (in arbitrary dimension
and over general base fields or -rings).
0 2004 Elsevier Inc. All rights reserved.

Keywords:Jordan pair; Generalized projective geometrgr8eed Lie algebra; Projective elementary group;
Symmetric space; Projective completion

Introduction

A basic construction in linear algebra permits to imbed an affine spadeto a
projective spac& as the complement of a “hyperplane at infinity"—let us assume here
for simplicity that everything is defined over a commutative figldso thatX may be
seen as the projective spaBew) with W = V @ K. In the real or complex case, if the
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dimension is finite or ifV is, e.g., a Banach space, the projective spside a smooth
manifold with vV as a typical chart domain. An atlas &fis obtained by taking all affine
parts of X (all complements of hyperplanes &f); as is well known, change of charts

is then given by rational and hence diffetiable expressions. Similar constructions are
known for other manifold& such as Grassmannians, spaces of Lagrangians or conformal
guadrics.

In the present work we will construct such manifolds in a very general context, in
arbitrary dimension, and over geral base fields or -rings insteadRfor C. The present
and first part contains the algebraic theory, and Part Il [6] contains the analytic theory.
For the case of base fields other thAnor C, we use in Part Il suitable concepts of
differential calculus and of smooth manifolds developed in [5] which, in the case of locally
convex real or complex model spaces—intgarar, for Banach and Fréchet spaces—
agree with the usual concepts (but work more generally for manifolds modeled on any
Hausdorff topological vector space). The praseart | is of independent interest since
indeed a good deal of the above mentioned constructions is purely algebraic and admits a
beautiful Lie- and Jordan theoretic interpretation. Geometrically, we work in the context
of generalized projective geometri@atroduced in [3]), and algebraically, in the context
of 3-graded Lie algebrasvhich in turn correspond tdordan pairs(however, the paper is
self-contained, and we assume only basic knowledge of Lie-algebras). As in the ordinary
projective case, it is a purely algebraic problem to define the chart domains, to give the
precise description of the intersection of chart domains and to find explicit formulas for
the transition maps between different charts. Once this is established, differential calculus
can be applied in order to show in Part Il that these structures are differentiable under
some suitable and natural assumptions. In this way we not only obtain, e.g., Grassmannian
manifolds, Lagrangian manifolds, or conformal quadrics in arbitrary dimension over
K=R,C,Q,,..., but also a wealth ofymmetric space@verK) which generalize the
symmetric Banach manifoldsee the monograph [19]) but include many completely new
examples that had not been accessible before. The symmetric spaces thus constructed are
precisely those which are in the image of tlwedan—Lie functolcf. [1,3]).

Let us now describe the contents in some more detail. Our basic objects are, on the one
hand, 3graded Lie algebragd.e., Lie algebras of the forgn= g1 @ go ® g—1 satisfying the
relationsgo, gg] C ga+p, @and on the other hand;fBtered Lie algebrasi.e., Lie algebrag
with a flagf : 0= f2 C f1 C fo C g of subalgebras such thigt,, fg] C fa+g. For simplicity
we shall also write these flags as pajirs (f1, fo). If g is 3-graded, therD(X) =i X
(X € g;) defines a derivation of such thatD® = D, called thecharacteristic element
and if D is inner,D = ad(E), E will be called anEuler operator The space of inner
3-gradings ofg is

G={adE): E € g, adE)*=adE)}.

As usual in algebra, graded structures have underlfjiiteged structuresHowever, for
every 3-grading, there arvo naturally associated filtration$! := (D) : g1 C g1 ®
goCgandf :=f (D)=f"(-D):g-1Cg-1®go Cg. If

F=|{f"(D): Deg}
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denotes thepace of inneB-filtrations of g, then we have an injection
G—FxF, D (D), (D).

The spaceg and.F carry many interesting geometric structures; one may say that the
pair (F x F,G) is a “universal model of the generalized projective geometry associated
to g.” On F x F there is a natural relation of being transversal: two flags(e1, ¢g) and
f = (f1, fo) are transversal if

g=r¢c1® fo=f1® eo.

Our key result on the structure of 3-graded Lie algebras (Theorem 1.6) affirms that
G C F x F is exactly the set of pairs of transversal inner 3-filtrationg,cdind the sef’

of filtrations transversal to a given filtratigrcarries canonically the structure of an affine
space ovelK with translation grougfi, +). Theelementary projective grou@ = G(D)

of the 3-graded Lie algebr@, D) is the group of automorphisms gfgenerated by the
abelian group#/* = ¢249+1); it acts onF and ong. We realize therojective completion
(X, X™) of the pair(g1, g—1) as theG-orbits in F of the base point§~ andf* such

that V* := U §F = ()T are “affine parts ofx*” (Theorem 1.12). Summing up, the
“generalized projective geomet(x+, X~)” is imbedded as a subgeometry(if, F).

Using this model, we have a natural definition of the “tangent bunflle”of F and of
a “structure bundle’T’ F (taking the réle of a cotangent bundle), and of sections of these
bundles. Thus we can define, in a purely algebraic contextor fieldson F as well as
a certain operator betwedHF and T F called thecanonical kerne(Section 2). Over the
affine partsV*, the bundles and their sections can be trivialized, and it is seen that our
vector fields are actually quadratic polynomial and that the canonical kernel coincides with
the well-knownBergman operatofrom Jordan theory (see below). Thus we get a very
natural interpretation of the “Koecher construction” which consists of realizing a 3-graded
Lie algebra by quadratic polynomial vector fields (cf. also [1, Chapter VII], where in the
finite-dimensional real case another natural interpretation of this construction is given by
using thentegrability of almos{para-) complex structurgs This approach naturally leads
to one of the main results to be used in [6], namely the chart description of the action of
Aut(g) by “fractional quadratic maps” (Theorem 2.8).

In Section 3 we explain the link of the preded results with Jordn theory: the pair
(V*, V™) = (g1, g—1) together with the trilinear mags™® : V¥ x VT x V¥ — v+ given
by triple Lie brackets is alihear) Jordan pair, and one can express in a straightforward
way all relevant formulas from the preceding chapter by these maps. Thus we obtain
in a calculation-free way the Bergman-operator, the quasi-inverse, and many of their
fundamental relations and thus get new and “geometric” proofs of many Jordan theoretic
results.

In Section 4 we add a new structure feature, namelyeolution of the 3-graded Lie
algebra. It leads to a bijectiop: X™ — X~ which is called gpolarity in case that there
exist non-isotropic points (i.e., p(x) T x). Then the space of all non-isotropic points
carries the structure gfymmetric space ovéf. We prove that the structure maps of this
symmetric space are given by suitable Jordan-theoretic formulas (Theorem 4.4), which will
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allow to conclude in Part Il of this work that these structure maps are differentiable and so
we really deal with symmetric spacesthe category of smooth manifolds.

Sections 5 up to 8 contain further materigtis not strictly necessary for Part Il of this
work: in Section 5 we discuss those geometries that correspandtad Jordan algebras
using our realization ok* asG-orbits inF, they are characterized by the simple property
thatV* NV~ is non-empty; in particula’¥ * = X—. An axiomatic characterization of the
“canonical identification ok and X ~” has been given in [4]; thanks to our model, things
are considerably easier herenha the axiomatic approach.

In Section 6 some functorial aspects of @anstructions are investigated. It is shown
that surjective homomorphisms of 3-graded Lie algebras induce equivariant maps of the
associated geometries and we also show that inclusions of inner 3-graded subalgebras
containingg; + g—1 induce isomorphisms of the corresponding geometries.

In Section 7 we discuss central extensions of inner 3-graded Lie algebras. We show
that for each central extensign g — g of an inner 3-graded Lie algebgathe extended
Lie algebrag carries a natural structure of an inner 3-graded Lie algebra for whista
morphism of 3-graded Lie algebras. We further construct a universal inner 3-graded central
extension ofg. We know from Section 6 that quotient maps induce maps on the level of
geometries. For central extensions we show that these maps are isomorphisms.

In the final Section 8, we look at an important class of geometriessthgsmannian
geometrieslet R be an associative algebra over the commutative Kng/ be a right
R-module,P the space of alR-linear projectorsV — V, andC be the space of alR-
submodules oV that admit a complement. Then, byeeientary linear algebra, the pair
(C x C,P) has the main features of a generaliygdjective geometry (Proposition 8.2,
cf. also [2]), and in fact there is a homomorphism into the geomekiy F, G) with
g = glz (V) which induces isomorphisms on subgeometries that are homogeneous under
the elementary projective groups (Theorem 8.4). Such geometries, Galsgmannian
geometriescorrespond tspecial Jordan pairsi.e., to subpairs o&ssociative pairsin
particular, if V = R, then the Grassmannian geometgn also be called the “geometry
of right ideals of the associative algelRd’ it corresponds taR, seen as a Jordan algebra
overkK.

Finally, we would like to add some comments on related work and on some open
problems. The elementary projective group and the projective completion of a general
Jordan pair have been introduced by J. Faulkner [10], and results closely related to ours
have been obtained by O. Loos [18]. Their results are based on the axiomatic theory of
Jordan pairs [16] and hence work even fordeags in which 2 or 3 are not invertible. In
contrast, we work in a Lie theoretic caxt and hence assume throughout that 2 and 3 are
invertible inK. However, it is possible to extend our approach also to the case of a general
base ringk—see Remark 3.9. Our results are moemeral in the sense that they apply
to general 3-graded Lie algebras (not only to the Tits—Kantor—Koecher algebra of a Jordan
pair) and to the general automorphism group@uf{and not only to the important special
case given by transformations corresponding to quasi-inverses). As a by-product, we get
new proofs of many Jordan theoretic results. It is an interesting open problem whether
it is possible to derive “all” Jordan theoretic formulas in a similar geometric way—in
particular, we would like to have in our model a “geometric” proof of the fundamental
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identity (PG2) of a generalized projective geometry (cf. [3]) which is very closely related
to thefundamental formulaf Jordan theory.

Closely related results have also beeraated by Kaup [13] and Upmeier [19] in the
complex case in presence of a Jordan—Barsaelcture. In fact, some arguments used to
prove our structure Theorem 1.6 have been used by Kaup in the proof of his Riemann
Mapping Theorem (see the proof of [13, Proposition (2.14)] and the detailed version of
this in [19, Lemma 9.16]). Our proofs are much simpler since we work directly with
the 3-graded Lie algebra, whereas Kaup and Upmeier always use its homomorphic image
realized by quadratic polynomial vector fields (calkédary Lie algebrasn [19]).

The special case of Grassmannians, espigdiathe context of Banach manifolds, has
attracted much attention since it plays an important réle in differential geometry and is
related to several interesting differential equations—see, e.g., [8,9]; our constructions are
similar to, but much more general than the sescribed there. For further references to
constructions of manifolds in contexts related to Jordan theory see Part 11 [6]; cf. also [11]
for an extensive bibliography.

Notation. Throughout this papei is a commutative ring with unit 1 such that 2 and 3
are invertible inK. In Section 8,R denotes a possibly nhon-commutative ring which is a
K-algebra.

1. Three-graded and three-filtered Lie algebras
1.1. Three-graded Lie algebras

A 3-graded Lie algebrdoverkK) is a Lie algebra oveK of the formg=g1 ® go® g—1
such thatfgs, g/1 C gk+i, i-€., g1 are abelian subalgebras which agemodules, in the
following often denoted by * or g, and[g1, g_1] C go. The mapD : g — g defined by
DX =iX for X € g; is a derivation ofy, called thecharacteristic element of the grading
It satisfies the relationD — id)D(D +id) =0, i.e., D® = D; we say that it is dripotent
derivation Conversely, any tripotent derivatiab : g — g is diagonizable with possible
eigenvalues-1, 0, 1 and corresponding decomposition)ok g:

X=X1+Xo+X_1, Xo=X-D?X,

DX + D?Xx ¥ —DX + D?X
_ = _

X1= > , = > (1.1)

SinceD is a derivation, this eigenspace decomposition is a 3-grading. Therefore, we may
identify thespace of3-gradings ofg with the set

G := D edeng): D°=D)

of tripotent derivations. IfD = ad(E) is an inner tripotent derivation, thef is called an
Euler operator and we denote by

G:={adE): E eg, adE)}=adE)) (1.2)
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the space of inneB-gradings ofg. The odd partof the 3-graded Lie algebrg, D) is
g—1 ® g1, and we say thatg, D) is minimalif it is generated by its odd part, that igs is
generated by the brackdis, g—1].

The following degenerate cases may ariB&:= id, theng must be abelian, and we
have merely a decomposition of&module into complementary subspacég; = D,
theng = go @ g1 is the split null extension ofg by a go-moduleg;, in particular,D =0
corresponds to the cage = {0}.

1.2. The projective elementary group

Let (g, D) be a 3-graded Lie algebra ovét. For x € g+1, the operatore?d* =
1+ adx + %(adx)2 is a well-defined automorphism gf (In order to see that?®™) is an
automorphism, we need thdthas no 3-torsion.) The groupigerated by these operators,

G := G(D) :=PE(g, D) := (2% x € g11) C Aut(g),
is called theprojective elementary group 6§, D) (see Section 3.2 for the relation with the
projective elementary group defined in Jordan theoretic terms, as in [10,18]). Sometimes

it will be useful to have a matrix notation for elements®f if g € Aut(g), we let, with
respect to the fixed 3-grading,

gij:=Progotjg;—>gi, I,j=10-1,

wheret; :g; — g are the inclusion maps and; p& pr; (D) : g — g; the projections, given
by

D + D? D?>—D
pry = - , pro=1-D?, prop= , (1.3)
2 2
and writeg in “matrix form”
811 810 81,-1
g=\| g1 go go-1 |- (1.4)
8-11 8-10 8-1-1

The subgroup®/* := U*(D) := ¢299+ of G are abelian and generatz If the grading
derivation is innerD = adE), then

exp: gi1 — UT, X > 240

is injective sincev € g+ implies e . E = E F v. In the general case, we define the
automorphism group dfy, D) to be

Aut(g, D) = {g € Aut(g): go D =Dog},
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and we further define subgroups:= H (D) and P* := P*(D) of G via
H:=G(D)NAut(g,D) and P¥:=HUT=U*H. (1.5)
(If Disinner,D =adE),thenH ={h € G: hoadEoh™l=adE}={heG: h.E—E €
3(g)}.) The groups/* are abelian, and since the groipcommutes withD, it preserves
the grading, hence normalizés®, so thatP* are subgroups of;. Using notation from

Eq. (1.4), the generators @ are represented by the following matrices (where g1,
yeg-1,heH)

1 adx %adx)z 1 0O O
A% — (0 1 adx ) , AV = ( ady 1 0) ,
0 O 1 %ady)z ady 1

hi1
h= hoo .
h_1,-1

More information on the groug (D) for inner 3-gradings is given in Theorem 1.12.
Sometimes it will be useful to replad@ by a slightly bigger group: ifD € G and
r € K*, then, using the matrix notation (1.4),

,
hP" :=( 1 1>=rpr1+pro+r‘1prl, (1.6)
-

with the pt as in Eq. (1.3), defines an automorphism(gf D) normalizingU* and
commuting with all elements of the group Apt D). The groupG® generated byG
and the grough®-"): r € K*} will be called theextended projective elementary group
1.3. Three-filtered Lie algebras
A 3-filtration of a Lie algebra is a flag of subspaces
O=f,CfiCfoCf-1=g9
such that
[k fi] C Fatr- 1.7)
Suppressing the trivial parfg andf-1 in the notation, we will denote such a flag by
f= (f1, fo) or f: (f1 C fo). Let F be the set of such flagscalled thespace of3-filtrations

of g. Conditions (1.7) are equivalent to the following requirements:

e fois a subalgebra, arfd is an abelian subalgebra gf
e f1is anideal info, and[g, f1] C fo.
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It follows that the operators &) with X € {1 are 3-step nilpotent and hence the
automorphisnz?4X) of g is well-defined. We denote by

U(f) = 4 = [,240: X ¢ 1} C Aut(g) (1.8)

the corresponding abelian group. From (1.7) it follows thigf) preserves the filtratiof
The filtrationf is also stable under the action of the subalgéra

1.4. Relation betweeBrgradings and3-filtrations
To any 3-grading) = g1 ® go @ g_1 of g with characteristic derivatio® € G we may
associatewo 3-filtrations ofg, called theassociated plus- and minus-filtratipgiven by
the two flags
ff(D):=(g1.90® g1), § (D):=(g-1.90Dg-1). (1.9)
Clearly, ¥ (D) = {F(—D). We will say that a 3-filtration ignner if it is of the form
f = fT(adE)) = §~(ad—E)) for some Euler operatoE, and thespace of inner3-
filtrations will be denoted by
F:={f"(D): Deg}. (1.10)
By these definitions, the mags— F, D — §=(D) are surjective, and the map
G—>FxF, D (ff(D).f (D)) (1.11)
is injective (sincgy+1 are recovered by the filtration apd = (go ® g1) N (go D g—1))-
1.5. Transversality
Two flagse = (e1, ¢0) andf = (f1, fo) as above are callgdansversalf
g=¢e1Dfo=Ff1 eo.
Itis clear by construction that the two filtratiofis(D) andj~ (D) associated to a 3-grading
D of g are transversal. We will prove that, conversely, any pair of transversal inner 3-
filtrations arises in this way. lfe F, we will use the notation
fli=fecF:eTH (1.12)
for the set of inner 3-filtrations that are transversdl, tand

FxPH={.HeFxF eTf} (1.13)

for the set of transversal pairs.
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Theorem 1.6 (Structure theorem for the space of 3-filtrationgjth the notation intro-
duced above, the following holds for any Lie algepraverK:

(1) The space of inneB-gradings can be canonically identified with the space of
transversal pairs of inneB-filtrations:

G=(FxHT'.

In other words, two inne8-filtrations ¢ andf are transversal if and only if there exists
an Euler operatorE such thatf = {7 (ad(E)) ande = §~ (ad(E)).

(2) For any inner3-filtration f, the spacg ' carries a natural structure of an affine space
overK V\éith translation group(f1, +). The groupf; acts simply transitively ofi" by
x.e:= e ¢

Proof. (1) We have already remarked th@tc (F x F)T. In order to prove the other
inclusion, let us assume th@t f) is transversal. We have to show tliatf) € G.

Sincef is inner, there exists an Euler operaftire g such thatf = §™(ad(E’)). By the
first transversality conditiop = f1 @ ¢o, there exists an elemefte f1 with E' — Z € ¢o.
Now let

E:=% F =E' +(Z,EN1=E - Z.
Then, sinceZ € {1,
ft@dE) = 297 {T (adE’) = 297 j = 7.
It remains to show thatis the flag
f~(@adE) = ¢29%.f~ (adE").

In order to prove this, note first that, by our choicefqfE belongseg, and hence the flag
e is stable under a&). By transversality o¢ andf, we can writeg = ¢1 @ fo, and since
the flagf = {+(adE) is also stable under &#), this decomposition is dd)-stable. But
the only adE)-stable complement g is the —1-eigenspace of &d'), and hence; =
{X € g: [E, X] =—X}. Next, we use again the first transversality condijog ¢o ® f1
in order to conclude that the @#l)-invariant complementy of f1 = {X € g: [E, X] = X}
must be equal to the complement given by the sum of the 0- and 1heigenspace of
ad(E). Thusep = (f~ (adE))o, and hence = {~ (adE).

(2) Using the same notation as above, we have just proved that an arbitrary element
e € §' is of the forme = 2495~ (adE’) with Z € f1, wheref~ (adE’) is some fixed base
point in fT. Thusf; acts transitively orf". This action is simply transitive: iz’ and
E =¢®Z F' = E' — Z with Z € 1 are such that"(adE) = f+(adE’) and§ (adE) =
f~(adE’), then adt’ =adE, hencead =0,Z=[E’, Z]=0andE=E'. O

Corollary 1.7. Let D1 = ad(E1), D> = adE2) € G, and gy :={X € g: [E1, X] = X}.
Then the following are equivalent
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(1) E1 and E; have the same associatedfiltration: {*(ad(E1)) = {+(ad E2)).
(2) There isv € g1 such thatD, = 3% D;e—2dV)

(3) D1— Dz e adgy).

(4) [D1, D2] = D2 — D.

Proof. (2) implies (1) sinceU (f*(D1)) preservesj™ (D). Conversely, if (1) holds,
then §~(Dy) is transversal tg* (D) = {(D1), and now (2) follows from part (2) of
Theorem 1.6.

(2) & (3). If v e g1, then

eadleeiadv = ad(ead”.El) =adE1—v) =D —adv

shows that (2) and (3) are equivalent.

(3) & (4). Letx := E1 — Ep. ThenD; — Dy = adx and adlE1, x] = ad E>, E1] =
[D2, D1]. So (4) is equivalent tpE1, x] — x € 3(g), and (3) is equivalent to € g1 + 3(g).
Writing x = x1+xo+x—1 With [E1, x;] = ix;, we havex —[E1, x] = xo+ 2x_1, SO that (4)
is equivalenttor_1 = 0 andxg € 3(g). In view of 3(g) < keradE1, this in turn is equivalent
to(3). O

Next we state a “matrix version” of part (1) of Theorem 1.6, using the matrix notation
introduced in Eq. (1.4).

Corollary 1.8. With respect to a fixed inne8-grading given by the Euler operatdr,
with corresponding pair oB-filtrations (=, §7) = (= (D), {7 (D)) = ((g—1, 90 + g-1),
(g1, go + g1)), the following statements are equivalent

D) (g .fHegd.
(2) f andg.f~ are transversal.
3) g-1.-1 and(g—1)11 are invertible inEnd(g_1), respectively irend(g1).

Proof. The equivalence of (1) and (2) is given by Theorem 1.6(1). Now, (2) is equivalent
to (4) and to (5):

(4) g(g—1) is acomplement of1 ® go andg(g—1 & go) is a complement ofi1,
(5) g(g_1) is a complement of; & go andg~1(g1) is a complement of_1 & go,

and clearly (5) is equivalent to (3).0
Definition 1.9. Forx € g1 andg € Aut(g), we define
dg(x) = (e*ad(x)g*l)ll, cg(x) = (gead(x))fl 1

Then

df ==dy:g1— Endg1),  ¢f :==cg:91—>Endg_1)
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are quadratic polynomial maps, called ttenominatoandco-denominatoof g (w.r.t. the
fixed inner grading defined by éH)). In a similar wayd, andc, are defined.

Writing g ande?4™) in matrix form (1.4), the denominator fgr 1 is given by

1
dy-1(x) = g11 —adx) o go1+ > adx)®o g_11.

and similarly for the co-denominator. For the generator& afie get the following (co-)
denominators (wheree g1, w € g_1):

g=: g (x)=idg,,  c(x)=idg,,
g=e": g, (x) =idg, + adx)adw) + %ad(x)zad(w)z,
co(x) =idg_, +adw)adx) + %ad(w)zad(x)z,

g=heH: dyx)=(h1) ="  eax)=h_1_1 (1.14)

For g = ¢4 as in the second equation, we introduce the notation
By (x,w) :=dg(x), B_(w, x) :=cg(x). (1.15)

These linear maps define tBergman operatqrsee Section 3.3.
Corollary 1.10. With respect to a fixed inne3-grading given by the Euler operatadt,

we identify VT := g; with the set(j")T = ¢4V )§=. Then forx € V* the following
statements are equivalent

1) (gx,fHeg.
(2) f* andg.x are transversal, i.eg.x € V*.
(3) cg(x) andd,(x) are invertible inEnd(g_1), respectively irEnd(gy).

Proof. This follows by applying Corollary 1.8 to the eleme#?d®) e Aut(g). O

In particular, forg = ¢24®) with w € g_1, it follows thatg.x € V* if and only if
B (x, w) andB_(w, x) are invertible.

1.11. The projective geometry of a 3-graded Lie algebra

Recall from Section 1.2 the definition of the projective elementary gréup=
G (D). Using Theorem 1.6(1), we may identify an inner gradibg= ad(E) with the
corresponding paitf, ¢) = (7 (D), §~ (D)) of inner filtrations; hence we may also write
G (f, ) for the elementary grou@ (D), and similarly forH (D) and P (D). If {, ¢, ¢’ are
inner 3-filtrations such thatTf and¢’ T§, then Theorem 1.6(2) implies thatande¢’ are
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conjugate unde6 (f, ¢), and hence we havé (f, ¢) = G(f, ¢’). Therefore, we may define
the projective elementary group of the inn&+filtration f to be G(f) := G(f, ¢), where
¢ € F is any filtration that is transversal foNote that

U, =U"()
is the abelian group defined by Eq. (1.8) and hence is independembéreas the groups
U™ =U(f,¢), H=H(f,¢),andP~ = P~ (f, ¢) depend on the choice of (We will see
below thatP* does not depend an) We define the following homogeneous spaces:

X*:.=G/PTF, M:=G/H. (1.16)

For reasons that will be explained below, the dafa, X —, M) are called thegeneralizedl
projective geometry associated to the graded Lie alggpr®). The base pointP—, P™)
in Xt x X~ will often be denoted byo™, 07).

Theorem 1.12 (Structure theorem for the projective geometry of a 3-graded Lie algebra).
With the notation introduced above, the following holds

(1) The orbits of D := ad(E) € G, respectively of* € F, under the action oG are
isomorphic toM, respectively taX*. In other words,

H={geGD): g.(f.f")=(".f")} and PE={geG(D): g.f* =f*}.
Moreover,PT NP~ =H, PNU¥ ={1}, and
PE={geG: gDg ' —~Deadgs)}={geG: g.E—E ;g +g21}.
(2) If we identifyX* with the corresponding orbits iff, then
GN(X*xX7)=M.

(3) For every element € X, the sete" is contained inX™ and carries a well-defined
structure of an affine space ovrwith translation groupe1 = g1. In particular, (0=) "
is canonically identified withV + = 2490 o+,

(4) Consider the sef2* of elements o6 sending the base poiatt € X+ to a point of
the affine partV * c X7,

Q.= {g €G: got e V+}.
Then the map
gixHxg 1> 27, (hw+—~ ¢34V py padw)

is a bijection, and, moreover,

2% ={g€G: dg(0") € GL(g1), cg(0™) € GL(g-1)}.
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(5) The spacesX* c F and M C G are stable under the action of the automorphism
groupAut(g, D) and of the extended projective elementary graift.

Proof. (1) Anelemeng € G stabilizes(f*, ™) if and only if it commutes withD = ad(E)
which means that it belongs 8.

Itis clear thatP™ stabilizeg™. Conversely, assume that G satisfieg.ft =*. Then
g.ft =ftistransversal tg.f~, and hence by Theorem 1.6(2) there existsgy such that
g.f~ = e®V§~ Thenh := e~ 24V g preservesft, ) and thus belongs té&. Therefore
g =@ belongs toP*. HenceP ™ is the stabilizer of . Similarly for P~.

It follows that P+ N P~ is the stabilizer of(f™, §~) which is H. Next, assume e
PTNU~. Write g = ¢34 with v € g_1. Sincev > ¢4V §* is injective (Theorem 1.6(2)),
it follows from g™ =+ thatv = 0 and hencg = 1.

Finally, ¢ stabilizesft if and only if D and gDg~! have the same associated
filtration, if and only if gDg~! — D belongs to ath1) (Corollary 1.7), whence the last
claim of part (1) forP*, and similarly forP~.

(2) Itis clear that theG-orbit G.(f*, {~) belongs both taX™ x X~ and togG. In order
to prove the converse, It ¢) € (X x X7) N G. We may writef = g.f* for someg € G.
Theng=1(f, ¢) = (1, g te) again belongs toX+ x X~) N G. According to Theorem 1.6,
there exist® € g1 such thag e = ¢24V)§~ . Itfollows that(j, ¢) = g4V (5, §7) belongs
to theG-orbit G.(j+, 7).

(3) As in the proof of (2), we translate by an elemenrt G such thatge = §~, and then
the claim is precisely the one of part (2) of Theorem 1.6.

(4) Assumeg € 21 and letv := g.oT € V. Thene=2)g o = o, and according to
part (1), it follows that thep := ¢~ 24" ¢ ¢ P~ whence the decompositign= ¢23?) p =
€24V peadw) “Yniqueness follows from the fact th&tt N P~ = H. Also, it is clear that
any elemeng € Ut P~ belongs ta2 ™.

The second claim is a reformulation of Corollary 1.10.

(5) Assumeh € Aut(g, D). From the relatiorhe@d) 1 = ¢8dhv) (x e g.) it follows
that # normalizesG. Since h stabilizesf*, it follows that, for all g € G, hg.f~ =
hgh™'f~ e G.j~ = X*. It follows that X*, X~, and M are stable undei. Since G®*
is generated by and allx(P-") (cf. Eq. (1.9), stability underG®* also follows. O

1.13. The space of flags seen as a generalized projective geometry

Theorem 1.6 may be reformulated by saying that the datar, T) define anaffine
pair geometry oveiK in the sense of [3, Section 1.4], where the teemoteis used
instead of “transversal:” for any € F the set of elements remote fois non-empty
and carries a canonical structure of an affine space Byeand F is covered by these
“affine parts”. The inclusionX™*, X™) C (F, F) is compatible with this structure: since
PtNP =H,

M— Xt xX", gHw (gP™,gP") (1.17)
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is a well-defined imbedding, and the following diagram commutes:

G/H——=G/P~ xG/P*

T

G———FxF.

Thus we may say that the dat&™*, X—, M) defines a subgeometry afF, F, Q)
on which the elementary projective group acts transitively. On every affine pair
geometry there is a natural relation obnnectednes§two elements are connected
if there is a sequence of affine parts, eame having non-empty intersection with
the preceding one, joining these two paintf. [3, Section 5.6]), and in this sense
(XT,X™) is simply the connected component af, F) containing the base point
(ot,07).

Generalized projective geometriase distinguished among more general affine pair
geometries by additional algebraic properties. Namely, assgme, f3) is a “generic
triple” of inner 3-filtrations; by this we mean that it belongs to the space

FxFxF)i={(1.02.03) e Fx Fx F: i1 T o, f3 T fa}. (1.19)

Sincef] carries a natural structure of an affine space @&ewe may takef1 as origin
in fJ, i.e., we turnf) into a K-module with zero vectofy. Let r € K andrfs be the
ordinary multiple offz in this K-module. Since it depends ¢nand onf,, we write

wr(f1, 2, 13) :i=ry.5,(J3) :==rf3 = (1 —r)f1 +rfs,

where the latter expression only refers to the affine structure. The map

tr i (FxFxF)T = F, (1,52 §3) = pr(fa, f2, fa) (1.20)

is called thestructure map of the affine pair geometty, 7, G). If r € K*, then we have

1y (51, T2, fa) = kP - g3, (1.21)

wherehP-") is the automorphism defined by Eq. (1.6) andorresponds to the 3-grading
defined by the transversal pdifi, f2). The structure map (1.20) can be restricted to the
subgeometryX™, X~, M) and then gives rise ttwo maps

pE o (XF x XF ijE)T—>XjE

(which are well-defined because fore X+ we havef; C X* by Theorem 1.12(3)). In

[3, Theorem 10.1] it is shown that these maps satisfy two remarkable identities (PG1) and
(PG2) which axiomatically define the categofygeneralized projective geometries. The
caser = —1 is of particular interest since it leads to associagehmetric spacesf. [3,
Theorem 4.2] for the general aaand Section 4 for the flag model.
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2. Tangent bundle, structurebundle, and the canonical kernel
2.1. Tangent bundle and structure bundle

We continue to use the notati@h respectivelyF, for the space of inner 3-gradings
(respectively 3-filtrations) of a Lie algebga For a 3-filtrationf = (f1, fo), we definek-
modules by

IF :=g/fo.  T{F:=f, (2.1)

called thetangent space of- at f, respectively thestructural space ofF at f. If =
f~(ad(E)) is the minus-filtration w.r.t. an Euler operatBr thenfp = go & g—1, and hence

T;F = ga, T{F=g-1
It is not misleading to think on’}' as a sort of “cotangent space” Bfatf. We let
TF =17, TF=]J T{F (2.2)
feF feF

(disjoint union), called theangent bundlef 7, respectively thestructure bundleof F.
The group Autg) acts onG and onF, and for anyg € Aut(G), the following maps are
well-defined and linear:

Tig: T;F — To3F, Y modfo+— g¥Y mod gfo,

Tf'g : T{}"—) Té.f}", Y gv, (2.3)
and if we definenowg : TF — TF,T'g: T'F — T'F in the obvious way, then clearly
the functorial propertie§ (g o h) = T(g) o T(h), andT'(g o h) = T'(g) o T’ (k) hold.
Finally, if a base pointD € G is fixed andX* c F are as in Corollary 1.10, then the

tangent space X, 7/ X and the corresponding bundlgs(*, 7'X~ are defined. The
natural group acting on these spaces is the normaliz6t( D) in Aut(g).

2.2. Vector fields and the canonical kernel
If Y € g andf € F is as above, we say that
Yj :=Y modfo € T5.F (2.4)
isthe value oft at f, and the assignmefrt: F — TF,§— Y; defines avector fieldon F.
The space of vector fields of is denoted byX(F); it is aK-module in the obvious way

such that the surjection

g—>X(F), Y=Y
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becomes &-linear map which is equivariant w.r.t. the natural actions of(4ubn both
spaces. In particular, the structural spa@eg are subspaces gf and hence give rise

to vector fields. Composing with evaluation at another point, we are lead to define, for
(f,e) € F x F, aK-linear map by

Ki o T.F=e1— T;F =g/fo, Y+ Y;=Y modfo. (2.5)

The collection of map$k. ;, Ks..), (f,¢) € F x F, is called thecanonical kernelNote
thatK; . is bijective if and only ife; is aK-module complement g in g. In particular, if
f=f§"(adE)), e =T (adE)), thenkK; . is identified with a linear mapy — g1 which is
simply the identity.

Theorem 2.3. For ¢, f € F the following statements are equivalent

(1) .heg,
(2) Ky,e : T{F — Ty F and K. 5 T/ F — T.F are bijective.

Proof. The second condition clearly is equivalent to saying thand{ are transversal,
and therefore Theorem 2.3 is a restatement of part (1) of Theorem (1..6.

2.4. Trivialization over affine parts, and quadratic polynomial vector fields

In the following we will often fix an Euler operatdr, the associated 3-gradinggfand
the associated paif~, {+) = (~(ad(E)), T (ad(E))) of filtrations. The paij~, ) then
serves as a base pointgnand in the homogeneous spa@ej—, {7 ) =G/H C X x X~
(cf. Theorem 1.12) and will also often be denoted by, o~). The space¥ * := g1, are
imbedded intaX* = G.fF = G/PT via X — ¢4 X)§F; this imbedding will be considered
as an inclusion, so that, fare X T, the conditiont € V+ means thatx,0™) € G.

The reader may think ok * as a kind of “manifolds” modeled on tHi&-modulesV *:
we will say that

A:={(g(Vv"),g): g€ G}, 9 8(VH) > VT, gxx (2.6)

is the natural atlas of X*. Having this in mind, a natural question is to describe the
structures introduced so far by a “triliized picture” in the charts of the atlad. Since
the spacex* are homogeneous und@r, one can describE X* and7’ X* asassociated
bundlesif = : P* — GL(W) is a homomorphism oP* into the linear group of &-
moduleW, let

GxptW=Gx W/~

with (g, w) ~ (gp, 7(p)~w) for p € PE. If & is the natural representation &~ on
W :=g/(go ® g-1) = g1 given by

w(p):=p11:g1— g1, X+ pr(pX) (2.7)
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(this is the action o?~ on 73~ X ), then
Gxp-g1—>TX", [g Xt (T,+8)(X) (2.8)

is aG-equivariant bijection. Similarly, ifr is the natural representationBf onW :=g_1
given simply byr (p)X = pX = p_1,_1X, then

Gxp-g1—>T'X", [g X]—gX (2.9)

is aG-equivariant bijection. For X~ and7’X~ we have similar formulas. If : G - W
is a function such thaf (gp) = 7 (p) L. f(g) forall g € G andp € P~, then via

sp(gP™)=[g. (@]

we get a well-defined section of the natural project@mn p- W — G/P~, and every
section arises in this way. For instance, Yoe g, the corresponding vector field on X+
is given by the function

Y6:G — g1, g gilY mod(go® g—1) = prl(g*lY), (2.10)

where for the last equality we identifiggd (go @ g—1) andgs. In fact, considering (2.8) as
an identification, we have
Yy o+ =Y mod (g(go ® g-1)) = g(¢¥ mod (go ® g—1))
=[g.g7'Y mod(go ® g-1)] = [¢. Y5(9)]-

We consider the special cage= ¢24®) with v € g1. We identify the restriction o’ to
V* c XT with the map

Provt S vt ue prl(e*ad”y) = prl(Y — [, Y]+ %[v [v, Y]]). (2.11)

Note that the map’* is aquadraticmap fromV* to V*. In particular, it inmediately
follows from this formula that fol¥ € g1 this map is constant, far € go it is linear, and
for Y € g_1 itis homogeneous quadratic:

Y forY e g1,
Yr) =1 Y, v] for ¥ € go. (2.12)
%[v, [v,Y]] foryeg 1.
Similarly, Y € g gives rise to a quadratic m:iffr :V~ — V7. Summing up, associating
to Y e g the quadratic polynomialmap*™ x Y~ : Vt x V— — VT x V™ gives rise to a
trivialization map

g— Pob(V*, V) x Pok(V~,V7),
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where Pol(W, W) is space of polynomial selfmappings of degree at most two &f a
modulew. Elements ofgg are mapped onto linear polynomials; in particular, the Euler
operatorE is mapped ontdidy+, —idy-). The following result will not be used in the
sequel, but is recorded here for the sake of completeness.

Proposition 2.5. The trivialization map is a homomorphism of Lie algebras if we define
the bracket of two quadratic polynomial mapsg : W — W on aK-moduleW by

[p.ql(x) =dp(x) q(x) — dq(x) p(x),

where thgalgebraiq differentialsdp(x), dg (x) of a(quadratig polynomial mapping are
defined in the usual way.

Proof. The commutator relations are directly checked by chooging in the homoge-
neous partgi, go, g—1 0fg. O

For the corresponding result on the group lekecall from Definition 1.9 the nominator
and co-denominator of an element G.

Proposition 2.6. If g € Aut(g) andx € V*t C X* are such thatd,(x) and c,(x) are
invertible (equivalently, ifg.x € V1), then for allY e g,

+ ~
(71Y) (x) =dg(x)Yt(g.x).

In particular, forY = v € g1 we have

+
(¢7M) (x) =dg(x)v.
If x, g1.x, andg1g2.x belong toV+, then the cocycle relation
dgig,(X) = dgy(x) 0 dg,(g2.X)

holds.

Proof. The assumption that.x € V* means thag o ¢24®) belongs to the set c G
defined in Theorem 1.12, part (4). Therefpaccording to this theorem, there exists a
unique elemenp(g, x) € P~ such thatge®d®) = (248X p(¢ x) and hencep(g, x) =

e~ 3d8-¥) goadX) From this we get

(p(g’ x)—l)ll — (e—ac{x)g—leadg.x))ll =pro e—aC{x)g—leaC{g.x) oty
— prl ° e—ad(x)g—l ol = (e—a(xx)g—l)ll — dg(.x).

This will be used in the last line of the following calculation (cf. also [1, VIII.B.2] for the
general framework):
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—_~ + - ~ ~
(g71Y) () = T6(ge4)) = ¥ (249 p(g. 1)) = 7 (p(g. 1)) " ¥ (e246)
= (p(, ) )1 Y6 (e2E) = de ()Y (g.%).

The second assertion follows singe is a constant vector field ovi™, see Eq. (2.12). The
cocycle relation now follows:

—~

+ +
dgr, ()0 = (g5 8770) (x) =dg,(¥) (g710) (82.%) = gy (x) 0 dgy (g2.3). O

—~—

Proposition 2.6 implies in p#cular that the action o on the tangent bundI& X+
is given in the canonical trivialization o™ by the expressiol,g - v = dg(x)*lv;
in Part Il of this work we will show that, in presence of a differentiable structure, this
really corresponds to the differentidg (x) of g at x, applied tov. Similarly as in the
proof of Proposition 2.6, it is seen that the actiongobn 7/X™ is, in the trivialization
T'(VT) = VT x V~ over the affine partt c X, given by

T g w=cg(x)w,
and that the co-denominators also satisfy a cocycle relatign(x) = cg;(g2.x) o cg, (x).
2.7. Nominators

We apply the preceding proposition in the case wheigan Euler operataE inducing

the fixed 3-grading of: for g € Aut(g) consider the vector field=1E on X and define
thenominator ofg to be the quadratic polynomial map

+
ng:Vt vt x> glE (x)= prl(e_adx)g_lE) = (e_ad(x)g_l)l E. (2.13)

o
Using the matrix notation (1.4), we can also write
1 2
ng-1(x) = (g10 — ad(x) o goo + > ad(x)” o g—1,0)(E).

For the generators af, we get the following nominators: ife g1, w e g_1, h € H,

X +v for g = ¢3dV)
ng(x) =1 x — adx)?w for g = 24w, (2.14)
X forg =h.

Note that the nominators will not depend on the Euler operAtsuch that agk) = D

as long ag acts trivially on the center gf; this is the case for all elemengse G. For
generalg € Aut(g) such thatg.x € V*, we can apply the preceding proposition and get,
using thatE+(z) =z forallze V+,

ng(x) =dg(x) ET(g.x) = dy(x)(g.x).
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Sinced, (x) is invertible, it follows thatg.x = d, (x) ~1ng (x).

Theorem 2.8. Let g € Aut(g) andx € V*. Theng.x € VT if and only ifd, (x) andc,(x)
are invertible, and then the valyex € V7 is given by

g.x = dg(x)_lng (x).
Using matrix notation(1.4) and replacingg by g1, this can explicitly be written as an

action ofAut(g) on V* by “fractional quadratic maps if g~1.x € V*, then

1 -1
g lx= <g11 —ad(x) o go1+ > ad(x)? o gl,l)
1 2
x | g10 — ad(x) o goo + > adx)“og_1,0|(E).

Proof. For the first claim, see Corollary 1.10, and the second claim is proved by the
calculation preceding theatement of the theorem.o

Using the formulas (1.14) for the denominators and (2.14) for the nominators, we can
now explicitly describe the fractional quadratic action of the generatos of

g=e4 () =x+,

g= £2dw): gx) = <idv+ + adx) adw) + %adx)zadwf)_l(x — %ad(x)zw),
g=h g(x) = haix.
2.9. The automorphism group
The group Autg, D) acts onV* x V~ by
Aut(g, D) — GL(VT) x GL(V™),
h (i hog,-0) = (d1(0%).en(07)) = (dn(0™) " en(07)).
We denote by Ayi(V*t, V=) C GL(VT) x GL(V ™) the image of this homomorphism
(this is the automorphism group of the associated Jordan pair; see Section 3.1 for Jordan

pairs), and by StV ™) := pry o Auty(V*, V™) o 11 its projection to the first factor
(sometimes called thetructure group ofV *).

Theorem 2.10. If x € V* and g € Aut(g) satisfyg.x € VT, thend,(x) € Str(V*); more
precisely,

(de(0) ™t co(x)) € Autg(VF, V7).
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Proof. If g.x € V1, theng’ := ge®®™® belongs to the sef2t c G defined in Theo-
rem 1.12. According to part (4) of this theorem, we decompose

g = V) peadw) (2.15)

with a uniqueh = h(g, x) € H depending org andx. From the definition of the (co-)
denominators it follows then that

de(x)=dg(0)=hij,  cg(x)=cg(O)=h_1_1,
and hencéd, (x) ™, cg(x)) = (h11, h—1,-1) € Autg(VT, V7). O

As remarked after Proposition 2.6, the linear mgpx)*l can be interpreted as the
tangent map of atx, and so Theorem 2.10 means that @iitacts onX* by mappings
that areconformal with respect to the linear grouptr(V*) (in the sense defined in
[1, Section VIII.1.2]). In some cases this already characterizes the group)fad “the
conformal group ofX ;" this is the content of th&iouville theoremsee [1, Chapter IX].

3. TheJordan theoretic formulation
3.1. Jordan pairs

If (g, D) is a 3-graded Lie algebra and* = g1, the following K-trilinear maps are
well-defined:

T vEx VvF x vE o v,

(X,Y,Z) > TE(X,Y,Z) :=—[[X,Y], Z] =ad Z) ad X)Y = —adX)ad¥)Z, (3.1)
and they satisfy the following identities, where we use the notafigi(X,Y)Z :=
TE(X,Y, Z):

TH(X,Y,Z)=T*(Z,Y, X),
TEX,Y)TEU,V,W)=TH(T*(X,Y,U),V,W) = TE(U, TT(Y, X, V), W)
+TE(U, V, T*(X, Y, W)), 3.2)
which mean tha((V*, V™), (T, T7)) is alinear Jordan pair overK (if 2 and 3 are
invertible in K, these two identities imply all other identities valid in Jordan pairs, cf.
[16, Proposition 2.2(b)]). In the following we shall omit the adjectinear, when dealing
with Jordan pairs. Conversely, (¥ *, T%) is a Jordan pair oveK, then forv € V* and

w € VT we define the operatow, w) € EndV*) by T*(v, w).x := T*(v, w, x) and
let idenV+, V™) C gl(V') x gl(V™) be the Lie subalgebra generated by the operators
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(=T (v, w), T~ (w,v)), ve V¥, w e V™. The elements of this Lie algebra are called
inner derivationsThe algebra oflerivations o V*, V™) is defined by

de(V*t, v7)={(A", A7) e Enck (V") x Endk(V"): (Vu, v, w)
AT (u, v, w) = Ti(Aiu, v, w) + Ti(u, ATv, w)
+ Ti(u, v, Aiw)}, (3.3)

and it follows from (3.2) that it contains idgr =, V ). Clearly, it contains also the element
E .= (idv+, —idv—), (34)

called theEuler operator of the Jordan paiv *.

If we are given a Jordan pa{vV*, V™), andgo C derV ™', V™) is a Lie subalgebra
containing all inner derivations, then there is a unique structure of a 3-graded Lie algebra on
VT @ go® vV~ whose associated Jordan paif¥s~, V1), and where the bracket satisfies

[v,w]:(—T+(v,w),T7(w,v)), veVT, weV™, (3.5)
and the grading element is the Euler opera@agiven by (3.4). The subalgebra
TKK(VF, V7)==V o (ider(V*, V) +KE)® V"~

is called theTits—Kantor—Koecher algebra of the Jordan palr ™, V). This choice for
the 3-graded Lie algebra associated¥o", V) has the advantage that) = 0.

The preceding construction may also be interpreted in the contéx¢ dfiple systems
(cf., e.g., [1, Section 111.3]): it is essentially thr@andard imbeddingf the (polarized)
Lie triple systemq := V' @ V~ into the corresponding Lie algebge= q @ [q, q]. The
standard imbedding yields a bijection between Lie triple systems and Lie algebras with
involution, generated by the 1-eigenspace of the involution. See Section 6 concerning
functorial properties of these constructions.

For anygo as above, the representation gf on g_1 & g1 will be faithful, so that
3(g) N go = {0}. It may happen for central extensiogsof g that the corresponding
subalgebrdip does not act faithfully ofi_1 ® g1 = g_1 @ g1 (see Section 7).

3.2. Projective elementary group and projective completion

For the rest of Section 3, we fix a Jordan pdirt, V=) and letg := TKK(V*, V7).
The projective elementary group PE", V™) := G(ad(E)) is defined as in Section 1.2.
Using the notation, withr, y € VE, v e VT,

w1 2 1 _1
O~ (x)v:= 5 ad(x)“v = z[x, [x,v]] = 2T(x, v, X),
0% (x,y) = 05 (x +y) — 0F(x) — 0F (V) =T(x,-,y)

= adx)ady): VT - vE, (3.6)
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the operatorg?d* = 1+ adx + %(adx)2 (x € V*) are given in matrix notation by Eq. (1.5),
with %ad(x)2 replaced byQ*(x) and %ad(y)2 replaced byQ~(y). Our definition of
PE(VT, V™) follows the one by O. Loos from [18]. The projective linear group of a Jordan
pair has been introduced by Faulkner in [10] in a slightly different context (without Euler
operator). The groupB* and the space¥* = G/PT are defined as in Section 1.11; the
embedding/t x V— — X+ x X~ is called theprojective completion of the Jordan pair
VT, v).
3.3. The Bergman operator
Recall from Section 2.2 the canonical kernel: ory) e X* x X,
Kiy:T)X™ > TX*, Y Y. (3.7)

Of course, there is a similarly defined m&p , ; we will also use the notatiofK;fy, K5
for (K,,y, Ky ). Using the description via associated bundles, the kernel is given by

Ky p— gp+: Té2p+X7 — T p-XT,  [g2. 0] [g1. prl(gl_lgz.v)], (3.8)
and hence the trivialized picture is
K)j:y = (e_adxeady)ll = dexp,y(x) Vv, (39)
In matrix form,
1 —adx) OT(®x) 1 0 0
e~ adxady (0 1 —adx)) . ( ad(y) 1 0) ,
0 0 1 0 (y) ady) 1

so that we get for the coefficient with index 11, using thatohwe have forx € V+ and
y € V™ the relation ad ady = adx, y] = —T " (x, y):

K =Bi(x,y)=idy+ =T (x, )+ 0T ()0~ (). (3.10)

We likewise get
Ky _y=B_(y,x)=idy- =T~ (y,x)+ 0~ (0" (x)

(cf. the definition in (1.15)). This expression is known as Bexgman operator of the
Jordan pair (V*, V7). Theorem 2.3 now implies thahe pair (v, w) is transversal if
and only if(By (v, —w), B_(—w, v)) is invertible inEnd(V ™) x End(V 7). It is known in
Jordan theory thaB, (v, —w) is invertible if and only if so isB_(—w, v) (the symmetry
principle, cf. [16, Proposition 1.3.3]), and hence, w) is transversal if and only if
B (v, —w) is invertible. So far we do not know a “Lie theoretic” proof of this fact.
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3.4. The quasi-inverse

Let y € g_1. Then forg = ¢34 andx € V*, formulas (1.14) and (2.14) show that
denominator, codenominator, and nominatog @re given by

dg(x) = B+ (x,y), cg(x) =B_(y, x), ng(x)=x— Q0% (x)y, (3.11)

and hence, according to Theorem 28y) € VT if and only if (B (x, y), B_(y,x)) is
invertible, and then

g.x = By (x, y)fl(x - Q+(x)y). (3.12)
Following [17], we will use also the notatiag(x) = x + v for translations orv* and
f(x) =™ x = B (x, w)_l(x — 0T ()w) (3.13)

for “dual translations” or “quasi-inverses.” In Jordan theory the notatidn= ¢2% x

is also widely used (cf. [16]), and one says tlaty) is quasi-invertibleif (B4 (x, y),

B_(y, x)) isinvertible, i.e., if(x, —y) is a transversal pair. Our definitions of the Bergman
operator via the canonical kernel and of the quasi-inverse are natural in the sense that they
have natural transformation properties with respect to elemegwisthe group Aufg);

taking for g typical generators of;, we get Jordan theoretic results such as the “shifting
principle” (see [1, Section VIII.A] for the precise form of the argument).

3.5. Automorphism and structure group

The group Aug(V*, V™) defined in Section 2.9 coincides fgr= TKK(V*, V™)
with the automorphism group AW ™, V™) of (V*, V™) in the Jordan theoretic
sense. It follows from Theorem 2.10 that (&, —y) is transversal, therB(x, y) :=
(B4 (x,y), B_(y,x)~1) belongs to AutV*,V~). The subgroup generated by these
elements is called thimner automorphism grougProjecting to the first factor, one gets
thestructure grouprespectively thénner structure group o/ .
3.6. Jordan fractional quadratic transformations

An End(V*)-valued Jordan matrix coefficie(f type(1, 1), respectively of typ€l, 0))
is a map of the type

q: Ve xVV— Enc(VJ“), (x,y)~ (eadx)gead(y)h)ll,

whereo, v € {&} and g, h belong to the extended elementary projective graif* (cf.
Section 1.2), respectively

p:VIxV >V (x,y)— (eadx)gead)Y)h)loE'
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These maps are quadratic polynomialdrand iny. Nominators and denominators of
elements of5 are partial maps obtained of maps of the typg afr ¢ by fixing one of the
arguments to be zero. dordan fractional quadratic mafs a map of the form

fiVIx VDUV (9 qx,») px,y),
where g, p are Jordan matrix coefficients of typé, 1), respectively(1,0), andU =
{(x,y) € VO x V' g(x,y) € GL(V1)}. In the following, we also use the notation
expix) := 39 for x € VE,
Theorem 3.7. The actions

VtxXtT > Xt and V- xxt > x*t

are given, with respect to all charts from the atlds(cf. Eq.(2.6)), by Jordan fractional
guadratic maps. In other words, for &l 4 € G, the maps

(v,y) > (hoexpv)og).y, (w,y)+> (hoexpw)og).y
are Jordan fractional quadratic.

Proof. As to the first action, we write

(h o exp(v) o g)~y = (dhoexqv)og(Y))_lnhoexﬂv)og(y) =q(v, Y)_lp(v, y)

with

and

q (v, y) = dpoexpv)og (¥) = (e*ad(y)gflefad(v)hfl)l

1
PV, ) = Nhoexpvyog (V) = (e72Wg Lem2d0p =Yy .

and hence the action is Jordan fractional quadratic. For the actie?f8f ), we use the
same arguments.O

We may say thafi,, := X+ \ VT is the “hyperplane at infinity;” therf,, is stable
under the action oV *. In case(X™, X~) = (KP", (KP*")*) is an ordinary projective
geometry, the action of the translation group on the hyperplane at infinity is the trivial
action. However, already in the case of moemgral Grassmannian geometries this is no
longer true, as can be seen from the explicit formulas for this case given in [2].

Corollary 3.8. With respect to the charts from the atlag the structure mapg, for
r € K* defined in Sectioth.14are given by a composition of Jordan fractional quadratic
maps and diagonal maggx) = (x, x).
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Proof. According to [3, Corollary 5.8], the multiplication maps can be written as a
composition of maps of the type describede preceding theorem, diagonal maps and
one dilationz(P-") (defined in Section 1.2). But this dilation comes from an eleme6tsf
and hence the composition with such a dilation is again Jordan fractional quadratic.

3.9. Case of a general base ring

Even if K is a general base ring (i.e., possibly with 2 or 3 not invertible), there still is
a 3-graded Lie algebra TK®/*, V) and a group P&+, V™) associated to a general
(quadratic) Jordan pair, cf. [18]. The main difference is that in the matrix expression of
€49 (x € g1) the term% ad(x)? has to be replaced b9t (x). Once one has checked that
the abelian groups* obtained in this way are well-defined groups of automorphisms, one
can essentially proceed as we did3ection 1, replacing the spageby the PEV ™, V7)-
orbit of ad E) in der(g) and the spacé by the space of inner filtrations belonging to
gradings frong.

4. Involutions, symmetric spaces, and Jordan triple systems
4.1. Symmetric spaces attached to a Lie algebra

An (abstrac) reflection spacés a setS together witha map : § x § — S such that, if
we leto, (y) := u(x,y),

(S1) p(x, x) =x,
(S2) 02 =ids,
(S3) o, is an automorphism qf, i.e.o, (1 (y, 2)) = n(ox (), 0x(2)).

(Differentiable reflection spaces, i.e., niflds with a smooth eflection space struc-
ture u, have been introduced by O. Loos in [14].) In Part Il [6] of this work we define a
symmetric spacéverK) to be a reflection spadg, 1) such thatS is a smooth manifold
overK (in the sense of [5]) and is smooth and satisfies

(S4) the tangent map, o, of o, atx is given by—idr,s.

(See [6] for the basic theory of symmetgpaces and for a comparison with the approach
by O. Loos [15].) To any Lie algebrg over K we may associate a reflection space as
follows. LetS =G = {D € deng): D3 = D} be the space of 3-gradings gfand recall
from Section 1.2 the definition of the extended projective elementary gs§which is
generated by its normal subgrogpand the subgrouph(?-"): r € K*}. Takingr = —1,

we get theeflection elements

o® = pP=D =1_2D? e Aut(g, D). (4.1)



500 W. Bertram, K.-H. Neeb / Journal of Algebra 277 (2004) 474-519

We define the map by
w:SxS—S, wuDD)=cPDcP =1-2D)D'(1-2D). (4.2)

Then (S1) follows from the fact thab and o’ commute, (S2) holds becausé?
is an involution, and (S3) follows from the fact that Agt clearly acts as a group of
automorphisms of., and all reflection elemenis'® belong to Autg). It is clear that
the subsetj C G is stable undep. Also, M C G is stable undepn becauseV is stable
under the action olG®! (Theorem 1.12(5)), and:® contains the reflection element
o) corresponding to the base point and hence contains also all reflection elements
corresponding to points a¥. Property (S4) is also satisfied in a purely algebraic sense:
sinceo? acts by—1 on the complemengs of g1 @ go, it follows readily from the
definition of the tangent map in Section 2.1 that
Tf+(D)O’(D) = _ide‘*'(D)j:’ Tf—(D)O’(D) = _ide_(D)j:’

and hence the tangent mdjp (o ?’) will be minus one if we define tangent map and
tangent space db to be the direct product of the ones defined with respegt t®) and
f~(D).

The restriction ofu to G x G is related to the ternary map_; from Section 1.13 as
follows: assumeD; corresponds to the transversal p@ir, f2) and D; to the transversal
pair (f3, fa). Then

1((F1. F2). (fa. Fa)) = (-1(f1. f2. §3). -1(f1. f2. f0)). = (B2 "V 3, P~V 1), (4.3)

which is the same as the product mapMrconsidered in [3, Corollary 4.4].
4.2. Involutions and symmetric subspaces

An involution of a 3-graded Lie algebra is a Lie algebra automorphisof order 2
reversing the grading, i.e., such ti#df+1) = g+1 andé (go) = go. An involutiond induces
by conjugation an automorphism of the elementary projective giawggain denoted by,
suchtha® (P~) = P™. Therefore, it induces a bijection

p:XT > X", gP —6(gPT, (4.4)

compatible with the magF — F, f — 6(f), and such thap(o™) = 0~. We say thaf € F

is non-isotropic(with respect t@) if 6(f) T§. In particular, the base point™ = §~ is non-
isotropic; thus there exist non-isotropic points, anid apolarity in the sense of [3]. Since
6 is an automorphism normalizin@, the space§ andM C G are stable undet, and the
naturality of the produck implies that? is an automorphism qf. Therefore, the-fixed
subspace? is a symmetric subspace #f, which as a set is in bijection with the set of
non-isotropic points ok, i.e.,

MP :={fe X*: fnon-isotropicw.rtd} — M?,  f (§.6()
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is a bijection. By forward transport of structure, the symmetric space structus’ of
corresponds to the structure 8ff”) given by

w(x, y)=p_1(x, p(x), ) (4.5)

(thisis the formula used in [3] to define the symmetric space structure). The symmetry w.r.t.
the pointx is now induced by the element?, whereD e G corresponds to the point
(x,0(x)) € G; as noticed above, the algebraically defined tangent ma&p?)) equals
minus the identity, and hence (S4) is again satisfied in an algebraic sense.

Theorem 4.3. For a fixed polarityp : X — X—, we identifyX* and X~ via p. Then the
multiplication mapu on M%) is a composition of Jordan fractional quadratic maps and
diagonal maps(x) = (x, x).

Proof. By Corollary 3.8, the map._; is of the form mentioned in the claim. According
to formula (4.5) u is related tou—_1 via

uwx, y)=p_1(x,x,y), ie, p=p_10(8xid),
which proves the claim. O

In [6] it will be shown that Theorem 4.3 impkgin very general situations, smoothness
of .

4.4. Involutions and Jordan triple systems

If 6 is an involution of the 3-graded Lie algehyathe trilinear map oV * defined by
T(X,Y,2):=—[[X.0(¥)],Z] (4.6)

is a Jordan triple producti.e., it satisfies the identities (3.1) with the superscrifts
omitted. Conversely, given dordan triple system oveK (abbreviated JTS) (i.e., K-
module with aK-trilinear map satisfying the above mentioned identities), we can define
an involution on the Lie algebrd* @ denV*, V™)@ V~ by

6(v. (A, B), w) = (w, (B, A),v), 4.7)

and the associated JTS is the one we started with. In this way wehijection between
Jordan triple systems oveK and minimal3-graded Lie algebras with involutiofsee
Section 1.1).
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5. Sdf-dual geometriesand Jordan algebras
5.1. Self-dual geometries

We fix a 3-graded Lie algebr@with grading induced by the Euler operatbr Recall
our realization ofX ™ and X~ asG-orbits in the space” of 3-filtrations ofg. Two cases
can arise: eithekK™ N X~ is empty, orX*t = X~. In the latter case we l&f := X+ = X,
and again two cases are possible: either

(a) vVt NV~ isempty, or
(b) VTNV~ isnotempty; then we say that the geometry giveridyE) is self-dua) and
we letV*:=vtnv-.

An equivalent characterization of self-dugeometries is: there are three points
f1, §2, f3 € X such thaf; Tz, f2Tf3, f3T§1 (namely, takef1, f2) = (§~, §7) to be the base
point andjz some element of ™ N V7). In this situation, the identity map tdX* — X~
is called theabsolute identificationr thecentral null-systenfcf. [4, 1.4]).

5.2. The Jordan inverse

Assume thatg, E) is self-dual and fix some poirjte V* N V~. We claim that there
exists an involutiory of g (cf. Section 4.2) such thgt( V)N V* % @. Infact, letW :=§;
thenW C X carries a natural structure of an affine space @vgmlrheorem 1.12(3)), and
by assumptione™ ando~ belong toW. Lete € W be the midpoint ob™ ando™ in the
affine spacé¥. Sincee € W, the pair(e, f) is transversal and hence corresponds to a 3-
gradingg = gy ® g, ® g4, i.e., to an elemend’ € G. Let j := hP"~V e G pe the
automorphism that is minus one @ @ g’ ; and one ony,. Then fixes (e, f) and acts
by the scalar minus one on tfiemodule W with zero vector. Sincee is the midpoint
of o~ ando™, it follows that j(0™) = o™, and since obviously is of order two, it is an
involution. The conditionj (f7) = §t implies thatj (V™) = j () =) =V~.In
particular,V* N j(VT) = VT NV~ = V> is non-empty by assumption. It contains the
pointe = j(e).

Now we apply Theorem 2.8 in order to derive an explicit formula fan the chart
V*t:forvegs,letv=jveg_1;byEq.(2.12)y gives rise to the homogeneous quadratic
vector fieldv™ (x) = QT (x)v on V. From Proposition 2.6 we now get

dj(x)v= (j_lv)(X) =vi() =0T (x)v=0"(x)jv.
In a similar way we see that;(x)w = Q- (X)w = Q™ (jx)w. (In fact, since;j is an
involution, ¢; (x) = jd;(—x)j = jd;(x)j, and this is invertible if and only if so i8; (x).)

Corollary 1.10 now shows that(x) € VT if and only if the operatoQ™ (x) is invertible.
On the other handj(x) e VT iff x e VX =V+NV~, and hence

V¥ ={xeV*: 0 (x)invertible} (5.1)
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is the set of invertible elements i ™ in the Jordan theoretic sense [16, 1.1.10]. The
nominator ofj is n;(x) = —x sincej reverses the grading (i.eiE + E € 3(g)). Now
Theorem 2.8 shows that, fare V>, j(x) = — QT (x)~1x. Therefore, the (non-linear)
description ofj in the chartV T is

VISV S v¥XaVvh, xb ) i=—0" )y,
which is called the (Jordan algebrallyrdan inverse
5.3. Jordan algebras

If (Vv*,V™)is a Jordan pair ang € V~ any element, therv+ with squaring and
product given by

x2=Q+(x)y, x'zz%((x—i—z)z—xz—zz):%QJF(x,z)y (5.2)
is a Jordan algebra in the usual sense (in the linear case, this result is known as “Meyberg’s
theorem;” cf. [16, 1.1.9] for the general, quadratic case). This algebra is unital if and
only if y is invertible, and then the unit element @™ (y)~1y [16, Proposition 1.1.11].
Moreover, every unital Jordan algebra arises in this way. Comparing with the situation
from Section 5.2, we choose= e < V~ to be the element o ~ that corresponds to the
point e which in turn corresponds to the point V*. Thene is the unit element in the
corresponding Jordan algebra structuré/on and; is the inversion map associated to this
Jordan algebra. Note that for all these constructions it is not necessary to idéhtind
vV~ which would be somewhat dangerous because there are several ways to do so (cf. [4]).

5.4. The self dual geometry associated to a unital Jordan algebra

Now assume thatg, E) is 3-graded and there exists € g_1 such thatQ—(e™) :
vVt — V~ is a bijection. Letg := ¢2¢) We claim that the flag® : g1 C go @® g1 is
transversal to the flag(f+): first of all, for v € g1,

proq(g)) =pr_g(v+le ", vl+ Q0 (e )v) = Q (e )v,

hence pr, o g o1 is bijective and thug(g1) is a complement of1 & go. Next, g(g1 © go)
is a complement ofi1: equivalently,e=24¢ g, is a complement ofjg & g1, which is
true by the same argument. Hengg! T §T. With (o™, 07) = (§~, {+), this means that
g.0” € VT C XT; but sinceg € G, this means thak— = X*. Moreovero~ € V—, and
¢@4¢7) acts as a translation ovi—; thereforeg.o~ € V=~ N v+, and it follows that the
geometry is self-dual. Summing up:

Theorem 5.5. For a Lie algebrag with Euler operatorE, the following are equivalent

(1) The geometry given ki, E) is self-dual.
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(2) Thereis an involutiory of (g, E) such thatj (VYN VT £@.
(3) The Jordan pairV*, V™) contains invertible elements.
(4) The Jordan paifV ", V) comes from a unital Jordan algebt&, E).

Proof. (1) = (2) = (3) has been shown in Section 5.2, and ) (1) has been
shown in Section 5.4. The equivalence of (3) and (4) is well-known (cf. [16, 1.1.10]; see
Section 5.3). O

We do not know whether the conditioti™ = X~ alone already implies that we have
VT NV~ # @—in the finite-dimensional case over a field this certainly is true since then
the “hyperplane at infinity"”X* \ V7 is an algebraic hypersurface, and hence and
V~ must intersect if they are both included ¥". However, in infinite dimension the
“hyperplane at infinity” may become rather “big” and may very well contain some affine
parts—this problem is discussed in [4, Section 1.9].

6. Functorial properties
6.1. Functoriality problems

So far we have considered the following categories: Jordan pdits V ~) overK;
3-graded Lie algebrag, D) overK; generalized projective geometries™*, X ™) (these
may be defined here simply as the geomet(is, X~) associated to a 3-graded Lie
algebra); associated reflection spat¥s 1); elementary projective grougs = G (g, D)
associated to 3-graded Lie algebras. Whed the functorial relations between these
categories? It is obvious that homomorphisms of 3-graded Lie algebras induce, by
restriction to the pair(gi, g—1), homomorphisms of Jordan pairs. Other functoriality
problems are less trivial:

(FP1) When does a homomorphism of Jordan pairs induce a homomorphism of the
associated Tits—Kantor—Koecher algebras?

(FP2) When does a homomorphism of Jordan pairs induce a homomorphism of the as-
sociated generalized projective geometriespectively of the associated reflection
spaces?

(FP3) When does a homomorphism of Tits—Kantor—Koecher algebras induce a homomor-
phism of the associated elementary projective groups?

(FP4) When does a homomorphism of genergl&ded Lie algebras induce a homomor-
phism of the associated elementary projective groups?

6.2. Functoriality of the Tits—Kantor—Koecher algebra

In general, a homomorphism of Jordarirpaloes not induce a homomorphism of the
associated Tits—Kantor—Koecher algebrafdot, as remarked in Section 3.1, the Tits—
Kantor—Koecher algebra TK®/™, V=) may be seen as the standard imbedding of the
polarized Lie triple systen¥ ™ @ V —; but the standard imbedding of a Lie triple system
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does in general not depend functorially on the Lie triple system. Howevesufpective
homomorphisms this is the case (cf. [18, Proposition 1.6]), and it is also true for finite-
dimensional semisimple Lie triple systems over fields (cf. [1, Theorem V.1.9]).

6.3. Functoriality of the projective geometry and of the reflection spaces

Any Jordan pair homomorphisat : V* — (V/)* induces, in a functorial way, a well-
defined map of geometries

g XE - (XN,

e2dvy) padwy) | jadvp) padwr) + o padet () ade” (W) | ade” (o) pade” (we) (o) F

wherev; e VY, w; e V=,i =1,...,k, k e N[3, Theorem 10.1]; the main point here is that
the geometryX™, X ) can be described by generators (nam@ly, V~)) and relations
(with respect to the product maps from Section 1.13), and Jordan pair homomorphisms
are compatible with the relations. (If the geometrystablein the sense of [18], then
these relations are given hpyrojective equivalengecf. [17,18].) A homomorphism of
geometries in the sense of [3] induces a homomorphism of the corresponding reflection
spaces (because the reflection spaeestire is defined via the maps); therefore, Jordan
pair homomorphisms always induce homoptasms of associated reflection spaces.

In particular, an isomorphism of Jordan pairs induces a bijection of geometries.
Therefore, if two 3-graded Lie algebras have the same Jordar{gaaig—1), then there
is a canonical bijection between the associated geometries (cf. Theorem 6.6 below for
another, elementary proof). In particular, asd as we are only interested in the associated
geometry(X*, X7) (e.g., in Part Il of this work) we may without loss of generality assume
thatg is a Tits—Kantor—Koecher algebra.

6.4. Functoriality problem for the projective elementary group

Let ¢ : g — g be a morphism of 3-graded Lie algebras. One would like to define a
homomorphisny : G — G’ of the associated elementary projective groups by requiring
that (e34v)) = ¢ad9v™ byt in general this will not be well-defined. Therefore, we
introduce the group

G(p):={g=10(g1.42) € G x G": (VX € 9) g29(X) =9(g1X)}.

Then the projection pr: G(¢) — G onto the first factor is surjective: in fact, the image

of pr; contains the generators 6f because alg; := ¢4 x € gy, preserve the ideal
ker(p), and so withgs := ¢24¢™) the pair(g1, g2) belongs taG (¢). SinceG is generated

by ¢248=) it follows that the projection pris surjective. The kernel of the projection

pr; is given by all elements of the foriil, g2) whereg, acts trivially on the subalgebra
@(g) C g. Therefore, ify is surjective, then gris a bijection, and gro (pr)™1: G — G’

is the desired homomorphism (see [1, Section |.3] for similar considerations on the level
of symmetric spaces). Combining with Secti6.2, we see that surjective Jordan pair
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homomorphisms induce (surjective) homomorphisms of associated elementary projective
groups (this result is also canibhed in [18, Proposition 1.6]).

The functoriality problem is now reduced to the case of injective homomorphisms. In
good cases, one may then hope to recognize @¢) — G as a sort of covering ofs,
and thus to view pras a sort of lift of the desired homomorphism to a covering group.

6.5. Problem (FP4) for isomorphisms of Jordan pairs

Let g be a 3-graded Lie algebrawith grading elemenE andg C g an inner 3-graded
subalgebra containing... We denote byG, respectively byG the associated elementary
projective groups. In the present section we will see that the injective homomorphism
g — g (which induces an isomorphism of assoethtlordan pairs) induces a surjective
homomorphism “in the opposite sens&’— G. In particular, we shall give another and
more elementary proof of the fact that the associated homogeneous spaces are the same
(cf. Section 6.3). Ag containsg, it is invariant under the groug generated by2d8+
Moreover,G acts trivially on the quotient spaag/g, because its generators have this
property,i.e.g.x —x e g foreachx egandge G.

Theorem 6.6. There is a surjective restriction homomorphism
R:G—>G, grglg with R™YH)=H and R (P*)=P*
For the corresponding homogeneous spaces, we have
G/P*=G/P* and G/H=G/H
as homogeneous spacedaf
Proof. First we observe thak(U*) = U* implies thatRr is surjective.

Let ad,: g — den(g) be given by agd(x) := adx|g and letE be an Euler operator
defining the grading of,, respectively an Euler operatére g defining the grading op.
Thentheideal keragdof gisinvariantunder ad’, hence adapted to the grading. kaf g
we have aQ(x)(E’) =[x, E'] = Fx, so that

kerad; < go,

and in particular agl is injective ongy 4+ g—. Forx = x4 + xo + x_ with x+ € g+ and
X0 € go We have

[adg E, adgx] = adg[E, x]= adg(xJr —x_).

If this bracket vanishes, then, — x_ < kerag, € go impliesx = xo € go, i.e., we obtain
the refined information -

kerad, C ad};l(gadg (ady E)) = go.
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Now letg € G with R(g) € H. Forx € go we then have

ady(g.x) = R(g) oad(x) o R(g) ™,

and all three factors on the right-hand side commute with the grading derivatjoh ad
of g. Hence ag(g.x) commutes with aglE, and the argument from above implies that
g.x € go. On the other handR(g) preserves the grading @f and hence in particular the
subspaceg-.. This means thag preserves all eigenspaces of &an g, and therefore
that ¢ commutes with a&, so thatg € H. We conclude thaR—1(H) € H, and the
converse inclusion follows from the fact that the actionfbfon g preserves the grading

g=g+®(gNgo) ®g- of g.
FromP = HU* andR(U*) = U™, we obtain

R7Y(PF) =R YH)U* c HU* = P*.

SinceR(P*) = R(H)R(U*) € HU* = P*, the first assertion follows.
For the homogeneous spaces, we now get

G/PE=G/RYP*)=G/P* and G/H=G/R*H)=G/H. O

7. Central extensions of three-graded Lie algebras
In this sectionK denotes a field with B € K*.

7.1. Let g be a 3-graded Lie algebra with grading elemg&ntn this section we assume
thatg is generated b¥ andg., i.e., that

go=KE +[g+,9-]. (7.1)

We shall show that the homogeneous spaces adedadf the elementary projective group
of g do not change for central extensions. Combining these results with those of the
preceding section, it follows thately only depend on the Jordan péir;, g—).

Lemma 7.2. Let g:g — g be a central extension df, i.e., g is surjective andkerg

is a central subspace df. We pick an elemenk €  with ¢(E) = E. ThenadE is
diagonalizable with the eigenvalués1, 0} and defines &-grading

§=0+®d0Dg-
such thaty is a morphism o8-graded Lie algebras.

Proof. First we observe thaj o adE = adE o g. From the relationadE)3 = adE we
derive that

0= ((adE)®*—adE) og =g o ((@dE)® - adE),
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and hence that
((adE)® — adE ) (§) < kerg € 3(3).
Applying adE, we see that

(@dE)* = (adE)?,

(adE)?(@dE — 1)(adE + 1) = 0.
Let
§=0+ 000D -1
be the generalized eigenspace decomposition fa. athen
adE|s, ==+idg, and (adE)%.go = (0}.

From kerg C 3(g) < go, we derive thay |, is injective and map§.. bijectively ontog...
Thereforego = KE + [g+, g—] leads to

do=q "(go) =kerg + KE +[§.4-1.
As [d4, 6] C keradE, we conclude that
0 C keradE,
and hence thak is a grading element for the 3-gradifg= g+ Dgodg-. O

7.3. If g is 3-graded with grading elemett and; C g is a central subspace, then
3 C keradE = g, and the quotient map:g — g/3 is a central extension which is a
morphism of 3-graded Lie algebras.

This implies that for a central extensigng — g for which g is 3-graded with grading
elementE, the Lie algebrag is 3-graded with grading elemett := ¢(E), and Lem-
ma 7.2 provides the converse information, thag it 3-graded with grading elemeit
and generated b¥ andg., then the Lie algebrg has a natural 3-grading defined by
an elementE with q(E) = E andgq is a morphism of 3-graded Lie algebra. Passing to
the subalgebra generated Byand .., we even obtain a 3-grading satisfying the same
condition asg. In fact, b := §4 + d— + [d+. §—1 + KE C § is a 3-graded subalgebra with
q(h) =g, sothatg C h +kerg C b+ 3(9). In particular)y is an ideal ofj.

These consideration show that to understand central extensions of 3-graded Lie
algebras, a natural context is given by those central extengiofis> g which are
morphisms of 3-graded Lie algebras with grading element satisfying (7.1).
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Lemma7.4. Letq | — g be a central extension &graded Lie algebras with grading
elements: and E = ¢ (E) satisfying(7.1). Then

a7 (@) =3@
and thereforgy/3(g) = g/3(9).
Proof. Sincegq is surjective, we havg(g) < q—l(;,(g))A. If, converselyg (x) € 3(g), then
[x, 8] C kerg € 3(§) C go. In particular, we obtailfix, E] € §o and therefore: € go. This
in turn implies[x, §+] C g+. Asql, isinjective,[x, g+] C kerg N g+ = {0}. Thereforex
commutes withj andE, hence is central becau§és generated b andgs. O

Corollary 7.5. If g satisfieq7.1), thenz(g/3(g)) = {0}.

Proof. The adjoint representation agl:> adg = g/3(g) is a central extension satisfy-
ing the assumptions of Lemma 6.3. Therefore, keraglg) = ad 1(3(adg)) implies
3(adg) ={0}. O

Remark 7.6.

(a) Letg a 3-graded Lie algebra with grading eleméhaindg < g the idealg generated
by E andg. (see Section 6.5). We consider the Lie algebra homomorphism

ad:g — der(g), x> adxlg.
In view of Corollary 7.5(ad)(g) = adg = g/3(g) is a center-free 3-graded Lie algebra
satisfying (7.1).
(b) If gis a center-free 3-graded Lie algebra satisfying (7.1)@nd, V=) = (g1, g_) is
the corresponding Jordan pair, then the representation
ady=:go— de(V*, V7)., x> (adx|y+,adx|y-)
is injective, and

g—> VT der(V*, Vf) DV, xy+xo+x_t> (xy,ady+xg,x)

is an embedding of Lie algebras, where the right hand side carries the bracket defined
in Section 3.1.

On the other hand, the subalgebra gfgenerated bygy is isomorphic to the
corresponding subalgebra vf- @ deqV*, V=) @ V—, which is TKK(VT, V7).

Definition 7.7. Let g be a Lie algebra. We writég, g) for the quotient ofA?(g) by the
subspace generated by the elements of the form

[x,ylAz+ [y, 2l Ax+ [z, x] Ay,
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and write(x, y) for the image ofc A y in (g, g). Then(g, g) carries a natural Lie algebra
structure satisfying

[(x.y). (/9N ] = (lx. y1. [x', ¥']),
and the map
bg:(gam—)g’ (an)H[xJ’]

is a homomorphism of Lie algebras.

Theorem 7.8. Suppose thaj is 3-graded with grading elemerff satisfying(7.1). If g is
perfect, then we pu:= (g, g), and ifg is not perfect, then we define

§:= (9,9 xKE,
whereadE satisfies
[E, (x, )] :=([E. x1.y)+ (x. [E, y]) = (E, [x, y]). (7.2)
Then there is a unique Lie algebra homomorphism
gg:§—g With qg((x,y) =[xyl and qg(E)=E

This homomorphism is surjective with central kernel, hence a central extensign of
Moreover, it is weakly universal in the sense that for any central extersigr- g with

a 3-graded Lie algebrag with grading elemenk e g there exists a unlque Lie algebra
homomorphism : g — g with g o « = g4 and, ifg is not perfect, withe(E) =

Proof. First we observe that=[g, g] + KE. If g is perfect, then
b@ﬁ::(g,g)—)g

is the universal central extension gf If g is not perfect, therE ¢ [g, gl = im(by).
Thereforeg = [g, g] © KE.
The Lie algebra d€y) acts in a natural way by derivations ¢n g) via

d.(x,y)={d.x,y)+ (x,d.y).

We may therefore form the Lie algebiia= (g, g) x KE, where acE satisfies (7.2).

In both cases we obtain quotient homomorphigipsg — g with kergg = kerbg C
3({g, g)). From (7.2) we derive that the action &f on (g, g) annihilates kebg, so that
kerqg is central in both cases. This means thais a central extension, and Lemma 7.2

implies thatj is 3-graded with grading elemeBt Moreover,

§i=0++ 06— +[3+ §-1 +KE
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is an ideal ofg with g + kergg = g. In view of (£, E) = 0, we have

[3.8]1=(lg.9l.[g. o)+ (E. [g. 91) = (9. [g. g]) + ([g. 0]. E) = (g. 9).
Thereforelg, g] C g impliesg = g and hence tha satisfies (7.1).
We claim thatgy is weakly universal as a central extension of 3-graded Lie algebras

satisfying (7.1). So leg : § — g be a central extension. Then the bracket japg — g
factors through an alternating bilinear map

bigxg—§ with b(g(x),q(y))=I[x,y], x,y€§.
Then the Jacobi identity ifsimplies thatb satisfies the cocycle condition
b([x, y1.2) +b(ly, 2], x) + b([z,x], y) =0.
Hence there exists a unique linear map
@:{g,0)—~> 8 withp((x,y)) =b(x,y),

and it is easy to see thatis a homomorphism of Lie algebras. Moreoveis a morphism
of 3-graded Lie algebras, because the grading isrinduced by the map — b(E, ¢ (x)).
If g is not perfect, thef is not perfect, and no grading elemént § is contained ifid, §].
We may therefore extengto a Lie algebra homomorphism

95— 8 witho(E)=E.
This proves the weak universality §fas a 3-graded Lie algebra with grading element
The mapy : g — § is not uniquely determined by the requirement thaty = ¢4 because
we may add any Lie algebra homomorphigmg — kerg, which corresponds to the
ambiguity in the choice of the grading elemént g. Note that the commutator algebra of
g is a hyperplane, so that is determined by/ (E). O
7.9. Central extensions have isomorphic geometries
Next we compare the groups
G C (%) C Aut(g) and G C (e2%=) C Aut(g),
whereg : § — g is a central extension of 3-graded lagebras satisfying (7.1). Since each
element ofG fixes the kerne} := kerg pointwise, it induces an automorphismgfand
we thus obtain a group homomorphism

qGZ/G\—>G with gg(g)og=qo g, gea,

becauser?d9+ is mapped ont?9%=. The following theorem provides a short direct
argument for the isomorphy of the geometrissaciated to central extensions. Since the
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corresponding Jordan pairs are the same, this could also be deduced from the general result
mentioned in Section 6.2.

Theorem 7.10. We haveq;'(H) = H and ¢;*(P*) = P*. For the corresponding
homogeneous spaces, we have

G/P*=G/P* and G/H=G/H
as homogeneous spacesaf

Proof. Since g maps a generating subset 6fonto a generating subset 6f, it is
surjective.
First we observe that for arlye G we have

gg(h).E —E=q(h.E — E). (7.3)
If h e H, thenh.E — E € 3(§), and (7.3) leads to
96(W.E — E=q(h.E—E) €q(3®) = 3(0),
and henceg(h) € H. Suppose, conversely, that (k) € H. Then (7.3) implies
hE—E eq7(3(9) =3,

sothath e H. R
SinceP = HU* andgg(U*) = U*, we have

4Gt (PF) =g (H)UT C HU* = P=.

Furthergg (P*) = g6 (H)qc(U*) C HU* = P*, and we obtaiy;'(P*) = P*.
For the homogeneous spaces, we now get

G/P*=G/q;'(P*)=G/P* and G/H=G/q;'(H)=G/H. O

Remark 7.11. We take a closer look at the kernel @f. Let g € kergg € H. Theng
preserves the grading gf Sinceq|y, is injective, we conclude thaf|;, =idg,, and
hence thag — id; vanishes on the subalgebra generatedoyMoreover, infg — id;) <

kerg =3, so that
g=1+D,

whereD: g — ; is a linear map. Ag is an automorphism, it follows thad? € derg), and
hence thatg, g] C kerD. If g is perfect, therD vanishes, but i ¢ [g, g], then

Homie (g, 3) = HOM(KE, 3) = ;
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describes the possibilities fd@, which is determined by (E) € ;.
Since, forh € H andv € g1 we havehe®¥h~1 = ¢39v, the conditiong|s, = id

implies thath commutes with the generating sube&{#+, and hence that

=

kergg € Z(G).
This means thagg : G — G is a central extension of groups.

Example 7.12. We consider the case of a trivial Jordan p@irt, V), i.e., all the maps
T¥ vanish. Then the corresponding 3-graded Lie algebra is the semidirect sum

g=(Vt® V") xKE,
where
[E, (v4,v2)] = vy, —v-) and [VF, Vv-]={0}.
Let8: VT x V~ — 3 be any bilinear map. Then

o((V4, V-, AE), (Wi, wo, wE)) 1= B(vs, wo) — Bv—, wy)

is a Lie algebra cocycle which defines a central extension
=003
with the bracket
[(x.2), ", )] = ([x. x'], 0(x, X)), x,x'€g, 2,7 €.
The subalgebra ¢f generated by * is 2-step nilpotent ang is solvable. Ing we have
[adV*, adV~]=ad V", V] Cad; = {0},

so that the group§ andG are both abelian. Considering the orbit of the grading element,
it is easy to see that

GVt x V™ =G,

Remark 7.13. Let g be a 3-graded Lie algebra with grading elemg&nte have seen in
Section 5 that the homogeneous spaGg& andG/ P* are isomorphic to those associated
to the subalgebrg generated byE andg... Furthermore, the results in this section imply
that the same holds for the homogeneous spasssciated to the center-free Lie algebra
g/3(g). The latter Lie algebra is isomorphic to the Tits—Kantor—Koecher Lie algebra

TKK (g1, g-) =g+ @ (ider(g;,g-) + KE) @ g
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of the Jordan paitg.-, g—). For that we only have to observe that the triviality of the center
implies thatgo/3(g) embeds into dég.., g—). We therefore obtain a natural identification

of the homogeneous spaG H andG/P* with a space of 3-gradings of TKi§, g_),
respectively a space of filtrations of this Lie algebra.

8. Grassmannian geometriesand associative structures
8.1. Grassmannian geometries

Let R be an associative algebra with unit 1 over the commutative unital€iagd let
V be arightR-module. Thecomplemented Grassmanniéf V over R) is the space

C:={ECV:3F: V=E®F (E, F: submodules o¥/)} (8.1)

of R-submodules ofV that have a complement. Fdor = R this is the space of
complemented right idealsf R (cf. Section 8.6 below). FOE, F € C we write E T F

if V=E®F;,weletE" ={F eC: F T E} be the set of complementary submodules of
E and

CxCT={(E,F)eCxC: V=E®F}. (8.2)
Let
P:=|p €End(V): p? = p} =Idem(Endg(V)) (8.3)

be thespace of projectors, respectively idempotent¥’inTaking I := 2p — idy instead

of p, we may also work with the conditiof? = idy instead ofp? = p and viewP as the
space of polarizations df . In this framework, the following analog of Theorem 1.6 is an
easy exercise in Linear Algebra.

Proposition 8.2.

() ThemapP — (CxC)T, p (im(p), ker(p)) = (im(p), im(1 — p)) is a bijection.
(i) Forall E eC, ET carries canonically the structure of an affine space dkenot over
R in genera), modeled on th&-moduleHomz (V/E, E).

Moreover,P clearly is stable under the binary maplefined byu(p, ¢) = 2p — 1) x
q(2p — 1) which defines onP the structure of a reflection space (cf. 4.1). Using scalar
extension by dual numbers oVv&r, one may also define tangent bundles?éndC, and
then property (S4) will also hold fgr; but we will not pursue this construction here.

8.3. Flags and elementary group

We are going to describe the relation between this simple linear algebra model and the
model from Theorem 1.6. Lagf := Endg (V) with the usual commutator as Lie bracket.
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Note that the commutator is n@&-bilinear in general, but it is bilinear over the center
of R; henceg is aK-Lie algebra. An element € P defines a derivation &g) of g which

is tripotent; with respect to the decomposition= E @ F :=im(p) ® ker(p), i.e., (in the
obvious matrix notationp = (é 8), and the grading of is described by

g_lz{(g 8):aeHomR(E,F)}, 91={<8 'g)iﬂEHomR(F,E)}a

go= { <g g): A € Endr(E), BeEndR(F)}. (8.4)

Thus we have a well-defined map framto the spacé of inner 3-gradings of:
gp:P—¢G, pradp). (8.5)

On the other hand, if € C, then to the “short flag” @ E C V we may associate a “long
flag” fg: 0 C f1 C fo C g by letting

fi:={Xeg X(V)CE, X(E)=0}Cjo:={Xeg: X(E)YCE}Cg (8.6)

0 = c * ok c % %

00 0 = x %)
It is clear that this is a 3-filtration of (even in an associative sense). Thus we have a
well-defined map

in matrix form:

gc:C—F, Ewfg, 8.7)

and it follows from the definitions that the diagram

CxC D P
l l (8.8)
FxF D G

commutes. All maps in this diagram are obwsly equivariant with respect to the natural
action of the group Gk (V) on all spaces that are involved.

If E € is fixed, then the elements € {1 (with {1 as in (8.6)) are 2-step nilpotent; thus
eX=1+X. Let

Ug ::ef1=1+f1={(é 'i):/seHomR(F,E)}, (8.9)
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where the latter matrix representatis with respect to a fixed complemefitof E. The
groupUg acts simply transitively on the sé' of complements of. Therefore, if for
such a fixed decompositioi = E @ F, we let

G(E,F):= (Ug,Ufp) C GLg(V) (8.10)

be the group generated lyr and Ur, called theelementary group ofV, E, F), then
G(E,F)=G(E, F') for any two complement®, F’ of E, and we may write als& g for
G(E, F). We let

Pg:={ge€Gg: g(E)=E}, (8.11)
and, for a fixed complemerft of E,
H(E,F):={geG(E,F): g(E)=E, g(F)=F}=PgN Pp. (8.12)
Theorem 8.4. The equivariant mapgp andg¢ have the following properties

(1) Forall E€C,oc(ET)=gc(E)T.
(2) For all p € P, the restriction of the mapp to the orbitGLz(V).p,

POGLr(V).p—G, g.pradg.p),

is injective.
(3) For all E €C, the restriction of the magp, to the orbitGLg(V).E,
COGLR(WV).E—=F, gEr g,
is injective.
(4) Let p € P with associated decompositioh= E @ F = im(p) & ker(p). The mappp
induces a bijection

G(E,F)/H(E,F)=G(E, F).p— G(adp)).adp) = G(ad(p))/H (ad(p)),
and the mag¢ induces a bijection
G(E,F)/Pr=ZG(E,F).E— G(ad(p)).jr =G(adp))/P".

Proof. (1) The action ofUr on g is precisely the action 082470 on g. Since Ug
acts simply transitively on the set of complementsKfthe claim follows from the
corresponding fact abogt(Theorem 1.6(2)).

(2) Lete € P and f := geg~t € P with g € GLg(V) such that atk) = ad(f). Then
7:= f —e € Z(A) whereA is the associativ&-algebra Eng(V). In particularef = fe
and therefore

(e— flef =e°f —ef?=ef —ef =0.
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We have
(f—e)2=f2—2ef+e®>=f+e—2ef and
(f—el=(f—e)(fte—2ef)=f2—e®—2(f —e)ef = f —e,

i.e.,z3 =z. Write z = z1 — zo with
1 1
1= Ez(z+l) and zp= Ez(z—l).

Thenz; andz; are again central, angf = z1 andzZ = z2. This implies

1 1 1
a=3(f-e(f —e+D=3(f+e—2ef +f—e)=5@2f —2f)=f —ef =2f

and
1 1 1
Zz:E(f—e)(f—e—l)zE(f+e—2ef—f+e)=E(Ze—Zef)ze—efz—ze.

We further obtain
72 =—222 = zz(e — geg_l) =70 — gZZeg_l = —zez + gzezg_l =—ze+ gzeg_l
=zp—g22¢ 1=0
becauses is central, and likewise
a=uz=u(f g fg)=uf—g ufe=2f*—g efPg=2f —g zfg
=z1— g_lzlg =0.

Eventually we obtain = z; — z2 = 0 and hence = f, as had to be shown.

(3) This follows by combining (2) and (1) (observing that the fibers of the fap C,
p — im(p) are of the formF+, F e C, and similarly forG — F).

(4) This follows from (2) and (3), observing that the actiontbE, F)) on g coincides
with the action ofH (ad(p)). For Pg we argue similarly. O

8.5. Special Jordan pairs
If p e P andg = gl (V), then the associated Jordan pair is
(Homg (F, E), Homg(E, F)), TH(X,Y,Z)=XYZ+ ZYX.

A Jordan pair that is a sub-pair of such a pair is cadlpdcial The Bergman operator is in
this case given by

B(X,Y)Z=(1-XY)Z(1-YX).
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The special case whelé= E @ E gives rise to a self-dual geometry and is related to the
K-Jordan algebra ERdE).

8.6. Geometry of right ideals

Now let us consider the case of the rigtimoduleV = R. In this case (complemented)
submodules are the same as (complemented) right ideals, and the Grassmannian geometry
should be called thgeometry of right ideals oR. Via the bijectionR — Homg (R, R),

r +— [, (left multiplication by r), the setP of projectors is identified with theet of
idempotents oR,

Idem(R) := {e € R: ezze}.

The pair(R, ¢) with an idempotent is also called Morita context(cf. [18, Section 2.1]).

In this case, our Theorem 8.4 corresponds essentially to results of Loos [18, Theorem 2.8].
The symmetric space structure on Idgth is described in the same way as after
Proposition 8.2: it is given byt(e, f) = (2¢e — 1) f (2¢ — 1).

8.7. Geometry of the projective line

Another interesting case i¥ = R & R, taking this decomposition as base point
p € P. This gives rise to a self-dual geometry (belongingRt@een as a Jordan algebra
over K) which is theprojective line over the ringr, see [12] and the recent work [7].
The corresponding 3-graded Lie algebraiis gl,(R), respectively its subalgebea(R)
generated by the strict upper and lower triangular matrices.

Finally, let us remark that there exist ringssuch thatR @& R = R as rightR-modules
(e.g., takeR = Endk (V), whereV is an infinite dimensional vector space over a fi&ld
thenV =V @ V as a vector space, and hermee- Homg (V, V) = Homg (V,V @ V) as a
right R-module), so that the cases 8.6 and 8.7 have non-empty intersection.
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