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A simple relation UPMNS = V †
CKMUTB between the lepton and quark mixing matrices (UPMNS and V CKM) is

speculated under an ansatz that UPMNS becomes an exact tribimaximal mixing UTB in a limit V CKM = 1.
By using the observed CKM mixing parameters, possible values of neutrino oscillation parameters are
estimated: sin2 θ13 = 0.024–0.028, sin2 2θ23 = 0.94–0.95 and tan2 θ12 = 0.24–1.00 depending on phase
conventions of UTB. Those values are testable soon by precision measurements in neutrino oscillation
experiments.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recently, there has been considerable interest in the magni-
tude of the neutrino mixing angle θ13 (νe ↔ ντ mixing angle),
because it is a key value not only for checking neutrino mass
matrix models, but also for searching CP-violation effects in the
lepton sector. (For a review of models for θ13, see, for example,
Ref. [1].) Recent observed neutrino oscillation data are in favor
of the so-called “tribimaximal mixing” [2] which predicts θ13 = 0,
tan2 θ12 = 1/2 and sin2 2θ23 = 1, since the present data yield the
values tan2 θ12 = 0.47+0.06

−0.05 [3] and sin2 2θ23 = 1.00−0.13 [4]. If the
angle θ13 is exactly zero or negligibly small, the observation of the
CP-violation effects in the lepton sector will be hopeless even in
future, as far as neutrino oscillation experiments are concerned.
On the other hand, recently, Fogli et al. [5] have reported a siz-
able value sin2 θ13 = 0.016 ± 0.010 (1σ ) from a global analysis of
neutrino oscillation data.

The tribimaximal lepton mixing is given by the form
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Such a form with beautiful coefficients seems to be understood
from a discrete symmetry of flavors [2]. In contrast to the lepton
mixing matrix (Pontecorvo–Maki–Nakagawa–Sakata mixing ma-
trix [6]) UPMNS, the observed Cabibbo–Kobayashi–Maskawa [7]
(CKM) quark mixing matrix V CKM seems to have no beautiful form
with Clebsch–Gordan-like coefficients, and V CKM, rather, looks like
nearly V CKM � 1. It is unlikely that a theory which exactly leads to
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the tribimaximal mixing (1) simultaneously gives the CKM mixing
matrix with small and complicated mixing values. Therefore, it is
interesting to consider a specific case that a theory of flavor sym-
metry gives V CKM = 1 in the limit of UPMNS = UTB. We consider
that the observed form of the CKM matrix V CKM is due to some
additional effects (e.g., symmetry breaking effects for the flavor
symmetry). If this is true, then, the observed lepton mixing UPMNS
will also deviate from the exact tribimaximal mixing UPMNS = UTB
by additional effects which gives the deviation from V CKM = 1.
(Also see, e.g., Ref. [8] for a possible deviation of UPMNS from a
bimaximal mixing (not tribimaximal mixing) related to V CKM.)

Recently, Datta [9] has investigated possible flavor chang-
ing neutral current processes using the same assumption that
V CKM = 1 and UPMNS = UTB in a flavor symmetry limit. By using
a specific mass matrix model, he have discussed realistic mix-
ings V CKM and UPMNS caused by a small breaking of the flavor
symmetry. Also, Plentinger and Rodejohann [10] have investigated
possible deviations from tribimaximal mixing by assuming a spe-
cial form of the neutrino mass matrix. Furthermore, there are
many works which discuss specific mass matrix models from the
point of the so-called “quark–lepton-complementarity” [11]. In this
Letter, however, we start only from putting a simple ansatz stated
later (in Eqs. (9) and (10)), without referring to any mass matrix
model explicitly.

For convenience of later discussions, we define the tribimaximal
mixing by a form

UTB = P∗
L U 0

TB P R , (2)

where

P L = diag
(
eiα1 , eiα2 , eiα3

)
,

P R = diag
(
eiγ1 , eiγ2 , eiγ3

)
, (3)
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by including freedom of the phase convention, although the tribi-
maximal mixing is conventionally expressed by the form (1). The
purpose of the present Letter is to speculate a possible form of
the lepton mixing matrix UPMNS under the ansatz V CKM = 1 ↔
UPMNS = UTB. We show, as stated later, that a natural realization
of this ansatz leads to a simple relation

UPMNS = V †
CKMUTB. (4)

By using the observed CKM mixing parameters, we estimate val-
ues of the neutrino oscillation parameters sin2 θ13, tan2 θ12 and
sin2 2θ23, which are defined by

sin2 θ13 ≡ ∣∣(UPMNS)13
∣∣2

,

tan2 θ12 ≡ ∣∣(UPMNS)12/(UPMNS)11
∣∣2

,

sin2 2θ23 ≡ 4
∣∣(UPMNS)23

∣∣2∣∣(UPMNS)33
∣∣2

. (5)

First, let us give conventions of the mass matrices: the quark
and charged lepton mass matrices M f ( f = u,d, e) are defined by
the mass terms f̄ L M f f R , so that those are diagonalized as

U †
f L M f U f R = D f ≡ diag(m f 1,m f 2,m f 3), (6)

and the neutrino (Majorana) mass matrix Mν is defined by
ν̄L Mνν

c
L , so that it is diagonalized as

U †
νL MνU∗

νL = Dν ≡ diag(mν1,mν2,mν3). (7)

Therefore, the quark and lepton mixing matrices, V CKM and UPMNS,
are given by

V CKM = U †
uL UdL, UPMNS = U †

eL UνL, (8)

respectively. Hereafter, we refer to a flavor basis on which the mass
matrix M f is diagonal (i.e., D f ) as “ f -basis”. For example, in the
u-basis, up-quark, down-quark, charged-lepton and neutrino mass
matrices are given by Du = U †

uL Mu UuR , M(u)

d = U †
uL MdUuR , M(u)

e =
U †

uL MeUuR and M(u)
ν = U †

uL MνU∗
uL , respectively.

2. Ansatz and speculation

Let us mention an ansatz which leads to the relation (4). We
put the following ansatz: In the limit of UdL → 1, the matrix UeL

also becomes a unit matrix 1, while the matrix Uν becomes the
exact tribimaximal mixing UTB in the limit of UuL → 1. In other
words, in the u-basis, the neutrino mass matrix M(u)

ν ≡ U †
uL MνU∗

uL
is diagonalized by the exact tribimaximal mixing matrix UTB, i.e.,

U †
TBM(u)

ν U∗
TB = Dν . (9)

Here, we have supposed that, in a symmetry limit, i.e., when an
origin which causes V CKM �= 1 is switched off, the physical mass
matrices M f become the diagonal forms D f , while the neutrino

mass matrix Mν becomes a specific form M(u)
ν defined by (9):

(Mu, Md; Me, Mν) → (
Du, Dd; De, UTB DνU T

TB

)
. (10)

In other words, we consider that a common origin in the down
sector causes Dd → Md and De → Me , and a common origin in
the up sector causes Du → Mu and UTB DνU T

TB → Mν . Of course,
this transformation (10) cannot be realized by a flavor-basis trans-
formation, because M f and D f are connected by Eqs. (6) and (7).
It is well known that physics at a low-energy is unchanged under
any flavor-basis transformation.

The ansatz (9) states that the mixing matrix UνL in the neutrino
sector, which is defined by U †

νL MνU∗
νL = Dν , is given by

UνL = UuL UTB, (11)
because Dν = U †
TBM(u)

ν U∗
TB = U †

TB(U †
uL MνU∗

uL)U∗
TB. Therefore, the

observed lepton mixing matrix UPMNS is given by

UPMNS = U †
eL UνL = U †

eL UuL UTB = Ued V †
CKMUTB, (12)

where Ued is a flavor-basis transformation matrix defined by

Ued = U †
eL UdL . (13)

(The relation (12) is also derived by using relations U (u)
νL = UTB and

U (u)
eL = U †

uL UeL in the u-basis as UPMNS = U (u)†
eL U (u)

νL = U †
eL UuL UTB =

Ued V †
CKMUTB.) According to this notation, the CKM mixing matrix

V CKM is expressed as V CKM = Uud . Since Ued = U †
ueUud = U †

ue V CKM,
if we consider Uue = 1, we obtain Ued = V CKM, so that we will
obtain UPMNS = UTB from the relation (11). However, such a case
Ueu = 1 is unlikely under our ansatz UeL → 1 in the limit of
UdL → 1. Generally speaking, Uue can vary from Uue = 1 to Uue =
V CKM, so that Ued varies from Ued = V CKM to Ued = 1 and Eq. (12)
varies from UPMNS = UTB to UPMNS = V †

CKMUTB. (Here, we have
considered that Uue does, at least, not take a large mixing more
than V CKM and a rotation to an opposite direction, V †

CKM.) There-
fore, we can consider that the relation (4) describes a maximal
deviation of UPMNS from UTB. In spite of such a general considera-
tion, we think that the case Ued = 1 (or highly Ued � 1) is a most
natural realization of our ansatz (10), because it means UeL → 1
in the limit UdL → 1. Therefore, in this Letter, we adopt the case
Ued = 1, and investigate possible numerical values of the neutrino
oscillation parameters sin2 θ13, tan2 θ12 and sin2 2θ23 under the re-
lation (4).

By the way, we are also interested in whether those values are
dependent on the phase parameters αi and γi defined in Eq. (3).
The relation (12) is invariant under the rephasing U f L → U f L P f
( f = u,d, e) because of V CKM → P∗

u V CKM Pd , UPMNS → P∗
e UPMNS,

Ued → P∗
e Ued Pd and UTB → P∗

u UTB under the rephasing (note that
UνL does not have such a freedom of rephasing). Therefore, the
phase matrices P L and P R originate in the mass matrix M(u)

ν as
shown in Eq. (9). Then, Eq. (9) can be rewritten as
(
U 0

TB

)T
M̃(u)

ν U 0
TB = Dν P 2

R , (14)

where

M̃(u)
ν = P L M(u)

ν P L . (15)

Since the matrix U 0
TB is orthogonal, the mass matrix M̃(u)

ν has to
be real. In other words, the phase matrix P L is determined from
the form M(u)

ν so that M̃(u)
ν is real. On the other hand, the phase

matrix P R is fixed so that Dν P 2
R is real. Then, we find that the

numerical results for |(UPMNS)i j | are independent of the phases γi

in P R , because UPMNS is expressed by UPMNS = U P R =1
PMNS P R , so that

the quantities |(UPMNS)i j| = |(U P R =1
PMNS )i jeiγ j | are independent of the

phase parameters γ j . The results are only dependent on the phase
parameters αi in P L . Hereafter, for simplicity, we put P R = 1.

Let us show that the neutrino oscillation parameters sin2 θ13
and sin2 2θ23 are only dependent on a relative phase parameter
α ≡ α3 − α2. Since (UPMNS)i3 is expressed as

(UPMNS)i3 =
∑

k

(V CKM)∗kie
−iαk

(
U 0

TB

)
k3

= 1√
2

[−(V CKM)∗2ie
−iα2 + (V CKM)∗3ie

−iα3
]
, (16)

the values |(UPMNS)i3| are dependent only on the parameter α.
We illustrate the behaviors of sin2 θ13 and sin2 2θ23 versus α in
Figs. 1 and 2, respectively. Here, for numerical evaluation, we have
used the Wolfenstein parameterization [12] of V CKM and the best-
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Fig. 1. Behavior of sin2 θ13 versus α = α3 − α2. The horizontal dashed and dotted
lines denote the analysis sin2 θ13 = 0.016 ± 0.010 (1σ ) by Fogli et al. [5].

Fig. 2. Behavior of sin2 2θ23 versus α = α3 − α2. The predicted value is consistent
with the observed data [4] sin2 2θ23 = 1.00−0.13.

fit values [13] λ = 0.2272, A = 0.818, ρ̄ = 0.221 and η̄ = 0.340.
We find that the values sin2 θ13 and sin2 2θ23 are almost in-
sensitive to the value α, and those take sin2 θ13 = 0.024–0.028
and sin2 2θ23 = 0.94–0.95. Those values are consistent with the
present experimental data. As shown in Fig. 1, if we take the re-
sult sin2 θ13 = 0.016±0.010 (1σ ) obtained from a global analysis of
neutrino oscillation data by Fogli et al. [5], we can obtain allowed
bounds for α. The sizable value sin2 θ13 is within a reach of forth-
coming neutrino experiments planning by Double Chooz, Daya Bay,
RENO, OPERA, and so on. The value sin2 2θ23 = 0.94–0.95 is consis-
tent with the present observed value [4] sin2 2θ23 = 1.00−0.13, and
the predicted value will also be testable soon by precision mea-
surements in solar and reactor neutrino experiments.

Previously, Plentinger and Rodejohann [10] have predicted pos-
sible deviations from tribimaximal mixing by assuming a specific
form of the neutrino mass matrix and by assuming a CKM-like hi-
erarchy of the mixing angles (θe

12 = λ, θe
23 = Aλ2, θe

13 = Bλ3) in
the charged lepton sector. Furthermore, they have assumed the
quark–lepton-complementarity (QLC) [11], and put an ad hoc re-
lation θe

12 = θC (θC is the Cabibbo mixing angle). Then, they have
obtained a relation

∣∣(UPMNS)13
∣∣ � 1√

2

∣∣(V CKM)us
∣∣. (17)

Their result (17) agrees with our result sin2 θ13 = 0.024–0.028, be-
cause
Fig. 3. Behavior of tan2 θ12 versus β = α2 − α1. The horizontal dashed and dotted
lines denote the observed values [3] tan2 θ12 = 0.47+0.06

−0.05 .

∣∣U (MNS)13
∣∣2 = 1

2

∣∣(V CLM)∗cd − (V CKM)∗tde−iα
∣∣2

� 1

2

∣∣(V CKM)us
∣∣2 � 0.025, (18)

from Eq. (16).
On the other hand, for the value tan2 θ12, there is no simple

situation (one-parameter dependency). The values (UPMNS)11 and
(UPMNS)12 are given by

(UPMNS)11 = 1√
6

[
2(V CKM)∗11e−iα1 − (V CKM)∗21e−iα2

− (V CKM)∗31e−iα3
]
, (19)

(UPMNS)12 = 1√
3

[
(V CKM)∗11e−iα1 + (V CKM)∗21e−iα2

+ (V CKM)∗31e−iα3
]
, (20)

so that the values |(UPMNS)11| and |(UPMNS)12| depend not only on
β ≡ α2 −α1 but also on α ≡ α3 −α2. However, since the observed
CKM matrix parameters show 1 	 |(V CKM)cd|2 	 |(V CKM)td|2, we
can neglect the terms (V CKM)∗31e−iα3 compared with (V CKM)∗11e−iα1

and (V CKM)∗21e−iα2 , so that the value tan2 θ12 approximately de-
pends on only the parameter β . We illustrate the behavior of
tan2 θ12 versus β ≡ α2 − α1 in Fig. 3, in which we take typical val-
ues of α such as α = 0 and α = −2π/3. We can see that tan2 θ12
is, in fact, insensitive to the parameter α. In contrast to the cases
of sin2 θ13 and sin2 2θ23, the value of tan2 θ12 are highly sensitive
to the parameter β as shown by

∣∣(UPMNS)12
∣∣ � 1√

3

[
1 − ∣∣(V CKM)us

∣∣ cosβ
]
, (21)

from Eq. (20). The similar result has been obtained by Plentinger
and Rodejohann [10]. The value of tan2 θ12 takes from 0.24 to 1.00
according to the variation in β . In order to fit the observed value
[3] tan2 θ12 � 0.5, we must take β � ±π/2. This will put a con-
straint on scenarios which give a tribimaximal mixing.

Note that, from the relation (4), we can obtain a CP violating
observable

JνCP � −1

6

∣∣(V CKM)us
∣∣ sin β, (22)

as well as in a model given in Ref. [10]. Therefore, if we require a
maximal CP violation in the lepton sector, we obtain β � ±π/2 as
pointed out in Ref. [10], which is compatible with the constraint
from the observed value tan2 θ12 � 0.5 [14].
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3. Summary

In conclusion, under the ansatz “UPMNS → UTB in the limit
of V CKM → 1”, we have speculated a simple relation UPMNS =
V †

CKMUTB. We have not referred an explicit mechanism (model)
which gives such a CKM mixing V CKM = 1 in the limit of
UPMNS = UTB. For example, a model [10] by Plentinger and Rodejo-
hann is one of mass matrix models which explicitly realize our
ansatz because they have put an ad hoc assumption sin θe

12 =
sin θC . A model [9] by Datta is also one of such models. However,
such a model-building is not a purpose of the present Letter. We
have started our investigation by admitting the relation UPMNS →
UTB as V CKM → 1 as an ansatz. The relation UPMNS = V †

CKMUTB is
widely valid for all models which are consistent with our ansatz.

By using the observed CKM matrix parameters, we have es-
timated the lepton mixing parameters sin2 θ13, sin2 2θ23 and
tan2 θ12. The values of sin2 2θ23 and sin2 θ13 are almost indepen-
dent of the phase convention, and they take values sin2 θ13 =
0.024–0.028 and sin2 2θ23 = 0.94–0.95. The sizable value of
sin2 θ13 is within a reach of forthcoming neutrino experiments
planning by Double Chooz, Daya Bay, RENO, OPERA, and so on.
The value of sin2 2θ23 is also testable soon by precision measure-
ments in solar and reactor neutrino experiments. On the other
hand, the value of tan2 θ12 has highly depended on the phase con-
vention of the tribimaximal mixing, and the value has been in a
range 0.24 < tan2 θ12 < 1.00. Note that the phase matrix P L cannot
be absorbed into the rephasing of V CKM, although it seems to be
possible from the expression (4). Since the present observed value
of tan2 θ12 is tan2 θ12 � 0.5, the phase parameter β is constrained
as β � ±π/2. This puts a strong constraint on models which lead
to the exact tribimaximal mixing (2). The requirement of a maxi-
mal CP violation in the lepton sector is interestingly related to the
observed value tan2 θ12 � 0.5.

If the predicted values sin2 θ13 = 0.024–0.028 and sin2 2θ23 �
0.94–0.95 are denied by forthcoming neutrino oscillation experi-
ments, it means a denial of the simple view that the lepton mixing
UPMNS becomes the exact tribimaximal mixing UTB in the limit of
V CKM → 1. We will be compelled to consider that the view stated
above is oversimplified and the situation of quark and lepton fla-
vor mixings is more complicated. The observed values of neutrino
oscillation parameters will provide us a promising clue to a possi-
ble structure of Ued , although we simply assumed Ued = 1 in the
expression (12). This will shortly become clear by forthcoming ex-
periments.
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