
Clinical Trials and Regulatory Science in Cardiology 12 (2015) 18–22

Contents lists available at ScienceDirect

Clinical Trials and Regulatory Science in Cardiology

j ourna l homepage: ht tp : / /www.e lsev ie r .com/ locate /ct rsc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
The impact of beat-to-beat variability in optimising the acute hemodynamic response
in cardiac resynchronisation therapy

Steven Niederer a,⁎, Cameron Walker b, Andrew Crozier a, Eoin R. Hyde a, Bojan Blazevic a, Jonathan M. Behar c,
Simon Claridge c, Manav Sohal c, Anoop Shetty c, Tom Jackson c, Christopher Rinaldi c

a Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
b Department of Engineering Science, University of Auckland, New Zealand
c Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust, London, UK
⁎ Corresponding author at: King's College London Div
Biomedical Engineering, Rayne Institute, 4th Floor Lambe
Westminster Bridge Road, London SE1 7EH, UK.

E-mail address: steven.niederer@kcl.ac.uk (S. Niederer

http://dx.doi.org/10.1016/j.ctrsc.2015.10.004
2405-5875/© 2015 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 September 2015
Accepted 19 October 2015
Available online 21 October 2015

Keywords:
Cardiac resynchronisation therapy
Optimisation
Acute haemodynamic response
Beat to beat variability
Background: Acute indicators of response to cardiac resynchronisation therapy (CRT) are critical for developing
lead optimisation algorithms and evaluating novel multi-polar, multi-lead and endocardial pacing protocols.
Accounting for beat-to-beat variability in measures of acute haemodynamic response (AHR) may help clinicians
understand the link between acute measurements of cardiac function and long term clinical outcome.
Methods and results: A retrospective study of invasive pressure tracings from 38 patients receiving an acute
pacing and electrophysiological study was performed. 602 pacing protocols for left ventricle (LV) (n = 38),
atria–ventricle (AV) (n = 9), ventricle–ventricle (VV) (n = 12) and endocardial (ENDO) (n = 8) optimisation
were performed. AHR was measured as the maximal rate of LV pressure development (dP/dtMx) for each beat.
The range of the 95% confidence interval (CI) of mean AHR was ~7% across all optimisation protocols compared
with the reported CRT response cut off value of 10%. A single clear optimal protocol was identifiable in 61%, 22%,
25% and 50% for LV, AV, VV and ENDO optimisation cases, respectively. A level of service (LOS) optimisation that
aimed to maximise the expected AHR 5th percentile, minimising variability and maximising AHR, led to distinct
optimal protocols from conventional mean AHR optimisation in 34%, 78%, 67% and 12.5% of LV, AV, VV and ENDO
optimisation cases, respectively.
Conclusion: The beat-to-beat variation inAHR is significant in the context of CRT cut off values. A LOS optimisation
offers a novel index to identify the optimal pacing site that accounts for both the mean and variation of the
baseline measurement and pacing protocol.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Despite continuing efforts, the response rate for cardiac
resynchronisation therapy (CRT) remains 50–70% [1–3]. Ongoing
work is focused on optimising lead location [4–6], endocardial pacing
[7,8], multi-polar pacing [9–11] and multi-lead pacing [12] to improve
response rate. These novel methods of CRT delivery carry promise [13]
and it has been suggested that acute measures of contractile response
to pacing may help to predict the downstream clinical response. The
change in the maximal rate of pressure development (dP/dtMx) within
the left ventricle (LV) is a frequently used index of contractility to
indicate acute response in both clinical [5,7,9,10,13–16] and animal
[17–19] work. However, the utility of this index in identifying long
term responders remains controversial [16,18,20] and recent results
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suggest the need for more rigorous methodology and improved
transparency in the recording and analysis of this value [21–23].

The conventional method for reporting the acute hemodynamic
response (AHR) to a CRT protocol is the mean percentage change in
dP/dtMx, with respect to a baseline measure, in multiple patients with
a standard deviation (SD) indicating inter-patient variability. Although
providing a broad overview of the changes in response for a given
protocol, this approach fails to recognise the beat-to-beat variability
within a single protocol. In many cases the use of this approach can be
attributed to the nature of the recording software that reports the
mean maximal dP/dtMx over a recorded series of beats and does not
readily provide the SD in this measurement.

It is important to note there are numerous physiological and
technical reasons why beat-to-beat variability in cardiac contractility
exists in the case of these patients. Firstly, ectopic beats are common
in heart failure patients [24] and occur with some frequency due to
the manipulation of leads and catheters inside the heart. These extra
systoles represent an early depolarisation originating out of timing
with the intrinsic cycle length. As a result the time for ventricular filling
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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during diastole is altered (compared with the intrinsic sinus rate) and
due to Frank–Starling principles, the subsequent cardiac output follow-
ing an ectopic beat may be increased or reduced. Secondly, respiration
alters the beat-to-beat loading on the heart [25] altering filling and
local deformation, which both alter cardiac contractility through the
Frank–Starling mechanism. Thirdly, patients with atrial fibrillation
(AF) have ineffective atrial contractions which can compromise cardiac
filling and again alter the contraction on a beat-to-beat basis [26].
Finally, intermittent capture or block will contribute to AHR variation.
Note, however, that AHR studies' patients are routinely paced at a
fixed rate, removing heart rate variability as a factor.

To investigate the role of beat-to-beat variation in interpreting the
AHR,we have developed a software platform (pTool) for offline analysis
of pressure transients. This tool enables us to remove spurious ectopic
beats from recordings and calculate both the mean and SD of pressure
transient phenotypes including dP/dtMax, maximal rate of pressure
decrease and peak pressure. Here we use this tool to test three hypoth-
eses: Firstly we test if there is significant variation in AHR during CRT
pacing protocols. Secondly, we evaluate the confidence that there is a
single unique optimal protocol identified by the mean AHR. Thirdly,
we test if minimising variation andmaximising themeanAHR identifies
distinct optimal pacing protocols from solely optimising for mean AHR
alone.

2. Methods

The study used retrospective data from studies approved by the local
ethics committee and informed consent was obtained from each
patient. The study population consisted of 38 patients undergoing LV
pressure measurements as part of research cases at time of implant
and with or without a chronically implanted CRT system. The clinical
characteristics of patients studied are shown in Table 1. All patients
were treated for dyssynchronous heart failure with CTR. Patients with a
mechanical aortic valve or significant peripheral vascular disease were
excluded. Baseline assessment included NYHA functional class, ECG and
2D echocardiography prior to the original CRT implant. Each patient's
heart failure etiology was confirmed on the basis of clinical history,
coronary angiography and/or cardiac magnetic resonance imaging.

2.1. Invasive hemodynamic study

The protocol used has previously been described [27]. Patients were
lightly sedated using diazepam (5–10 mg). A 0.014 in diameter high
fidelity Certus Pressure Wire and PhysioMon software (RADI Medical
Systems, Uppsala, Sweden) with a 500 Hz frequency response and
50 Hz filter bandwidth were used to record LV pressure (dP/dtMax)
[27]; this was passed retrogradely into the LV cavity.

2.2. Acute hemodynamic measurement

Pressure recordings were made for 10–20 s for each protocol. The
pressure transient recorded during atrial pacing (AAI) or right ventricle
Table 1
Patient characteristics.

Male 79% (30/38)
Age 67.6 ± 8.2
Ejection fraction 24 ± 7%
Ischemic 53% (20/38)
NYHA 2.6 ± 0.6
QRS duration 143 ± 24
ECG morphology

LBBB 72% (27/38)
Narrow QRS 19% (7/38)
Non-specific intraventricular conduction delay 6% (2/38)
Right bundle branch block 3% (1/38)
(RV) pacing (if the patient was in AF) at 5–10 beats above intrinsic rate
was used as baseline. At least 10–15 s was respected after a change in
pacing protocol, prior to recording the AHR.

2.3. Pressure trace curation

Pressure traces were curated within pTool, a bespoke software plat-
form. Patient data was copied directly from the RADI wire PhysioMon
software directory in an ASCII format and read into pTool. Each beat
was identified by the minimum pressure value and ectopic beats were
selected to be removed from analysis. To remove spurious variations
the beat prior to the ectopic beat and for two beats after the ectopic
beat were removed as these beats were found to be consistent outliers
and lead to over estimation of the AHR variability.

2.4. Pacing protocols

Patient data from multiple studies has been combined to maximise
the number of pacing protocols evaluated. Patient pacing was
performed at 5–10 bpm above intrinsic rate, paced and sensed AV
delay of 100 ms and with AAI pacing as baseline. DDD-RV, DDD-LV,
DDD-BiV, LV only, LV endocardial, single multipolar LV lead, multiple
LV epicardial leads and simultaneous LV epicardial and endocardial
lead pacing protocols are included in this study. Capture was verified
for each pacing modality by looking for a change in QRS morphology
at a paper speed of 200 mm/s.

2.5. Statistical analysis

Fig. 1 provides a schematic for describing the calculation of AHR and
beat to beat variability.

To estimate beat-to-beat variation in AHRwe consider the empirical
distribution of all possible ratios of dP/dtMx from our protocol and base-
line samples and calculate the corresponding AHR for each dP/dtMx

baseline/protocol pair. For each protocol we generate 1000 bootstrap
samples by sampling with replacement from this AHR distribution.
We calculate the mean and the 5th percentile as the bootstrap repli-
cates. The mean serves as an estimate for the average ratio that would
be attained via the protocol, whereas the 5th percentile is a commonly
used “level of service” (LOS) threshold — the value which is exceeded
by 95% of all ratios attained via the protocol. Using the 5th percentile
or mean AHR value T from the actual data, and the corresponding
2.5th (P2.5) and 97.5th (P97.5) percentile of the bootstrap replicates, we
can calculate a 95% confidence interval for the mean AHR and 5th
percentile as [2T-P97.5, 2T-P2.5]. This allows us to select the optimal
protocol for a patient using mean AHR or LOS optimisation. To evaluate
the chances of a given protocol being optimal we record, for each of the
1000 bootstrap replicates across all of the protocols, the rank of each of
the protocols. The protocol with rank 1 the most times across the 1000
bootstrap samples is deemed best. A clear optimal site was deemed to
exist if the difference in times that the best and second best protocol
are ranked 1 is greater than 75% of the 1000 bootstraps.

3. Results

3.1. Beat-to-beat variation in dP/dtMx during pacing protocols

The background beat-to-beat variability in AHR is important when
interpreting meaningful changes in contractility with different pacing
protocols. Fig. 2 shows theAHRdistribution for a single patient receiving
LV, ENDO, AV and VV optimisation. In many of the protocol subsets the
optimal pacing protocol is clear; however, for protocol 8 and 9 in LV
optimisation we see that the variation is sufficiently high that in some
beats the response is worse than baseline and these protocols may not
represent an effective pacing protocol despite having a high mean AHR.



Fig. 1. Diagrammatic comparison of conventional mean AHR and bootstrap sampling AHR to estimate mean AHR 95% confidence interval and AHR 95% confidence interval. dP/dtMx is
calculated for eachbeat for the base lineAAI and pacing protocols, generating a set of two dPi/dtMx values (base/paced).Mean AHR takes themean of the dPi/dtMx values for AAI andpacing
protocols and calculates the percentage change. Bootstrapping repeatedly samples pairs from the two dPi/dtMx sets and calculate a set of AHR values themean and 95% confidence interval
are calculated for this set and the process repeated until a family ofmean and 95% confidence intervals AHR are generated and the 95% confidence interval of AHR and that of themean can
be determined and plotted.
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To estimate the variation in response the 95% confidence interval
(CI) in AHR for each protocol was evaluated over 1000 bootstrapped
samples. Across all 602 protocols evaluated in all 38 patients the mean
range of the AHR 95% CI was 6.6%. The mean range of the AHR 95% CI
was consistently ~7% across LV, AV VV and endocardial optimisation.
Considering only the sites that would be selected as optimal based on
maximising the mean AHR for each scenario the range of the 95% CI of
the mean AHR improvement is 6.4%, 7.6%, 6.4% and 6.2% for LV site
optimisation, VV optimisation, AV optimisation and endocardial pacing,
respectively (Fig. 3).

3.2. Identifying optimal pacing protocols

Optimisation strategies should clearly identify a single optimal
pacing site. Comparing mean AHR values provides a single optimal
protocol, however, no information is provided on the confidence in
or the uniqueness of this solution. Confidence in the optimal site
was determined by the number of times a protocol had the highest
mean AHR in 1000 bootstrap samples. In 55%, 18%, 14%, and 33%
of LV, AV, VV and ENDO optimisation cases, respectively, the
confidence in the optimal protocol was greater than 75%. To determine
uniqueness of the optimal pacing protocol we compared the confidence
in the optimal protocol with the confidence in the next best protocol.
Considering all protocols performed on each patient the mean differ-
ence between the two top ranking protocols was 57% (min 0.4%).
For LV, AV, VV and endocardial optimisation the mean difference
was 71% (min 0.4%), 31% (min 5%), 33% (min 4%) and 67% (min 5%),
respectively.
Fig. 2. The mean AHR (black box) and the error bars indicate the lower bound and upper boun
protocol optimisation in a single case.
3.3. Accounting for beat-to-beat variability in measuring response

The specificmechanism throughwhich CRT causes reverse remodel-
ling and improves patient outcome remains controversial. The choice of
percentage change in mean AHR as a measure of response does not
consider the effect of beat-to-beat variability on patient outcomes. We
propose the concept of including the variability in AHR in the measure
of acute response using a LOS optimisation.

To evaluate if accounting for variability identifies distinct optimal
pacing protocols from optimising for the mean AHR response alone
we compared which protocol was identified as optimal for the mean
AHR and LOS optimisationmethods. For LV, AV VV and ENDO optimisa-
tion, accounting for variability resulted in different optimal protocols
being selected in 34%, 78%, 67% and 12.5% of cases, respectively. Fig. 4
shows the optimal AHR distribution for each case where the optimal
site was different between the mean AHR and LOS optimisation.

4. Discussion

Wehave shown that there exists significant beat-to-beat variation in
AHR and uncertainty in the mean AHR to pacing. This variation can
obfuscate the identification of a single optimal site, device settings or
mode of delivery. We found that accounting for variation in measuring
the acute haemodynamic response identifies distinct optimal protocols
with comparable but more robust AHR.

Despite the use of AHR to characterise the contractile function of the
heart, its predictive capacity remains controversial in CRT. We have
previously shown that the AHR to pacing is predictive of chronic
ds of the 95% CI of the 5th and 95th percentile, respectively, for for LV, ENDO, AV and VV
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Fig. 3. Uniqueness of optimal solution, measured as the difference in likeliness of the two best protocols being optimal, for A) LV, B) ENDO, C) VV and D) AV optimisation cases.
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response with a cut off value of 10% [16], however, in a large retrospec-
tive study [18], with different end points, this findingwas not borne out.
The difference between these findings could be due to the observed
variation in AHR, however, this difference could also be compounded
by methodological differences between the two studies.
Fig. 4. Comparison ofmean and confidence interval of the optimal protocol in LV, ENDO, AV and
optimising the mean AHR value (black error bars).
The 95% confidence interval in themeanAHRof 7% is significant in the
context of the proposed 10% AHR cut off value for CRT. The uncertainty in
the mean value can be reduced through repeated pacing protocol
measurements [28] and tightly paired baseline recordings that track the
transient movements in patient baseline characteristics [21]. However,
VVoptimisation cases selected by level of service (LOS) optimisation (red error bars) or by

Image of &INS id=
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these approaches do not account for the inherent beat-to-beat variability
that is lost inmeanAHRvalues. High levels of variabilitymay indicate par-
tial capture, intermittent block ormay be present due to the physiology of
a specific pacing site or activation pattern. Accounting for this variability
may be important in improving the predictability of chronic CRT out-
comes from acute measurements.

We proposed and evaluated a LOS approach to optimise for the
mean and variation of AHR, where a protocol is chosen based on the
lower bound of the AHR 5th percentile CI. Optimising to maximise
the 5th AHR percentile can be recast as a weighted summulti objective
optimisation problem [29]. For a normal distribution, the 5th percentile
is equal to the mean less 1.64 standard deviations. Hence maximising
the 5th percentile is approximated by a weighted sum multiple objec-
tive optimisation, with the standard deviation having a weighting of
−1.64 times that of the mean value. Here we have used the bootstrap
estimate of the LOS index to identify the optimal protocol, which has
the benefit of being intuitive, non-parametric and is easy to calculate.

Across LV, AV, VV and ENDO optimisation protocols the mean range
of the AHR 95% CI was consistently ~7%. Conversely the ability to
identify a unique optimal site was lowest for VV and AV optimisation.
This may contribute to the lack of clear clinical improvement observed
with either AV or VVoptimisation [30]. The lowuniqueness is potentially
explained by the relatively small 10–20 ms differences between proto-
cols. Uniqueness may be improved if a smaller number of protocols
with larger differences in delays were evaluated multiple times or for
longer periods.

5. Conclusion

Variation in the AHR measurement can be substantial during acute
CRT pacing studies. Accounting for AHR variation in evaluating optimal
protocols may improve the link between AHR and long term CRT
outcomes.
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