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ABSTRACT 

Let A be an n X n complex matrix. Then the numerical range of A, W(A), is 
defined to be {r*Ax : x E C”, x*x = 1). In this article a series of tests is given, 
allowing one to determine the shape of W(A) for 3 X 3 matrices. Reconstruction of 
A, up to unitary similarity, from W(A) is also examined. 0 Elsevier Science Inc., 
1997 

1. INTRODUCTION 

Let A be an n X n matrix with complex entries. The numerical range of 
A, W(A), is defined as {x*Ax : x E C”, x*x = 1). It is well known (see [l, 
21) that W(A) is a convex compact subset of @, which contains all the 
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eigenvalues of A and therefore its convex hull conv(a( A)). For A normal 
(that is, commuting with A*), W(A) = co&u ( A)); the converse statement 
holds when n < 4. 

For 2 X 2 matrices A a complete description of the numerical range 
W( A) is well known. Namely, W(A) is an ellipse with foci at the eigenvalues 
A,, A, of A and a minor axis of the length 

s = (trace( A*A) - (h,(’ - (A,12)1’2. (1.1) 

Of course, s = 0 for normal A, and the ellipse in this case degenerates into a 
line segment connecting A, with h,. On the other hand, for 2 X 2 matrices 
A with coinciding eigenvalues the ellipse W(A) degenerates into a disk. 

For general n, the following procedure is useful: Write A = H + iK with 
H, K Hermitian, and let 

L,(u,u,w) = det(uH + UK + WI). 

The equation L,(u, v, w> = 0, with u, v, w viewed as homogeneous line 
coordinates, defines an algebraic curve of class n. The real part of this curve 
we denote by C( A) and call the associated curve (the randerzeugende curve, 
in German terminology of [3]) of A. Th e n real foci of C(A) correspond to 
the eigenvalues of A [3, 41 and W(A) = conv C(A) [3]; see [5, Sect. 31 for a 
detailed discussion of the connections between the polynomial L, and the 
numerical range of A. Note that the usual point equation f(x, y) = 0 of the 
curve C(A) also can be written down (see [6]), but for n > 2 it is much more 
complicated than the line equation. 

For n = 3, the following classification, based on factorability of L,, was 
given by Kippenhahn in [3]: 

Case 1. L, factors into three linear factors. Then C(A) consists of three 
(not necessarily distinct) points, A is normal (and therefore reducible’), and 
W(A) is the convex hull of its eigenvalues. 

Case 2. L, factors into a linear factor and a quadratic factor. Then C( A) 
consists of a point A, (the eigenvahre of A corresponding to the linear factor) 

’ We say that a matrix A is reducible if there exists a unitary matrix U such that 
U*AU = diag[A,, A,], where both diagonal blocks are of nonzero size. For reducible A, 
W(A) = conv(W(A,), W(A,)). 
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and an ellipse E. The numerical range W(A) is either an ellipse (if A,, lies 
inside E) or a “cone-like” figure otherwise; in the latter case A is reducible 
(but not normal). 

In the next two cases the polynomial L, (and therefore the matrix A) is 
irreducible. 

Case 3. The degree of C(A) (that is, the degree of its point equation) 
equals 4. Then C(A) has a “double tangent,” and the boundary of W(A) 
contains one flat portion but no angular points. 

Case 4. The degree of C(A) equals 6. Then C(A) consists of two parts, 
one inside another; an outer part (and therefore W(A)) has an “ovular” 
shape. 

This classification is complete: the same article [3] contains examples of 
matrices A falling in each of the above-mentioned cases. 

However, it does not provide a constructive procedure that would allow 
one to determine, for an arbitrary given nonnormal 3 X 3 matrix A, the 
shape of its numerical range. The main purpose of our article is to offer a 
series of tests, in terms of a matrix A itself or its canonical unitarily 
equivalent forms, to determine when W(A) is an ellipse, a set with a flat 
portion on its boundary, or an ovular set. This is done in Sections 2 and 3. 
The results obtained simplify dramatically for matrices with one-point spec- 
trum; this is discussed in Section 4. Section 5 is devoted to the question of 
when a 3 X 3 matrix A can be restored (of course, up to unitary equivalence) 
from its numerical range. 

2. W(A) IS AN ELLIPSE 

We begin with the following general result concerning matrices of arbi- 
trary size whose associated curve consists of ellipses and points. 

THEOREM 2.1. Let A be an n X n matrix with eigenvalues A,, . . . , A, 
and suppose that its associated curve C(A) consists of k ellipses, with minor 
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axes of lengths sl, s2, . . . , sk, and n - 2k points. Then 

i$ls: = trace( A*A) - 2 (hi12. 
i=l 

S. KEELER ET AL. 

(2-I) 

For n = 2 the condition imposed in Theorem 2.1 is of no restriction since 
C(A) always is an ellipse or a pair of points; formula (2.1) in this case takes 
the form (1.1). In the original version of this article we considered the case 
n = 3, in which, according to Kippenhahn’s classification, the conditions of 
Theorem 2.1 are satisfied for C( A) being a union of three points (Case 1) or 
an ellipse and a point (Case 2). Still there is not more than one ellipse, and 
(2.1) in this case takes the form 

s = (trace( A*A) - [A,)’ - l&l2 - l~sl~)“~. (2.2) 

The generalization to the case n > 3 and its proof were suggested to us by 
the referee. 

Proof. Relabel the eigenvalues of A in such a way that A2i_ i, hsi 
become the foci of the ith ellipse (i = 1,. . . , k), and hskfl, . . . , An--the 
remaining points of C(A). 

Along with A, consider the matrix 

Since C( A) = C(B), the polynomials L, and L, have to be the same. 
Compute now the coefficients of w”- 2 of these polynomials. When doing 

that, due to unitarily invariance of L,, we may without loss of generality 
suppose that A = [ajj]y j= 1 is in upper-triangular form. The coefficient of 
wn- 2 in L, equals the sum of all 2 X 2 principal minors of uH + UK, that 
is,2 

= I l<i<j<n 

u%aii + u3aii)(uiRajj + v3ajj) - f(U’ + U2)laij12 1 
u%Ai + uZYA~)(U%A~ + uDAj) - f(u2 + u2)Iaij12 . 1 

’ Here and in what follows, we denote by !Rz and 32 the real and imaging part, 

respectively, of a complex number z. 
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Applying this formula to B (which already is in upper-triangular form) we 
obtain 

c 
l<i<jbn 

[(t&hi + U3Ai)(U%Aj + U3Aj)] - i(u’ + 2) 5 ($12. 
i=l 

Since L, = L,, it follows from here that 

5 Isi12 = c laij12 = 5 laij12 - k la,,(’ = trace( A*A) - t lhi12. 
i=l l<i<j<n i,j=l i=l i=l 

Note that in the setting of Theorem 2.1 $1 the respective coefficients of 
L, and L, are equal. In particular, equating the coefficients of u”, on yields 

det H = fi %A2i_1%Ah,i - is: 
i=l ( 

(2.3) 

If n = 3 and A is in upper-triangular form 

(2.4) 

conditions (2.3) can be rewritten as ~x~~~c + I y12iRb + lz12’iRa - %(xijz) 
= s2!RA3, 1~1~3~ + ly123b + lz123a - 3(xijz) = s2DAhS, or simply 

lx12c + I y12b + lz12a - x& = s2A,. (2.5) 

Due to (2.2), 

s = 41x12 + I y12 + lz12. (2.6) 
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Hence, conditions (2.5), (2.6) are necessary for matrices (2.4) and 

A, s 0 

B= [ 0 h, 0 0 0 4 1 
to have the same associated curves. Surprisingly, a direct computation shows 
that they are also sufficient. Therefore, the following criterion holds. 

THEOREM 2.2. LA A be in upper-triangularform (2.4). Then its associ- 
ated curve C(A) consists of an ellipse ( possibly degenerating to a disk) and a 
point if and only if 

1. d = [xl2 + 1~1’ + Iz12 > 0 and 
2. the number A = (~1x1~ + bl y12 + alz12 - xijz)/d coincides with at 

least one of the eigenvalues a, b, c. 

Zf these conditions are satisfied, then C(A) is the union of A with the ellipse 
having its foci at two other eigenvalues of A and minor axis of length s = 6. 

To obtain a unitary invariant form of Theorem 2.2, note that 

cIx12 + bly12 + alz12 - xijz = d trace A - trace( A*A’) + i lh,(2h,. 
j=l 

Therefore, Theorem 2.2 admits the following reformulation. 

THEOREM 2.3. The associated curve C(A) of a 3 X 3 matrix A consists 
of an ellipse and a point if and only if 

1. d = trace(A*A) - C~=rlAj12 > 0 and 
2. the number A = trace A + (l/dXC~= ,lAj12Aj - trace(A*A2)) coin- 

cides with at least one of the eigenvalues Aj of A. 

Zf these conditions are satisfied, then C(A) is the union of A with the 
ellipse having its foci at two other eigenvalues of A and minor axis of length 
s = 0. 

Now we are ready to formulate a necessary and sufficient condition for a 
3 X 3 matrix A to have an ellipse as its numerical range. 
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THEOREM 2.4. LA A be a 3 x 3 matrix A with the eigenvalues Aj, 
j = 1,2,3. Then W(A) is an ellipse if and only if conditions 1,2 of Theorem 
2.2 (or 2.3) hold and, in addition, 

3. (IA, - h,l + IA, - X,1)‘- - IA, - &I2 < d, where the eigenvalue coin- 
ciding with A is labeled A,. 

Proof. Conditions 1,2 are equivalent to C(A) being a union of the 
ellipse E (with the foci A,, A, and minor axis of length 0) and the point A,. 
Condition 3 means that A, lies inside E. According to Kippenhahn’s classifi- 
cation, this is the only case when W(A) is an ellipse. ??

The results obtained allow us to describe all 3 x 3 matrices for which 
W(A) is a disk. 

COROLLARY 2.5. W(A) is a disk if and only $ 

1. A has a multiple eigenvalue p (so that its eigenvalues equal p, CL, and 
A) 

2. 2ptrace(A*A) = trace(A*A2) + 2l/~‘l/~ + (2~ - A)lA12, and 
3. 4) p - AI2 + 21~)~ + 1 Al2 < trace( A*A). 

For A in a triangular form (2.41, conditions 2 and 3 may be substituted by 

2’. GJz = (p - AX6_(x12 + 6b,P(y(2 + 8,_1~1~>, where 6 is a usual 
Kronecker symbol, and 

3’. 41 p - Al2 < (xl2 + ( y12 + 1~1~. 

If these conditions are satisfied, then W(A) is centered at p and has radius 

i trace( A*A) - 21 k12 - IAl (= a~/lxl” + ly12 + 1~1 in the case (2.4)). 

Proof. Indeed, W(A) is a disk if and only if it is an ellipse (that is, 
conditions of Theorem 2.4 are satisfied) and, in addition, the foci of this 
ellipse coincide. This means that A has a multiple eigenvalue (say, ~1, and its 
third eigenvalue coincides with A defined by condition 2 of Theorem 2.2 or 
Theorem 2.3. The rest is computation. ??

For triangular matrices, this corollary was first proved directly by Chien 
and Tam, although in a very different manner [7]. Necessary and sufficient 
conditions for W(A) to be the unit disk centered at 0 for a 3 X 3 matrix A 
were obtained earlier by N. K. Tsing (unpublished) and stated in [7]; these 
conditions appear as a particular case of Corollary 2.5, when we specialize 
a = b = p = 0, (xl2 + I y12 + Iz12 = 4. 
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3. W(A) HAVING A FLAT PORTION ON ITS BOUNDARY 

Throughout this section we assume that A is a 3 X 3 irreducible matrix 
represented as A = H + iK with H and K Hermitian. 

We begin by deriving a canonical form for an irreducible matrix with a flat 
portion on the boundary of its numerical range. 

THEOREM 3.1. Let A be a 3 X 3 irreducible matrix. Then afer unitary 
similarity, translation, rotation, and scaling of A, A may be written in the 

f O?Tl 

where cl, cg, %( t> are positive, if and only if W( A) has a flat portion on its 
boundary. In this form, W(A) has ajlat portion extending from 0 to i and is 
contained in the closed right half-plane. 

Proof. Let W(A) h ave a flat portion on its boundary. After rotation, 
shifting, and scaling (by scaling we mean multiplication by a positive number), 
we may assume that a flat portion stretches from 0 to i. Since W(A) is 
convex, it must be contained entirely in the right or the left half-plane. 
Applying yet another rotation and translation, if necessary, we may assume 
that W(A) is in the right half-plane. 

Since 0 and i are in W(A), there exist r,, x2 E C”, x:x1 = x2*x2 = 1 
such that x:kr, = 0, x$kr, = i. Let 9= Spanix,, x2}. Since _!Z is a 
2dimensional subspace, we may represent the linear transformation of A 
restricted to 9, Al_Y = A’, by a 2 X 2 matrix. By choosing a proper basis for 
A, A’ is the leading principal submatrix of A. 

Now W( A') is an ellipse, as are the numerical ranges of all 2 X 2 
matrices. Since W( A’) is convex, [0, i] c W( A’). Also, W( A’) E W(A). Since 
W(A) does not extend into the left half-plane, the only possible ellipse 
W( A’) can be is the degenerate ellipse [O, il. This implies that A’ is normal 
with eigenvalues 0 and i. So with proper basis i 0 

r 1, 1 [ 0 

v1 

A’= 0 

o 

and A= 0 

va. 

cl c2 t 1 
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Since W( A) is in the closed right half-p1 ane, H is positive semidefinite. A 
calculation shows that 

- 
Vl + Cl 

- 
v2 + c2 > 

2%(l) 1 
and therefore !R( 5) > 0, vi = - G, v2 = - G. Due to the irreducibility of 
A, however, we know (ri([) > 0. By a diagonal unitary similarity, we’ may 
assume that ci, c2 are nonnegative. If cr or c2 are 0, then A is reducible, so 
ci and c2 are positive. We now have the form (3.1) of A we had hoped for. 

Now suppose that after scaling, rotation, translation, and unitary similar- 
ity, A is in the form expressed in the theorem. Consider the principal 
submatrix A’ from the first two rows and columns of A. W( A’) is a line 
segment from 0 to i. Clearly, W( A’) c W(A). But since H is positive 
semidefinite, W(A) lies entirely in the right half-plane. So the line segment 
from 0 to i must be on the boundary of W(A). 

To see that the line segment does not go beyond 0 or i, note that any 
point y on that line must be pure imaginary. So if r*Ax = x*Hx + ix*Kx = 
y, then x*Hx = 0. Hence, x E Ker(H) = Span{[l, 0, OIT, [0, 1, OIT}. If ]]x]] 
= 1, then x = v,[l,O,OIT + v,[O, 1,OlT with lv112 + lv212 = 1, and 0 < 

x*zzx = ]vJ < 1. ??

According to Kippenhahn’s classification, W(A) has a flat portion on 
the boundary if and only if there exists a line, ux + uy + w = 0, tangent to 
C(A) at two distinct points. This double tangent line corresponds to an eigen- 
value -w of uH + UK, which has multiplicity 2; since u and v are real, 
uH + UK is Hermitian and uH + UK + WI has rank 1. Conversely, if uH + 
UK + WI has rank 1, then -w is an eigenvalue of uH + UK with multiplicity 
2, and we get a double tangent. Observe also that, if A is irreducible, 
uH + UK cannot have an eigenvalue of multiplicity 3 (for then the Hermitian 
matrix uH + UK would be scalar, H and K would commute, and hence A 
would be normal). We summarize: 

PROPOSITION 3.2. Let A = H + iK be irreducible. Then the following 
statements are equivalent: 

1. W(A) has a flat portion on the bounda y; 
2. rank(uH + UK + wZ) = 1 for some real u, v, w; 
3. for some real u, v not both equal to zero, uH + UK has a multiple 

eigenvalue. 
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Under these conditions, the flat portion of the boundary lies on the line 
ux + “fj + w = 0. 

It also follows from Kippenhahn’s classification that an irreducible 3 X 3 
matrix can have at most one flat portion on the boundary of its numerical 
range. 

COROLLARY 3.3. Let A be irreducible and unitarily similar to a real 
matrix. Then W( A) has a flat portion on its boun& y if and only if H has a 
multiple eigenvalue. lf W(A) does h ave a flat portion, it is parallel to the 
imagina y axis. 

Proof. If A is a real matrix, then W(A) is symmetric about the real axis. 
So, the (unique) flat portion of the boundary of W(A) must be a vertical line. 
According to Proposition 3.2, it happens if and only if the matrix 1 * H + 0 * 
K = H has a multiple eigenvalue. ??

if A is not unitarily equivalent to a real matrix, Proposition 3.2 may be 
difficult to use. We now present several statements, equivalent to Proposition 
3.2 (and obtained from it>. As we see in Sections 4 and 5, these statements 
are sometimes more suitable for application than Proposition 3.2 itself. 

COROLLARY 3.4. Let an irreducible matrix A be written in the form 

A= [$ z 5]+i[ $ g ::I. (3.2) 

Then WC A) has a flat portion on its boundary if and only if there exist real 
u,u not both zero such that 

Iuh,, + r&,,l = Iu& + &,I = Iuh,, + uh,,l (3.3) 

and 

(uh,, + vuk,s) (uh,, + ukJ (uhss + r.k2s) is real. (3.4) 
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Proof. Since for any l E C W( A) h as a flat portion on its boundary if 
and only if W(A - 51) h as a flat portion on its boundary, we may (and do) 
assume that trace of A is zero: 5 = Q = 0. The characteristic polynomial of 
uH + VK then equals 

det(uH + UK - AZ) 

= -A3 + (Iuh,, + vk1,12 + IUhz3 + VkJ + Iuh,, + vk,,12)h 

+ 2%((uh,, + vk,,)(uh,, + vw(uh,, + vk,,)). (3.5) 

According to Proposition 3.2, W(A) h as a flat portion on its boundary if 
and only if for some real u, v not both zero uH + UK has a multiple 
eigenvalue; that is, the discriminant of (3.5) equals zero. For an arbitrary 
third-degree polynomial a, x3 + a, x2 + a, x + u3, the discriminant is 

2 2 
%% - 4u,u; - 4&z, - 27~:~: + 18u,u,u,u,; see, e.g., [8]. Due to our 
assumption trace A = 0 the coefficient of A2 in (3.5) vanishes, and direct 
computations show that the discriminant of (3.5) equals four times the 
expression 

(142 + vkl,12 + luh,, + t&l2 + It& + ~li,,l”)~ 

- 27(W((uh,, + vk,,)(uh,, + vk,,)(u~ + &))I”. (3.6) 

Setting 

x = uh,, + v/l,,, y = uh,, + uk,, and z = uh,, + vii,,, (3.7) 

we see that (3.6) equals zero if and only if 

M2 + ly12 + Id2 
3 

=“JM. (3.8) 

Id2 + ly12 + lz12 

3 
&&iv >v-, (3.9) 
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the equality (3.8) h o Id s exactly when both inequalities in (3.9) are actually 
equalities, that is, when I xl = I y 1 = I z 1 (for the first inequality in (3.9)) and 
xZjz E R (for the second). The two conditions obtained are exactly the same 
as (3.3) and (3.41, respectively. ??

Note that condition (3.2) is of no restriction, since it can always be 
obtained by a unitary similarity. To rewrite Corollary 3.4 in a unitarily 
equivalent form, put 

= uH + uK - $trace(uH + uK))Z. 

Then, in notation (3.7), 1x1’ + 1~1’ + lz12 = i trace B2 and !R(xIjx> 
= $ trace B3, so that condition (3.8) is equivalent to 

[trace( B3)12 = [trace( B2)13/6. (3.10) 

COROLLARY 3.5. Let A = H + iK be an irreducible matrix. Then W(A) 
has a flat portion on its bounda y if and only if there exist real u, v not both 
zero so that for B = UN + UK - i(trace(uH + &))I the equality (3.10) 
holds. 

We see in Section 4 that Corollary 3.4 sometimes leads to explicit results 
in spite of the fact that it refers to the existence of u, u without showing how 
to construct them. The criterion not using u, 0 at all is given by the next 
corollary. It is applicable to matrices A = H + iK with a diagonalized 
summand K. 

COROLLARY 3.6. Let A be an irreducible matrix written in the form 

W(A) has a flat portion if and only if K has a multiple eigenvalue or 

hdk2 - k3) + h,(k, - k,) + h,(k, - k2) 
- 

h,2 h23 
= (k, -k,)+ + (k, - k,)h 

Gh23 

23 13 
+ (k, - k2)F 

12 

(3.11) 
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and 

h,,h,,h,, is real. (3.12) 

Proof. According to Proposition 3.2, W(A) has a flat portion on its 
boundary if and only if B = uH + vK + WI has rank 1 for some real u, v, w. 
If K has a multiple eigenvalue A, then the latter condition is satisfied with 
u = 0, v = 1, w = -A. Therefore, we need to consider only the case of K 
having distinct eigenvalues. 

Necessity. Let rank B = 1. Since the eigenvalues of K are all distinct, it 
is possible only when u is nonzero. Without loss of generality we may (and 
will) assume that u = 1. 

To simplify further calculations, rewrite B in the form 

B= 

h; + vk; + w’ h 12 h 13 

G h’2 + vk; + w’ h,, , 

G j-G W’ 1 
where w’ = w + h, + vk,, hi = hi - h,, k: = ki - k, (i = 1,2). 

Then all the off-diagonal elements h,,, h,,, h,, are nonzero (otherwise at 
least two of them, located in the same row or column, equal zero, which 
would imply reducibility of A), and 

WI/h, = 
- 

w’/ h,, = 

h,,/h,, = h,,/( h’, + vk; + w’) > 

&s/h12 = h,,/( h’, + vk; + w’). 

(3.13) 

(3.14) 

Solving (3.13) with respect to v, w’ we find that 

h,,h,, 
W’ = - 

h ’ 12 

For v, w’ defined by (3.15) the equalities (3.14) yield, respectively, (3.12) and 

h13h,, h12 h23 
h’2+h-- 

12 h 13 

hmh,, hl,h,z 
. (3.16) h’l+h-- 

12 h 23 
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It is easily checked that under the restriction (3.12) the latter is equivalent to 
(3.11). 

S@iZency. From (3.11) it follows, in particular, that h,alz,,hi, # 0. 
Define o, w’ by (3.15). Th en, of course, (3.13) holds. Moreover, due to 
(3.12) u, w’ are real, and 

~7% = hnh23&hl;) 
-- - 

h, 4, h,, h,, 42 h3h,, 
= h,h,,h,,h,, = h,,h,,h,, 

. hu,/h,, = h,,/h,,. 

Therefore, the first of equalities (3.14) also holds. 
Finally, (3.11) and (3.12) imply (3.16), which, in turn, leads to the second 

of the equalities (3.14). D ue to (3.13) (3.14), I? is a (nonzero) matrix with 
collinear columns and therefore has rank 1. ??

Note that condition (3.11) may be written as 

where 

k, - k, k3 - k, k, - k2 ___ ~ ~ 
p = lh,,12 + lh1J2 + lhJ2 ’ 

Since h,(k, - k,) + h,(k, - k,) + h,(k, - k,) and p are both real, it 
means that condition (3.12) follows from (3.11) if p is nonzero. 

The above corollary also works with H and not K diagonal. To see this, 
multiply A by i. This makes H’ = - K and K’ = H. Clearly W(iA) has a flat 
portion on its boundary if and only if W(A) has a flat portion. 

4. W(A) FOR MATRICES WITH A TRIPLE EIGENVALUE 

In this section we apply our results to the special case of matrices with a 
triple eigenvalue. In their triangular form (2.4) of course, all diagonal 
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elements coincide: 

129 

(4-l) 

with p, X, y, .z complex. Note that W( A) cannot be a noncircular ellipse 
since such an ellipse requires two distinct foci (eigenvalues of A) of the 
associated curve. 

THEOREM 4.1. Let A be in the form (4.1). Then: 

(1) W(A) is a disk if and only if ryz = 0; in this case the disk has radius 

+dixI” + (~1’ + lz12 with centerp. 
(2) W( A) has a flat portion on its boundary if and only if I I ( = I y I = 

I z) > 0; in this case C( A) is a cardioid. 
(3) W(A) is of th e ocular shape if and only if xyz # 0 and I xl, ( y 1, I ZJ are 

not all equal. 

A version of Part 1 of this theorem for the nilpotent case was first shown by 
Marcus and Pesce, who also developed a unitarily invariant form of this 
condition [9]. 

Proof. Part 1 follows easily from Corollary 2.5. In the rest of the proof 
we may therefore suppose that xyz # 0, so that A is irreducible. 

Part 2: To simplify further calculations, consider the matrix 2 A instead of 
A: 

Y I[ 23(P) -ix -iy 

2%(p) 2 +i iX 2D( p) -iz . 

2%(P) iij iZ 22(P) I 

By Corollary 3.4, W(A) has a flat portion if and only if there exist real U, u 
not both zero such that 

lux + u( -ix)1 = by + u( -iy)l = luz + u( -iz)l, 

arg(Ux - iux) + arg( uz - iuz) = arg(uy - ivy). 
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From the first equation we see that we must have 

I24 - ivllrl = Iu - ivllyl = 124 - ivllzl, 

which implies that we must have ) xl = ( y I = 1.~1 since 
second equation becomes 

KEELER ET AL. 

u - iv # 0. The 

arg( u - iv) = arg( y) - arg( x) - arg( 2). 

We can easily choose u, v so that this is true. And so the only condition we 
have is 1x1 = (y( = Iz(. 

We now prove that under this condition C(A) is a cardioid. Using unitary 
transformations A +B U*AU with U = diag[eiVl, eiv2, eiY3] (which do not 
change C(A)) d an multiplying A by scalars (which rotate and dilate C(A)) 
we may reduce the general case to x = y = z = 1. Shifting then A by AI 
(which shifts C(A) by A), we may suppose also that its eigenvalue is 5 (such a 
choice of the eigenvalue ensures that the cusp of the cardioid would be at the 
origin). In other words, without loss of generality 

Using Fiedler’s formula (see [6]) for the point equation of C(A) and 
transforming to polar coordinates we find 

3P( -3r - 2 + 2cos 0)( -3r + 2 + 2cos 0) = 0. 

The factor of 3r2 is redundant since r = 0 is a solution to the other two 
factors. The other two factors actually define the same curve. This is because 
if one replaces r with -r and 0 with 8 + rr, the factors are identical within 
a scalar multiple. In polar coordinates, this ‘means that the factors trace the 
same curve. The equation therefore simplifies to r = $<l - cos 01, which is 
the equation of a cardioid [lo]. 

Part 3: Since W(A) cannot be an ellipse without being a disk, the ovular 
shape is the only case left. H 
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A computer image of W(A), where 0 1 1 

A= i 0 0 0 0 1, 1 0 

was given in [9]. By Theorem 4.1, W(A) is the convex hull of a cardioid. 
As in Sections 2 and 3, the unitarily invariant version exists: 

THEOREM 4.2. Let A be a matrix with triple eigenvalue p, * = 
trace(A*A) - 31p12, and R = trace(A*A’) - 2p(trace(A*A)) + 3plp1’. 
Then 

1. W(A) is a disk centered at p if and only if R = 0. In this case it has 
radius i@. 

2. W(A) has aflat portion on its boundary if and only if w = g3m > 
0. 

3. W(A) has an ovular shape if and only if 1I’ # 33m > 0. 

Pt-oaf. It suffices to consider A in the form (4.1). The direct computa- 
tion then shows that * = ( xl2 + ( y12 + I zj2 and IR = xijz. Obviously, condi- 
tion 1 is equivalent to xyz = 0. Due to the case of equality between 
arithmetic and geometric means of Ix 12, I y 12, ( z 12, 2 holds if and only if 
1 x I = 1 y I = 1 z I > 0. Finally, 3 is the only logically possible case left. ??

5. RESTORATION OF A FROM W(A) 

An inverse problem concerning numerical ranges may be formulated. 
Given a numerical range W(A) for some A, can one reconstruct A? Since 
W(A) = W(U*AU), we cannot restore A uniquely (with the exception of 
W(A) being a single point), but we can sometimes find a unique unitary 
equivalence class that generates W(A). The latter is always the case for 2 X 2 
matrices (see, e.g., [11>. 

In the remainder of this section, we deal with 3 X 3 matrices. For 
reducible A, it can be easily seen that in this case A cannot always be 
restored from W(A), but it can be restored from W(A) and the trace of A, 
or equivalently C(A). We sh ow later that in the irreducible case, A cannot 
always be restored, even if C(A) is known. 

Unexpectedly, there is a case of a W(A) arising from an irreducible 
matrix, which allows A to be restored up to unitary similarity: 
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THEOREM 5.1. Let W(A) be a 2-dimensional shape with only one jlat 
portion on its boundary. Then A is an irreducible matrix, which can be 
restored up to unitary similarity. 

Proof. Having only one flat portion on the boundary of its numerical 
range, A belongs to Case 4 of Kippenhahn’s classification and is therefore 
irreducible. After scaling, rotation, and shifting of W(A), we can have the flat 
portion as the line segment [O, i] and W(A) lies entirely in the right 
half-plane. We restore A in this case. After the restoration, one can obtain 
the original A by reversing the scaling, rotation, and shifting. 

According to Theorem 3.1, A must be unitarily similar to (3.1). Let us 
assume A is in that form. The real part H of A is then diag(0, 0, 8( 5 )>, with 
8( f > positive. Since W(%( A)) is the projection of W(A) onto the real axis, 
which is a line segment from 0 to !R(c), we can determine 8(l). 

Since there is only one flat portion, the real part of any point on that 
portion is 0. So J is not on that portion. Because %( J’ ) is an endpoint of the 
projection of W(A) onto the real axis and t is not on the flat portion, 5 is 
uniquely determined as the point on the boundary of W(A) having a 
maximum real part, namely YI( 5 ). So s( [ > is also determined. 

The imaginary part K of A is 

Since W( K > is a line segment, which is a projection of W(A) onto the 
imaginary axis, we know two of the eigenvalues A,, A, of K, namely the 
endpoints of the line segment. Calculating the characteristic polynomial of K 
and substituting in A,, A, give us the system of linear equations in cf, ci 

c,2(-A,) + c;(-A, + 1) = -A; + Af(l + W>) - WVC)) 
(5.1) 

cf( -A,) + c2”( -A, + 1) = -A; + A;(1 + g(c)) - A@(l)). 

The determinant of this system is Aa - A,, which is nonzero since the flat 
portion is of nonzero length, causing the projection of W(A) onto the 
imaginary axis to be of nonzero length. So the system (5.1) has a unique 
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solution: 

cf = -(A, - l)(& - l)(A, + h, - S(S)) 

c; = A,h,(A, + A, - 1 - 5( 6)). 

Since c,, c2 are positive, we thus have unique values for them. Therefore 
we know all the elements of A in this canonical form, which determines A 
up to unitary similarity. a 

As it turns out, in cases of other shapes of W(A) for an irreducible A, the 
matrix A cannot be uniquely (up to unitary similarity) restored by W(A). We 
summarize all these cases, as well as the cases of a reducible A, in the 
following theorem. 

THEOREM 5.2. A 3 X 3 matrix A can be restored (up to unitary 
similarity) from W(A) if and only if W(A) is one of the following: (1) a 
point, (2) a triangle, (3) the convex hull of an ellipse and a point outside the 
ellipse, (4) a %dimensional shape with only one flat portion on its boundary. 

In the other cases, that of (5) a line segment, (6) an ellipse, and (7) an 
ovular shape, the matrix cannot be restored. In the cases 5-7 there is a 
continuum of nonunitarily equivalent matrices whose numerical range is 
W( Al. 

Proof. Cases l-3 are well known; case 4 was discussed in Theorem 5.1. 
In case 5 A is normal, with at least two distinct eigenvalues and all three 

eigenvalues collinear. The eigenvalues corresponding to the endpoints can be 
determined, but the third eigenvalue cannot. There is a continuum choice for 
this third eigenvalue. 

If W(A) is an ellipse and A is reducible, A cannot be restored since the 
point defined by its 1 X 1 block may be anywhere within the ellipse defined 
by the 2 X 2 block. Again, there is a continuum of choices for the 1 X 1 
block. 

The proof in the remaining two situations (W(A) is an ellipse produced 
by an irreducible A or an ovular shape) is based on a series of lemmas and is 
therefore relegated to the end of this section. H 

One might ask whether a matrix A can be restored (up to unitary 
similarity) from W(A) and the trace of A. In this respect we note that for a 
3 X 3 matrix A each of the following pieces of information completely 
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determines two others: (1) W(A) and the trace of A; (2) W(A) and the 
eigenvalues of A; (3) C(A). 

Indeed, C(A) determines uniquely W(A) (because W(A) is the convex 
hull of C(A) and th e ei g envalues of A (because there are the foci of C(A)). 
On the other hand, if W(A) is known then the maximal and minimal 
eigenvalues of every linear combination H cos tf + K sin 5 (here A = H + 
iK with Hermitian H and K and 5 is a real number) are determined by 
using the orthogonal projection of W(e?6AA) onto the real axis; note that H 
cos 6 + K sin 5 is the real part of e -“(A. If, in addition, the trace of A is 
known, then all eigenvalues of H cos 5 + K sin 6 are known, and therefore 
the polynomial det(uH + vK + wZ) is known, which determines C(A). 

It will be clear from the proof of Theorem 5.2 that, in addition to the 
cases when a 3 X 3 matrix A can be restored from W(A), such a matrix can 
be restored from C(A) (or equivalently from W(A) and the trace of A) if 
W(A) is a line segment. On the contrary, if W(A) is ovular or W(A) is an 
ellipse (without any information concerning the reducibility of A), then there 
are uncountably many unitarily inequivalent matrices B such that C(B) = 
C(A). However, if W(A) is an ellipse and it is known that A is reducible, 
then A can be restored (up to unitary similarity) from C(A). 

The rest of this section is devoted to completion of the proof of Theorem 
5.2. 

We use the two matrices 

with czi > CQ > ~ys, cy; > (Y; > ai, Pi, &’ real, and off-diagonal elements 
such that 

e, f, e’, f’ > 0; if ef = 0, then g 2 0; if e’y = 0, then g’ 2 0. 

(5.4) 
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LEMMA 5.3. Let A and B be written in the form (5.2) and (5.3). Then 
L, = L, if and only if 

1. All the diagonal elements are equal: czj = CX~, Pj = # for j = 1,2,X 

2. e’ = e2 + ((al - CQ)/( c+ - a3))(lg’12 - lg12) 
3. f’ = Jf2 - ((a1 - C$)/((Yz - ‘y3))(lg’12 - lg12) 
4. e’f)(g’ + z) = ef(g + 2) + (lg12 - lg’12X(aJP2 - PJ 

+ cQ( & - PJ + q( PI - &))/(a2 - 4 

Proof. For L, and L, to coincide it is necessary, in particular, that A 
and B have the same sets of eigenvalues. Then their traces also are the same. 
Without loss of generality we may assume that they equal zero. Assuming 
that, redenote cri = a, cx2 = b, PI = c and p2 = d; then, of course, cxs = 
-a - b, & = -c - d. Analogously, the diagonal elements of H’ and K’ 
are now a’, b’, -a’ - b’ and c’, d’, -c’ - d’, respectively. 

From the equality L,(u, u, w) = L,(u, u, w) for u = 1, u = 0 it follows 
that H and H’ have the same eigenvalues. Since in both matrices the 
eigenvalues are ordered, it means that H’ = H and thus a’ = a, b’ = b. 

Calculation shows that det(uH + vK + WI) = 

(ab2 - a2b)zr3 + (-2abd - a2d - 2abc - cb2)u2u 

+( -a2 - ab - b2)U2w 

+( -2bcd + a(e2 - lg12) - bc2 - 2acd - ad2 + b(e2 - f”))zm” 

+(c( -b - 2a) + d( -a - 2b))uvw 

+(c(e2 - lg12) - c2d + ef( g + g) + d(e2 -f’) - cd2)v3 

+ ( -d2 - cd -f 2 - c2 - lg12 - e2)v2w + w3. 

Comparing this to the equation for det(uH’ + vK’ + wl) we see from the - - _ 
coefficients of u2v and uvw that we must have 

(-2ab - b2)c’ + (-2ab - a2)d’ = (-2ab - b2)c + (-2ab - a2)d 

(-2a-b)c’+(-a-2b)d’=(-2a-b)c+ (-a - 2b)d. 
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Considering this as a linear system of equations in c’, d’ of the form Cx = y, 
det(C) = (-2ab - b2X-a - 2b) - (-2ab - a2X-2a - b) = (-a - 
2bXa - bX2a + b) z 0 by our assumption that II > b > -(I - b. The 
system therefore has a unique solution, which is obviously c’ = c, d’ = d. 

We can now conclude that all the diagonal elements of A and B are the 
same. 

From the coeffkients of v2w and v2u we have, after elimination of 
identical terms, 

d2 +y2 = e2 +f2 + lg12 - @I2 

(u + b)e” - bf’l = (u + b)e2 - bf2 - a(lg12 - lg’12), 

which can be viewed as a linear system of equations in e 12, f”. By solving the 
system and using our assumption that e’, f’ are nonnegative, we obtain 

f’=J. 
Finally from the coefficient of v3 we have 

e’fl(g’ + z) = ef(g + g) + c(lg’12 - lg12) 

+(c + d)(e2 - er2) - d(f’ -fr2) 

= ef(g + g) + (lg’? - lg12) 

u-b 2a +b 
c-(c+d)a-d- 

I 

= ef( g + g) + (lg’i2 - lgt2) 
3(bc - ad) 

Substituting our definitions of a, b, c, d into the above equations gives US 

the equations stated in the lemma. ??
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LEMMA 5.4. Let A and B be in the forms (5.2) and (5.3). Then A is 
unitarily similar to B if and only if A = B. 

Proof. As in the proof of the preceding lemma, we assume that A and 
B have zero trace. Suppose A = U* BU for some unitary U. Then obviously 
C(A) = C(B), and therefore H = H’ by Lemma 5.3. Now H = U*HU, 
which implies that U must be diagonal. Using the condition (5.4), the equality 
K’ = U*KU implies K’ = K. ??

LEMMA 5.5. Let A be an irreducible matrix in the form (5.2). Zf g is not 
real, or condition 

= (a2 - 4ef + (a3 - al)eg + (a1 - c4fg (5.5) 

is not satisfied, there exists a continuum of unitary equivalences classes of 
matrices with the same associated curve C(A). 

Proof. We construct matrices B of the form (5.3) with C(A) = C(B). 
Let p = lg’? - lg?, 

q = _ 4 P2 - P,) + cf2( P3 - PA + 4 Pl - P2) 
a2 - ff3 

~ = a1 - a2 , a1 - ff3 
7= 

ff2 - a3 a2 - a3 

(5.6) 

Note that p, T > 0. 
Then by Lemma 5.3, for C(B) = C(A) we must have 

e’ = &F&T (5.7) 

fl=dG (5.8) 

e’fr(g’ + 2) = ef(g + g) + pq. (5.9) 

To satisfy (5.71, (5.8), let us choose p E I = ( -e2/p, f 2/r). Note that the 
length of I is positive, because otherwise f = e = 0, and A would be 
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reducible. The last equation (5.9) is then equivalent to 

%g’= * 
2dfFg + Pq 

2 (e” + pp)(f2 - TP) 

S. KEELER ET AL. 

(5.10) 

For number g’ E C with 1 g’12 = p + 1 g I2 and % g’ given by (5.10) to exist, it 
is necessary and sufficient that 

(24% + Pd2 

4(e2 + w.p>(f” - 7~) 

~ p + ,g,2 

The latter inequality can be rewritten as fi p> > 0, if we denote 

S(P) = (e” + pp)(f2 - TP>(~P + 41g12) - (2efsg + p412. 

It g is not real, then P(O) > 0, so that there is an E > 0 such that 
fi p) > 0 for ( pi < E. Every p E Z f~ (-E, E) generates a matrix (5.3) with 
C(B) = C(A). Different values of p correspond to different matrices B, and 
none of them are unitarily similar due to Lemma 5.4. 

If g is real, then &O) = 0, and 

CZY 

dp p=o 
= 4pf2g2 - 4re2g2 + 4e2ff2 - 4efgq. 

Substituting in the values of Z.J, 7, and q from (5.6) we see that (5.5) is 
equivalent to d4T/dpl,=o = 0. Hence, if (5.5) does not hold, there is a 
one-sided neighborhood N of zero such that fi p) > 0 for p E N. Observe 
that this neighborhood is positive if e = 0 and negative if f = 0, so that in 
any case N n I is a continuum. All p E N n Z generate matrices with the 
same associated curve as C(A), and, as above, all these matrices belong to 
different unitarily equivalence classes. I 

We now complete the proof of Theorem 5.2. Consider an irreducible 
matrix A. Without loss of generality we may suppose that it is in the form 
(5.2). Corollary 3.6 pl im ies that W(A) contains a flat portion on its boundary 
if and only if g is real and (5.5) holds. From here and Lemma 5.5 it follows 
that in all other cases (that is, when W(A) is an ellipse or has an ovular 
shape) there is a continuum of unitary equivalence classes of matrices with 
the same numerical range W(A) (and even the same associated curve C(A)). 

??
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