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a b s t r a c t
Mucolipidosis type II (MLII), or I-cell disease, is a rare but severe disorder affecting localization of enzymes to
the lysosome, generally resulting in death before the 10th birthday. Although hematopoietic stem cell
transplantation (HSCT) has been used to successfully treat some lysosomal storage diseases, only 2 cases have
been reported on the use of HSCT to treat MLII. For the first time, we describe the combined international
experience in the use of HSCT for MLII in 22 patients. Although 95% of the patients engrafted, overall survival
was low, with only 6 patients (27%) alive at last follow-up. The most common cause of death post-transplant
was cardiovascular complications, most likely due to disease progression. Survivors were globally delayed in
development and often required complex medical support, such as gastrostomy tubes for nutrition and
tracheostomy with mechanical ventilation. Although HSCT has demonstrated efficacy in treating some
lysosomal storage disorders, the neurologic outcome and survival for patents with MLII were poor. Therefore,
new medical and cellular therapies should be sought for these patients.

� 2014 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Mucolipidosis type II (MLII), or I-cell disease, is a rare

autosomal recessive disorder caused by mutation in the
GNPTAB gene on chromosome 12. This gene encodes the
a/b subunits of the enzyme N-acetylglucosamine-1-
phosphotransferase (GNPT), which acts to couple phos-
phate groups to mannose residues (mannose-6-phosphate
[M6P] moieties) on enzymes destined to be targeted to the
lysosome. Mutation in GNPTAB, with resultant abnormal
GNPT function, can lead to inappropriate trafficking of lyso-
somal enzyme to the extracellular compartment. Pathologi-
cally, dense and dark granules, visible on phase-contrast
microscopy, fill the cytoplasm of cultured fibroblasts, so-
called inclusion cells, or I-cells. A complete absence of
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GNPT activity results in the severe storage disease, MLII,
characteristically evident in infancy or even prenatally.

Clinical findings include coarse facial features, dysostosis
multiplex, growth failure, global development delay, gener-
alized hypotonia but stiff joints, and recurrent respiratory
infections progressive. Death often occurs in the first decade
of life from cardiopulmonary disease [1-3]. For patients with
lysosomal storage disorders, HSCT aims to provide donor-
derived hematopoietic cells that produce lysosomal en-
zymes with M6P moiety, allowing for intracellular uptake
with appropriate trafficking to the lysosomal for substrate
degradation. This “cross-correction” provided by trans-
planted cells has been used successfully for treatment of
several enzyme-specific lysosomal storage disorders, notably
mucopolysaccharidosis type I (MPSI-H), Gaucher disease,
and a-mannosidosis [4-11]. However, in the case of I-cell
disease, the gene product is not a soluble enzyme capable of
internalization through binding to M6P receptors on the cell
surface. The use of hematopoietic stem cell transplantation
(HSCT) to treat I-cell disease has not been previously re-
ported beyond 2 case reports [12,13]. We now describe the
largest collection of outcome data on 22 patients with I-cell
disease who underwent HSCT.
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METHODS
Data Collection

Patient-, disease-, and transplant-related data were obtained from the
Center for International Blood and Marrow Transplant Research
(CIBMTR), a voluntary working group of more than 450 transplantation
centers that contribute detailed data on consecutive allogeneic and
autologous transplantations to a Statistical Center at the Medical College
of Wisconsin in Milwaukee or the National Marrow Donor Program in
Minneapolis. Participating centers are required to report all transplants
consecutively, and compliance is monitored by on-site audits. Patients are
followed longitudinally until death or until lost to follow-up. All patients
provided written informed consent for data submission and research
participation. The study was approved by the institutional review boards
of the Medical College of Wisconsin and the National Marrow Donor
Program.
Inclusion Criteria
Patients were identified by query of the CIBMTR database for the di-

agnoses “mucolipidosis, type II” or “I-cell disease.” Records were reviewed
to verify the molecular or enzyme-based diagnosis. All patients undergoing
first or second allogeneic HSCT for MLII were considered.
Outcomes
The primary endpoint was overall survival. Other outcomes studied

were time to neutrophil engraftment (defined as the first day achieving an
absolute neutrophil count �.5 � 109/L for 3 consecutive measurements),
platelet engraftment (defined as the first day when platelets remained
�20 � 109/L without transfusions for 7 days), incidence of acute graft-
versus-host disease (GVHD), and chronic GVHD. Acute and chronic GVHD
were defined using standard criteria [14,15].
RESULTS
Patient and Graft Characteristics

We identified 22 patients,12 girls and 10 boys, reported to
the CIBMTR who underwent allogeneic HSCT for MLII or
I-cell disease (summarized in Table 1). Patients were trans-
planted at a median age of 9 months (range, 2 to 23 months)
and at a median of 3 months after diagnosis (range, 2 to
20 months). Most patients had Lansky performance scores of
80 or higher at transplantation. Cell sources varied, with 14
patients receiving unrelated umbilical cord blood; most of
these were 5/6 or 6/6 HLA matched to the recipient. Of the
remaining 8 patients, 3 patients received HLA-matched sib-
ling bone marrow (carrier status was unknown), 1 patient
received bone marrow from the mother, another received
bone marrow from the father, and 3 patients received bone
marrow from unrelated adult donors (1 HLA matched, 2 HLA
mismatched).

Preparative regimens varied. Most were busulfan based
and myeloablative in intent, although 5 patients received a
reduced-intensity regimen. GVHD prophylaxis consisted
largely of cyclosporine and steroids, although other regimens
were also used.

Thirteen of 22 patients had documented DNA mutation
analysis confirming the diagnosis of MLII. Interestingly, 3
patients (patients 4, 9, and 17) were found to have a genotype
consistent with the less severe intermediate MLII/MLIII. It
has been reported that these affected patients have muta-
tions in the same GNPTAB gene as MLII, although retain some
GNTP activity and have a milder phenotype [16]. However, 1
of these 3 patients died of organ failure more than 2 years
after transplant, which suggests mortality in this case
resulted from underlying disease. On the other hand, 1 of
these 3 patients also died of pneumonitis shortly after
transplant, a complication likely due to the transplant pro-
cedure itself.
Outcomes
Primary engraftment was obtained in 19 of 22 patients

with amedian time to neutrophil and platelet engraftment of
17 days and 37.5 days, respectively. Engraftment status was
not known in 2 patients; however, both died within
6 months. One patient had early secondary graft failure
defined as sustained loss of neutrophil recovery in the
absence of infection. This patient (patient 6) received a sec-
ond transplant within 2 months from the first transplant and
a third transplant 15 months after the second transplant. The
donor source was adult unrelated donor. This patient is alive,
approximately 10 years from first transplantation. Another
patient (patient 9) developed a post-transplant lymphoma in
the liver and was treated with surgical resection and 2 in-
fusions (1 month apart) of sibling donor lymphocytes at 10.5
and 11.5 months post-transplant with resolution of her post-
transplant lymphoma. Five of the 6 survivors listed in Table 1
had 100% donor chimerism at 1 to 2 years post-HSCT (no
chimerism data were available for patient 21).

Grades I to II acute GvHD was documented in 9 patients.
Grade III acute GVHD was seen in only 1 patient. Three pa-
tients had documented chronic GVHD, and all had been
previously diagnosed with grade II acute GVHD. The proba-
bility of 5-year overall survival was 33% (95% confidence
interval, 15% to 55%) with a median follow-up of 67 months
(Figure 1); 27% of patients (n ¼ 6) were alive at last contact.
The median time to death was 27.6 months. The most com-
mon cause of death given was “organ failure” (6 patients)
followed by primary disease progression (3 patients) and
interstitial pneumonia (3 patients).

Although numerous reports have provided increasing
amounts of information regarding survival and transplant-
related outcomes for lysosomal storage disorders, the prev-
alence and severity of developmental delays associated with
these disorders have been more difficult to measure.
Consistent neuropsychiatric measures used across multiple
centers are ideal in these assessments but were not available
in this cohort of patients. We attempted a basic functional
evaluation by sending a simple questionnaire to transplant
centers to inquire as to the status of surviving patients and
received information on 6 patients, 1 of whom had genetic
testing indicating an intermediate form of MLII/MLIII
(Table 2). The significant morbidity in these post-transplant
MLII patients was likely related to their underlying disease,
because they were described as requiring gastrostomy tubes
for nutrition and ventilatory support per tracheostomy,
having an impaired ability to ambulate, and being very
delayed in speech and learning. Although these data are far
from comprehensive, they document that a high degree of
medical support was required for children with MLII post-
transplant and that much of this support appears to be
related to the underlying disease rather than to the trans-
plant procedure.
DISCUSSION
In the article we describe the largest series of patients

undergoing HSCT for MLII, or I-cell disease. HSCT has been
used for the metabolic “cross-correction” of lysosomal stor-
age diseases for over 30 years, with most patients having
severeMPSI-H. From these patients we learned that HSCTcan
arrest the fatal neurodegeneration of MPSI-H and allow pa-
tients to live significantly longer with improved function and
quality of life. Patients undergoing HSCT for MPSI-H earlier



Table 1
Patient and Transplant Characteristics

Patient
No.

Year of
Transplant

Time from
Diagnosis
to
Transplant
(mo)

Age at
Transplant
(mo)

Sex Performance
Score at
Transplant

HLAMatch and
Graft Source

Conditioning
Regimen

GVHD
Prophylaxis

Acute
GVHD
Grade
Gluksberg

Chronic
GVHD

HSCT to
Last
Contact
(mo)

Status Cause of Death GNTPAB Mutation

1 2005 n/a 9 Female 100 5/6 UCB ATG, Bu, Cy (MAC) Steroids þ CSA 2 No 8.5 Dead Organ failure Diagnosed by enzyme testing, no
molecular data

2 2006 n/a 4 Male 100 6/8 unrelated
BM

ATG, Bu, Cy (MAC) ATG, CSA, MTX 3 No 54.1 Alive Diagnosed by enzyme testing, no
molecular data

3 2007 n/a 13 Male 90 5/6 UCB Mel, Clof, 200 cGy
TBI (RIC)

CSA, MMF 0 No 62 Alive Frameshift detected, second mutation
not detected by standard sequencing

4 2000 n/a 14 Male 90 4/8 unrelated
BM

Bu, Cy (MAC) TCD, ATG,
Steroids, CSA

0 No 27.6 Dead Organ failure Frameshift þ missense mutations
giving a diagnosis of either
intermediate MLII or MLIII

5 2002 n/a 4 Female 70 6/6 UCB ATG, Bu, Cy (MAC) Steroids, CSA 2 Yes 5.5 Dead Interstitial
pneumonia

Diagnosed by enzyme testing, no
molecular data

6 2002 n/a 13 Male 60 6/6 unrelated
BM

Campath, Flu (RIC) Tacrolimus 2 Yes 117.4 Alive Diagnosed by enzyme testing, no
molecular data

7 2007 19 Female 100 6/6 UCB ATG, Bu, Cy (MAC) Tacrolimus,
MMF

0 No 62.8 Alive Compound heterozygous frameshift
mutation þ nonsense mutation

8 1999 3 4 Male n/a HLA match
unknown UCB

ATG, Bu, Mel (MAC) Steroids, CSA n/a 6.1 Dead Organ failure Diagnosed by enzyme testing, no
molecular data

9 1997 20 20 Female 80 Sibling BM Bu, Cy, 750 cGy
TBI (MAC)

TCD 2 No 171.1 Alive Frameshift þ a splice change giving a
milder than expected phenotype,
intermediate MLII/MLIII

10 2000 2 4 Male �80 5/6 related BM
from mother

ATG, Bu, Cy (MAC) Steroids, CSA 0 No 40.1 Dead Primary
disease

Compound heterozygous frameshift
mutations

11 2004 3 23 Female n/a 6/6 UCB ATG, Bu, Cy (MAC) Steroids, CSA 0 n/a 98 Dead Unknown Compound heterozygous frameshift
mutation þ nonsense mutation

12 2005 3 6 Female �80 5/6 UCB ATG, Cy (RIC) CSA, MMF 2 No 57.2 Dead Infection Compound heterozygous frameshift
mutation þ nonsense mutation

13 2005 5 18 Female �80 6/6 UCB ATG, Cy (RIC) CSA, MMF 0 No 90 Dead Primary
disease

Homozygous frameshift mutation

14 1991 n/a n/a Male n/a Other related
BM

Cy, TBI (MAC) CSA n/a n/a 2.9 Dead Unknown Diagnosed by enzyme testing, no
molecular data

15 1996 2 9 Male 90 Sibling BM ATG, Bu, Cy (MAC) CSA, MTX 1 No 31.7 Dead Interstitial
pneumonia

Diagnosed by enzyme testing, no
molecular data

16 2008 3 15 Male 90 5/6 UCB ATG, Bu, Cy (MAC) CSA, MMF 2 Yes 22.7 Dead Organ failure Frameshift þ a splice change giving a
milder than expected phenotype,
intermediate MLII/MLIII

17 2008 10 10 Female 100 5/6 UCB Campath, Bu,
Cy (MAC)

Tacrolimus,
MTX

0 No 0.6 Dead Interstitial
pneumonia

Diagnosed by enzyme testing, no
molecular data

18 2008 8 8 Female n/a 5/6 UCB ATG, Bu, Flu (MAC) Steroids, CSA 2 No 5.3 Dead Organ failure Compound heterozygous frameshift
mutation þ nonsense mutation

19 2010 3 3 Female 100 6/6 UCB Campath, Mel, Clof,
200 cGy TBI (RIC)

CSA, MMF 0 No 8.3 Dead Primary
disease

Homozygous nonsense mutation

20 2010 2 2 Female 100 Sibling BM ATG, Bu, Flu (MAC) CSA 0 No 5.4 Dead Organ failure Compound heterozygous frameshift
mutation þ nonsense mutation

21 2010 10 10 Male 100 5/6 UCB ATG, Bu, Cy (MAC) Steroids, CSA 2 No 89 Alive No response from center
22 2011 5 5 Female 90 4/6 UCB ATG, Bu, Cy (MAC) Steroids, CSA 0 No 26 Dead Pulmonary

failure
Homozygous frameshift mutation

Bold text indicates survivors.
n/a indicates not available; UCB, umbilical cord blood; BM, bone marrow; Clof, clofarabine; TBI, total body irradiation; TCD, T-cell depletion; Campath, Alemtuzumab.
Performance scores are given as Lansky scores. Chemotherapy regimens consisted of antithymoglobulin (ATG), busulfan (Bu), Cytoxan (Cy), melphalan (Mel), fludarabine (Flu) and the conditioning intent classified as either
myeloablative (MAC) or reduced-intensity conditioning (RIC). Graft-versus-host prophylaxis was as follows: cyclosporine A (CSA), mycophenolate mofetil (MMF), and methotrexate (MTX).

T.C.Lund
et

al./
Biol

Blood
M
arrow

Transplant
20

(2014)
1841

e
1868

1849



Figure 1. Kaplan-Meier estimate of overall survival in patients with I-cell
disease after transplant.
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in life (ideally before age 2 years) have been shown to lose
less developmental ground and perform better. However,
although HSCT may help alleviate visceral and neurologic
disease associatedwithMPSI-H, its impact on orthopedic and
cardiac valve pathology may be limited [8,17-19].

The overall survival at last follow-up in our cohort is
strikingly low at 27%, with the median time to death of
27.6 months. This suggests these fatalities were not due to
peritransplant-related toxicity but rather to disease-related
complications not alleviated with transplantation. Specif-
ically, although several reported causes of death were listed
as “organ failure,” because these occurred later after
transplant, we presume some were due to progressive
disease. Because MLII is rare, its natural history is docu-
mented mainly as case reports or small case series. These
reports suggest that most patients do not survive past the
first decade and die from cardiorespiratory complications
[3,20]. Although our data show 2 patients post-transplant
over age 10 (patients 6 and 9), patient 9 (who has the
longest follow-up) was later determined to have an inter-
mediate form of MLII/MLIII on review of her mutation.
Interestingly, patient 9 was one of the first case reports of
HSCT for I-cell disease [12].

The correlation of phenotype to genotype was reported
by Cathey et al. [16], who described, for the first time, 61
patients with mutations in GNPTAB and found that some
mutations fell into clinical separations of MLII (I-cell), MLIII,
and an intermediate form of MLII/MLIII. On this basis, we
Table 2
Summary of Results of Questionnaire to Assess Neurologic Status in MLII Patients

Patient
No.

Gastrostomy
Tube

Tracheostomy Wheelchair
Use

Can They
Walk?

3 Yes Yes Yes Never

7 Yes Yes Yes

9 No No Sometimes Yes

13 Yes Yes Yes Never
21 Yes Yes No No, and

no wheelchair
22 Yes No Custom

wheelchair
Never walked

Patient 9 had a molecular diagnosis consistent with intermediate MLII/III. Two pat
cannot conclude that HSCT favorably changed the clinical
outcome of patient 9, because her survival and neurologic
status are not clearly different from that of an intermediate
MLII/III patient. Compared with classic MLII, intermediate
MLII/III patients tend to be taller, develop complications at a
later age, and have less pronounced skeletal issues, less se-
vere neurocognitive deficits, and a greater life span [16].
Furthermore, on evaluation of the available molecular mu-
tations for patients in this cohort, 3 patients had mutations
consistent with a milder phenotype than the classic MLII
(Table 1).

Our limited neurologic follow-up showed that after
transplant, many children are still severely affected by their
disease, requiring significant medical interventions. It is un-
clear if they displayed any “true” improvement in neurologic
development. HSCThas been attempted for several lysosomal
storage diseases, although not all diseases are improved after
HSCT. Also, HSCT outcomes are generally poor for patients
who are in an advanced neurologic decline before transplant.
We can speculate on several reasons for poor outcome after
HSCT. It is believed that delivery of lysosomal enzymes by
donor-derived hematopoietic cells requires the M6P moiety
to allow targeting to the lysosome. In the case of MLII,
disruption of the pathway by which the M6P signal is asso-
ciated with the enzyme affects not just 1 but numerous en-
zymes. This results in inappropriate secretion and insufficient
delivery ofmultiple enzymes to the lysosome. The outcome is
the accumulation of macromolecular substrates that create
inclusions in cells (giving rise to the namesake I-cells), ulti-
mately making MLII a very severe form of lysosomal storage
disease because of insufficient activity of most lysosomal
enzymes. Evaluation of lysosomal enzyme activity in MPSI-H
patients can show correction toward normal after HSCT, but
inMLII patients the inappropriate plasma secretion of several
enzymes (b-galactosidase, b-hexosaminidase A, a-man-
nosidase, b-mannosidase, b-glucoronidase, a-glucosamini-
dase, a-L-fucosidase) remains significantly elevated months
to years after successful HSCT (personal observation). One
could speculate this represents an incomplete lysosomal
correction of disease by HSCT insufficient to prevent
continued pathologic consequences.

In conclusion,wehave little to no evidence that HSCT leads
to improved clinical/neurologic outcomes in MLII. Overall
patient survival is poor, as is quality of life among those who
do survive. New modifications to HSCT or complementary
therapies such as gene therapy, enzyme replacement, or
after Transplantation

Speech? Chronologic
Age

In School? Potty-
Trained

Status

No 7 yr Functions at a 6- to
9-month-old level

No Alive

8 yr Never in school,
homebound
teacher
1 day per week

Alive

Some 18 yr Functions at a
4-year-old level

Yes Alive

No 9 yr No No Died
4 yr No Alive

No 2.5 yr Never achieved age
for education

No Dead

ients died soon after the assessment was taken.
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substrate reduction are needed to improve outcomes in this
population of children.
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