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Abstract

In the overwhelming majority of public transportation companies, designing a pe-

riodic timetable is even nowadays largely performed manually. Software tools only

support the planners in evaluating a periodic timetable, or by letting them comfort-

ably shift sets of trips by some minutes, but they rarely use optimization methods.

One of the main arguments against optimization is that there is no clear objective

in practice, but that many criteria such as amount of rolling stock required, average

passenger changing time, average speed of the trains, and the number of cross-wise

correspondences have to be considered.

This case study will demonstrate on the example of the Berlin underground

(BVG) that all these goals can be met if carefully modeled, and that timetables

constructed by optimization lead to considerable improvements.

Our approach uses the Periodic Event Scheduling Problem (PESP) with several

add-ons concerning problem reduction and strengthening. The resulting integer

linear programs are solved with the CPLEX MIP-Solver. We have been able to

construct periodic timetables that improve the current timetable considerably. For

any of the above criteria, we have been able to identify global lower and upper

bounds. Our favorite timetable improves the current BVG timetable in each of

these criteria.

c
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Introduction

Public transportation companies usually plan their service hierarchically. The

construction of a timetable is typically done after the infrastructure and the

lineplan are �xed. Furthermore, to operate a given timetable, vehicle and

crew assignments must be de�ned. As the timetable is the last result in this

planning process that is published, it has a central role.

There are several software tools that support vehicle assignment by really

calculating new solutions on their own. But software tools which are used for

timetable construction | such as HASTUS (GIRO Inc., Montr�eal, CA), FBS

(iRFP, Frankenheim, D), BERTA (IVU TraÆc Technologies AG, Berlin, D),

MICROBUS (IVU TraÆc Technologies AG, Berlin, D), VISUM �OV 7.0

(PTV AG, Karlsruhe, D), ptv interplan (PTV AG, Karlsruhe, D), and solu-

tions by TLC GmbH, Berlin, D | are limited to only modifying interactively

an already existing timetable.

In our study we demonstrate the practical relevance of mathematical opti-

mization techniques in periodic timetabling. We investigated the weak traÆc

time of the Berlin Underground network. There, we have been able to model

any of the { stepwisely identi�ed { requirements given by practitioners. Our

�nal timetable improves the one currently operated in each of the given crite-

ria.

We model the periodic timetable optimization task as a Periodic Event

Scheduling Problem. As there is a choice in deriving an MIP formulation,

we propose a systematical approach for selecting a good formulation which is

based on �nding an \optimized" graph representation of the problem via short

cycle bases. Moreover, we strengthen this good formulation by adding valid

inequalities of well-known types. An analysis of running times demonstrates

the bene�t of these two strategies.

The Periodic Event Scheduling Problem {

And some Add-Ons

A periodic timetable works with an abstract period T and assigns point of

time �i 2 [0; T ) to any relevant event i. These include arrivals and departures

of directed traÆc lines at stations, but also other events resulting e.g. from

safety conditions. Events are coupled by constraints on the di�erence �j � �i

of any two events' i; j points of time �j; �i.

In a straightforward graph-theoretic interpretation, the events i de�ne the

nodes of a directed graph G, and the arcs of this graph are derived from the

constraints on the di�erences �j � �i.

For example, if we want to ensure a travel time of at least `ij but at most uij

time units from event i to event j, a naive way to model this would be

`ij � �j � �i � uij:(1)
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Note that we may interpret �i as node potentials of the graph G, and that

restrictions of type (1) impose a Feasible Di�erential Problem on G [Roc84].

A solution � of (1) is called a feasible potential.

As long as �i < T � `ij, everything is �ne. If not, there would be no value

for �j 2 [0; T ) satisfying the above constraint. Nevertheless, a departure �i

at time T � `ij and arrival �j at time 0 periodically make sense. Hence, the

Feasible Potential Problem is too restrictive for our purpose. This is why

we should allow to add an integer multiple pij of the period time T to every

constraint. Doing so, restriction (1) becomes

`ij � �j � �i + pijT � uij:(2)

For a given graph G with lower and upper bounds on the arcs, a node potential

� = (�i)i2V (G)is said to be periodically feasible, if for every arc a = (i; j) an

integer pij satisfying (2) can be found. The problem to �nd a periodically

feasible potential for a given graph is called the Periodic Event Scheduling

Problem (PESP). It was introduced by Sera�ni and Ukovich [SU89] and shown

by them to be NP-complete.

An alternative way to look at potentials are tensions. For a given node po-

tential �, the corresponding tension x is de�ned on every arc a = (i; j) by

xij = �j � �i. We call a tension periodically feasible for a given set of con-

straints, if it may be derived from a periodically feasible potential in this way.

Note that we can easily check if a given tension is periodically feasible by

constructing a feasible potential along the arcs of some spanning tree. If it is

not feasible, con
icts would only arise on non-tree arcs.

Moreover, we know how to characterize periodically feasible tensions impli-

citly [Nac98]. Consider a spanning tree of G and a corresponding so-called

strictly fundamental cycle base which is given by the k = m � n + 1 funda-

mental cycles induced by adding the non-tree edges to the tree. The cycle-arc

incidence matrix � of such a strictly fundamental cycle basis is called the net-

work matrix of G [Sch86]. Then, periodically feasible tensions x are exactly

the solutions to the following linear system:

�x = pT

` � x � u

p integer.

3
7775(3)

Note that there is only one integer variable pC for every fundamental cycle C

in this formulation. So we have saved n � 1 integer variables in comparison

with (2). For the remaining variables pC , we may impose box constraints by

exploiting Odijk's [Odi94] inequalities. Let C be a fundamental cycle with

incidence vector 
 = 

+
� 


�, then

p
C
:=

�


+
`� 


�
u

T

�
� pC �

�


+
u� 


�
`

T

�
=: pC(4)

are valid bounds. The number of possible values for the variable pC is then
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just p
C
� p

C
+ 1. As we want to keep this value small for every fundamental

cycle, we will investigate these terms in more detail below.

To get a 
avor of the bounds p
C
and p

C
, we omit the rounding operation

in equation (4), and the division by T as well. Then, we obtain

pC � p
C
� 


+
u� 


�

`� 

+
`+ 


�

u = 
 � (u� `):

Hence, the number of possible integer vectors p essentially depends on the sum

of the arc-widths u � ` of the fundamental cycles. Since we are still free in

choosing the spanning tree, we are going to look for spanning trees that have

a \short" fundamental cycle base, where the length of a cycle basis is the sum

of the cycles' arc widths. Short cycle bases have been exploited by Kroon and

Peeters [KP01] in minimizing the rolling stock. Unfortunately, it is NP-hard

to compute a strictly fundamental cycle basis of minimum weight, see Deo et

al [DPK82].

Our case study con�rms that the choice of a short cycle basis is indeed

important. We have therefore implemented several heuristics to �nd a good

cycle base. The simplest one is to compute a minimal spanning tree (MST)

according to the arc-widths, and then take its strictly fundamental cycle base.

Deo et al [DKP95] introduce two heuristics that seem to be more sophisti-

cated: In UV (unexplored vertices), they grow the spanning tree by adding

nodes that are adjacent to many non-tree nodes. In NT (non-tree edges),

they grow the tree by selecting nodes that induce many non-tree edges in the

current forest. Since every non-tree edge closes a fundamental cycle, they hope

to get many short fundamental cycles from nodes added at the beginning, and

only few long fundamental cycles from the last nodes.

An more general approach for constructing periodically feasible tensions

would be to relax the requirement on the cycle basis to be strictly funda-

mental. Then, we may use Horton's [Hor87] polynomial time algorithm for

solving the minimal cycle basis problem. If the cycle basis constructed by

Horton's algorithm permits to express every cycle of some strictly fundamen-

tal cycle basis as an integer linear combination, then we would have a way to

reformulate (3) as follows:

� Let � be the network matrix for some spanning tree.

� Let B be the cycle-arc incidence matrix of another cycle basis.

� Because of the basis property of B, we �nd a regular Q, with �T = B
T
Q.

� Solve

Bx = qT

` � x � u

q integer.

3
7775

� De�ne p := Q
T
q.

Then x and p ful�ll �x = pT . As q was required to be integral, p is integral
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if Q has only integer entries. Hence, in this case, the vector x that has been

computed using B and q | thus with best possible box constraints | instead

of � and p, is a periodically feasible tension.

Clearly, a cycle base whose cycle-arc incidence matrix B can be written

as B = [UA] with a regular upper triangular f0; 1g-matrix U permits every

cycle to be written as such an integer linear combination. Hartvigsen and

Zemel [HZ89] call these bases (generalized) fundamental. But they also give

examples for cycle bases that are not fundamental in this sense.

Railway systems usually have many safety constraints to be met, and so

the decision problem (3) is interesting on its own right { and often hard enough

to solve. However, for bus systems, or underground systems like the one in

Berlin, no safety restrictions have to be obeyed because every line is operated

on its proper track. In such systems, every timetable vector � is feasible.

Here, we only have to select a good timetable from a huge number of feasible

ones.

Usual optimization criteria are total or maximum passenger waiting time,

amount of rolling stock required, and average speed of the lines. Any of

these criteria may be modelled by a linear objective function c { as long as

we forbid line changes of vehicles, which would lead to a quadratic objective

function [LP02]. The optimization task then can be formulated as

min c(x� `)

s.t. �x = pT

` � x � u

p integer.

3
7777775

(5)

We have chosen MIP-solver of CPLEX as our tool to solve the integer

linear programs representing the PESP instances. The MIP-solver of CPLEX

is based on branch-and-bound, and uses the LP-relaxation of the PESP and

its generated subproblems as lower bounds. So we must ensure that the LP-

relaxation in suÆciently strong to generate good lower bounds. This is not

the case with system (5), as we may choose x equal to `, and the p variables

will always compensate the T on the right-hand-side. Hence, the initial LP-

relaxation always has zero as its minimum.

For this reason, it is very important to add valid inequalities to the problem

formulation, and hereby improve the lower bound. There are two important

classes of valid inequalities. The �rst one are Odijk's inequalities that resulted

in the box constraints for the integer variables in equation (4). In their most

general form, they may be formulated for an elementary cycle C with incidence

vector 
 as �

+`� 
�u

T

�
� yTp �

�

+u� 
�`

T

�
;(6)
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where y is the solution of �
T
y = 
. The second important class of valid

inequalities has been introduced by Nachtigall [Nac96]. These cutting planes

are also de�ned for every elementary cycle. With b = (�

T
`) mod T , they are

(T � b) � 

+
(x� `) + b � 


�

(x� `) � b(T � b):(7)

A Case Study for the Berlin Underground

We �rst give a rough description of the Berlin Underground network. Then,

we introduce the objectives that are important to the BVG. Finally, we report

our computational results.

The Berlin Underground Network

The total length of the tracks is more than 144 km. There is a total of 170

stations, and 19 stations of them allow line changes. The average trip length

of the passengers is slightly less than 6 km, or about eight stations. During

one day, there are about 1.3 million passengers.

The Berlin Underground is only one part of the very complex public trans-

portation network of Berlin. It also encompasses regional trains, fast trains,

trams and busses. The timetable planning is done hierarchically, and only

trams and busses depend on the timetable of the underground. This implies

that the underground has to take into account the timetable of the fast train

network.

The fast train and the underground networks have about 20 stations in

common. In most of them, there are rather long walks between the two sys-

tems. Hence, there are no reliable values for the time required by passengers

to change platforms. For this reason, traditionally only system changes within

those station where fast train and underground share platforms are consid-

ered when planning the underground. Further interactions between the two

systems are only considered in a later �ne-tuning phase.

During peak-hours and on weekdays, all lines are operated at least every

�ve minutes. Only in the evening hours and on weekends, the period length

is extended to T = 10 minutes, the weak traÆc time. This weak traÆc time

is the target of our study. In it, each of the nine lines is operated on its own

track. As there are no single tracks in the Berlin Underground network, no

safety conditions have to be obeyed. The planning precision is half a minute.

The passengers' 
ow has been given by weights | ranging from 25 to

1900 | for any of the 168 possible change activities. We have to mention that

these data stem from 1997, and that passenger 
ows might have changed due

to the installation of new regional and fast train lines. Unfortunately, this is

the most current data that was available to us.
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Objectives given by the BVG

In order to give an idea of the modeling power of the PESP, we describe

the iterative process of formulating the mathematical model in detail. As

practitioners are likely not familiar with the PESP, we start with the most

obvious constraints such as travel times and change activities of the passengers.

But the scenario based on these constraints only produced a solution that

violated an important criterion not named so far. Because of the 
exibility

of the PESP, we have been able to incorporate all the iteratively identi�ed

restrictions of very di�erent types. Sometimes, we thought of this process as

being a \verbal cutting-plane algorithm". . .

The main objective has been to reduce passenger waiting time. As the

current timetable de�nes additional stopping times in four stations, we tried

to insert such additional stopping times most gainfully for the changing pas-

sengers.

The result has been a timetable which reduced the weighted average wait-

ing time of the changing passengers from more than 34% of the period time

of ten minutes down to less than 17%. For the 24 most important relations,

the average waiting time even decreased from more than 30% to less than 4%,

which translates to an average waiting time of less than 30 seconds. Recall

here that we always ensure a certain time for changing platforms and only

minimize the time exceeding this required changing time.

This �rst timetable was very passenger-friendly but required 78 trains in-

stead of only 71 in the current timetable. Thus it was not acceptable for the

BVG. This led to a model that incorporated also vehicle waiting time besides

passenger waiting time.

The second timetable produced by our system still represented a signi�cant

improvement for the changing passengers. The average waiting time decreased

by more than one minute, both in total and on the 24 most important relations.

And even more interesting, this timetable required only 68 trains, which turned

out to be a global lower bound and thus the minimum number of trains.

Surprisingly for us, this was also not acceptable for the BVG. The timetable

proposed for the line U1 is reported in table 1. Since the minimal turning times

Table 1

Times proposed for line U1 in timetable 2

direction A Station direction B

20:09:30 Warschauer Stra�e 21:35:00

20:50:00 Krumme Lanke 20:55:00

for the trains are exactly met in both endpoints, the timetable for this line

is likely to be very instable if the line is operated with only nine trains. For

this reason, we were obliged to add one minute to the (theoretically) minimal

turning time at both endpoints of this line, as well as at both endpoints of
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line U7, which is the longest line requiring 55 minutes for one direction.

The third timetable added one train on line U1, and the passengers got a

small bene�t out of it. But this timetable still violated some | up to here |

unknown constraints. Four out of the ten most important relations showed

the situation in table 2. These connections were considered to be much too

Table 2

Situation on four very important relations in timetable 3

Source Station Destination (1) (2)

U9 Rath. Steglitz Leopoldplatz U6 Alt-Tegel 90 0

U7 Rudow Hermannplatz U8 Wittenau 90 0

U2 Ruhleben Alexanderplatz U5 H�onow 60 0

U2 Ruhleben Zoolog. Garten U9 Osloer Str. 90 0

(1): min. changing time (sec) (2): effective waiting time

instable. To avoid this, we added 30 or 60 seconds to the minimal changing

time for every relation in the third precision of our model.

As we do not want to penalize connections in the real timetable that

could have been planned with the potentially instable original minimal chang-

ing time, we counted an objective value as zero for connections resulting in

an e�ective waiting time of 09:00 minutes or more. By that, the current

timetable's average waiting time decreases to 28.2%, and to 23.6% on the 24

most important relations.

The fourth timetable again required 69 trains, and implied an average

waiting time of 22.7%, resp. 15.2% on the most important relations, subject

to the extended minimum changing times. This timetable did violate another

{ almost political { constraint, again not mentioned so far. Recall, that there

is one station (Wuhletal), where underground and fast train share their plat-

forms. The timetable proposed for line U5 has been the one given in table 3.

Only the slightly more important cross-wise correspondence in direction B has

Table 3

Times proposed for line U5 in timetable 4

direction A Station direction B

20:00:00 H�onow 21:14:00

20:10:30 Wuhletal 21:03:30

20:33:30 Alexanderplatz 20:40:30

been adequately respected. In order to o�er a good correspondence in direc-

tion A as well, line U5 must have been in Wuhletal two minutes later. But

this con
icts with the minimal turning time of seven minutes for the trains
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in Alexanderplatz. Thus, with the timetable for the fast train as given, good

correspondences in both directions can only be o�ered if one additional train

for line U5 is funded by the Berlin government { and indeed it is. Hence, the

new constraints ensure good correspondences in every station where di�erent

lines share a platform. Besides the correspondence with the fast train, there

are two other stations within the Berlin Underground network where good

cross-wise correspondences for four pairs of directed lines now became oblig-

atory. In Mehringdamm, where U6 and U7 meet, this implies one additional

train for one of these two lines as well.

This is why the �fth timetable requires 71 trains. With the increased


exibility, passenger waiting times have been reduced to 20.2% for the whole

network and to only 10.6%, or about one minute, on the TOP 24.

This timetable was criticized as not being suÆciently balanced. The sit-

uation in Berliner Stra�e, where U7 and U9 meet, is given in table 4, and

representative for this phenomenon. For the current settings, this situation

Table 4

Situation in Berliner Stra�e proposed in timetable 5

Source Arrival Destination Departure Weight

U7 (A) 20:08:00 U9 (A) 20:16:30 900

U7 (A) 20:08:00 U9 (B) 20:16:30 300

U7 (B) 20:08:30 U9 (A) 20:16:30 400

U7 (B) 20:08:30 U9 (B) 20:16:30 400

U9 (A) 20:06:30 U7 (A) 20:08:00 700

U9 (A) 20:06:30 U7 (B) 20:08:30 200

U9 (B) 20:06:30 U7 (A) 20:08:00 700

U9 (B) 20:06:30 U7 (B) 20:08:30 900

is even locally optimal for line U9, because an earlier passage in direction A

forces an earlier passage of direction B as well, due to the turning times. Be-

sides, for this line an additional train is not accepted. The crux is that optimal

solutions of linear programs are attained in the vertices of polyhedra, where as

many constraints as possible are tight. Finally, we were asked to avoid large

deviations like 00:00 against 06:30 for this and two other stations, where

passenger 
ows are as balanced as here. This has been modelled by setting

the minimal changing time to an arti�cial value of four minutes. This prefers

timetables that bundle both directions of the same line, but separate the two

lines.

The discussion also showed that the lack of balance was not the only prob-

lem here. Since the currently published timetable o�ers the connection from

line U7 (A) to line U9 (A) with arrival 20:01 and departure 20:05, one fears
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that an immediate change to timetable 5 results in an unacceptable amount of

complaints. Finally, we introduced explicit constraints such that none of the

most important connections faces a deterioration of more than two minutes |

and hereby limited 
exibility considerably.

The last timetable computed still improves the average waiting time com-

pared to the currently valid timetable from 34.6% to 30.6%, on the TOP 24

from 30.1% to 23.1%. In this �nal scenario, we refer to the minimal chang-

ing times originally given by the BVG. Although no additional vehicles are

required, our timetable ought to be more stable than the one currently oper-

ated: turning times respect a bu�er of 30 or 60 seconds added to the theoreti-

cally minimal turning times, and the four correspondences at shared platforms

within the Berlin Underground network respect 30 seconds of additional min-

imal changing time each. Furthermore, there is only one connection with only

the minimum amount of changing time in our timetable, but 11 in the current

timetable. On the TOP 24, only the current timetable o�ers three relations

with waiting times of 07:00 minutes or more. On the TOP 90, only along

three relations passengers have to wait at least three minutes more than in

the current timetable, none of them belongs to the TOP 24. But seven resp.

three relations were improved by at least that amount. Last but not least,

the average speed of the trains even increases a little bit, because we inserted

only �ve minutes of additional stopping time.

The question, if there still rest further restrictions not formulated so far,

has been answered by an assistant of the BVG:

No k.o.-criterion is violated.

Running Times

The scenarios in the case study have been computed by relaxing the 80 lightest

change arcs. Doing so, we neglected 10% of the changing passengers, the ones

who use relations with the two smallest weights. But the search space reduced

notably: the product of the number of possible values of the integer variablesY

c2C

(p
C
� p

C

+ 1);(8)

decreased from more than 1090 to less than 1060. This allowed running times

between 200 and 1000 seconds for the MIP-solver of CPLEX on a 440 MHz

machine, using the problem formulation re�ned by adding some of the men-

tioned valid inequalities.

For the last but one scenario, we analyze the running times in more detail.

The full graph has 61 nodes and 243 arcs, after redundancies were eliminated

in a preprocessing phase. We start by comparing the di�erent approaches of

constructing a fundamental cycle base, and then demonstrate how we pro�t

from the valid inequalities.

To compare the heuristics for constructing a short fundamental cycle base,

we list the potential dimension of the search space (8) in table 5. In two
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heuristics, we only consider the cardinality of the basic cycles, in two others, we

include also the width of the cycles by summing up the spans of the arcs. We

tested every heuristic on the models with 83%, 90%, and 100% of the changing

passengers. Without adding valid inequalities, only the branch-and-bound tree

Table 5

Quality of di�erent fundamental cycle bases

Focussing on 83% Focussing on 90% Full Graph

Heuristic Search Space Search Space Search Space

MST (card.) 1:58 � 1046 2:67 � 1056 6:48 � 1095

MST (spans) 1:52 � 1040 5:82 � 1049 2:24 � 1091

NT (card.) 3:54 � 1044 6:14 � 1052 4:66 � 1094

UV (spans) 8:94 � 1045 4:55 � 1052 3:58 � 1090

of MST (spans) on 83% did not exceed the memory limit of 768MB and was

solved optimally within 423 seconds. The others reached the memory limit

after more than two hours, with optimality gaps of at least twenty percent.

We should mention that a minimal cycle basis of the 90% scenario limits the

search space to only 7:90 �1034, but our minimal basis is not even fundamental

in the generalized sense.

This shows that the choice of the heuristic for building the spanning tree is

of relevance. Roughly speaking, the arcs' spans should be taken into account.

But since this preprocessing step has negligible cost, several heuristics might

be tried before �xing one problem formulation for the MIP-solver.

The valid inequalities have a big impact on the solution capabilities. In ta-

ble 6, we list the running times of the MIP-solver on formulations obtained by

adding up to 100 or 200 cuts of the two relevant types (6) and (7). Generating

the valid inequalities took at most 420 seconds. In rating the lower bounds,

observe that randomly generated cycles were considered in some steps.

One conclusion that may be taken from table 6 is that a very bad cycle basis

causes longer solution times even for the problem formulation strengthened by

cuts. Another observation is that, among the more sophisticated heuristics,

UV comes up with the longest solution times, but we have no explanation for

this phenomenon.

The results clearly show that adding valid inequalities signi�cantly enlarges

the set of problems that we can solve to optimality. There is only one heuristic

for which we were able to solve the 83% instance in the original formulation.

However, with some valid inequalities added, every heuristic allows a solution

time of less than eight minutes for the 90% instance.

With the practical experience obtained by this analysis, we attacked the

network in which only 5% of the changing passengers, or 51 change arcs, are

relaxed. We were able to solve even this scenario optimally after 5558 seconds,

28



Liebchen and M�ohring

Table 6

Solution times for PESP with valid inequalities added

Focussing on 83% Focussing on 90%

Heuristic Cuts Lower Bound Time Lower Bound Time

MST (card.) 100 81.04% 4271 79.19% 11990

MST (spans) 100 95.84% 52 81.05% 365

NT (card.) 100 95.64% 202 79.60% 679

UV (spans) 100 96.00% 467 80.06% 5129

MST (card.) 200 96.89% 48 97.14% 432

MST (spans) 200 96.22% 50 96.88% 299

NT (card.) 200 96.52% 69 96.35% 172

UV (spans) 200 97.24% 108 96.27% 359

although the LP lower bound has not been very tight (80.87%). However, the

optimal solutions for the 90% scenario and the 95% scenario are the same,

only in the 83% scenario passengers have to wait 5.4% longer. In a �nal

run, we omitted only the 29 relations having smallest weight (1.3%). The

valid inequalities allowed to respect the memory limit of 768MB even for this

scenario. After 11 hours, this instance has been solved optimally, and the

previous solution still has been improved { by 0.5 permill. . .

The picture about the MST heuristics is not as conclusive as this study

may indicate. We have other traÆc networks from practice in which the

MST heuristics are always dominated by the unweighted NT and UV heuris-

tics.

Conclusions

We showed that optimized timetables can be signi�cantly better than manu-

ally constructed timetables, and this in several hard criteria such as amount

of rolling stock or average waiting time of changing passengers. But there are

also many rather soft criteria, such as balance and stability which practition-

ers take into account as well. Fortunately, even these can be modelled by the

PESP. This is why we are convinced that automatic timetable generation will

sooner or later become relevant in practice. We are currently aware only of two

software tools for automatic timetable generation which include optimization

techniques to some extent: CADANS (ORTEC Consultants bv, Gouda, NL)

and the latest release of VISUM �OV 8.0 (PTV AG, Karlsruhe, D) [LN02].

From a theoretical point of view, we raised the question of systematically

looking for short fundamental cycle bases, in order to keep the search space
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for a MIP-solver small. Although on the example investigated in this study

the di�erences have been rather small, we consider short cycle basis to be

very important for other instances. Finally, the bene�t of additional valid

inequalities once more has been clearly demonstrated.
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