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Touching the heart of HIV-1 drug resistance: the fingers close 
down on the dNTP at the polymerase active site 
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Comparison of the recently solved structure of HIV-1 
reverse transcriptase (RT)-DNA-dNTP ternary complex 
with the previously solved structure of RT-DNA binary 
complex suggests mechanisms by which the HIV-1 RT 
becomes resistant to nucleosicle-analog inhibitors, 
drugs currently used in the treatment of AIDS. 

Addresses: ‘Center for Advanced Biotechnology and Medicine 

(CABM) and Rutgers University Chemistry Department, 679 Hoes 

Lane, Piscataway, NJ 08854-5638, USA. *ABL-Basic Research 
Program, NCI-Frederick Cancer Research and Development Center, 

P.O. Box B, Frederick, MD 21702-I 201, USA. 

Correspondence: Edward Arnold 
E-mail: arnold@cabm.rutgers.edu 

Chemistry & Biology May 1999, 6:R137-R146 
http://biomednet.com/elecref/10745521006R0137 

0 Elsevier Science Ltd ISSN 1074-5521 

The numerous crystal structures of HIV-l reverse tran- 
scriptase (RT) have significantly increased our under- 
standing of DNA polymerization. Linti quite recently all 
of the solved HIV-l RT structures fell into one of three 
categories: unliganded [l-3]; in complex with a double- 
stranded DNA template-primer (dsDNA) and the Fab 
fragment of a monoclonal antibody (referred to as the 
RT-DNA binary complex) [4]; or in complex with non- 
nucleoside inhibitors (see [5] for review). HIV-l RT is a 
dimer of two related subunits, a 66 kDa subunit (~66) and 
a 51 kDa subunit (~51) derived from the p66 subunit by 
proteolytic cleavage. The general shape of the polymerase 
domains of HIV-l RT and other polymerases can be 
likened to a right hand with subdomains referred to as 
fingers, palm and thumb. In addition to the polymerase 
domain, the p66 subunit of HIV-l RT contains an 
RNase H domain responsible for the hydrolytic cleavage 
of the RNA template in RNA-DNA duplexes. In the 
RT-DNA binary complex the primer terminus lies near 
three catalytically essential aspartic acid residues in the 
palm subdomain of ~66; the DNA duplex extends along 
the enzyme surface toward the RNase H active site. The 
unliganded and DNA-bound structures represent snap- 
shots of two of the early steps in polymerization. Although 
other polymerases have limited (or in the case of DNA 
polymerase p no known) homology to the HIV-l RT, both 
the mechanism of polymerization and the structural 
changes involved are remarkably similar. A key structure 
of a ternary complex containing both nucleic acid and 
incoming dNTP has been described for polymerase p [6,7] 

and for type I DNA polymerases [8,9] but had not been 
solved for HIV-l RT. Now the structure of the HIV-l 
RT-DNA-dNTP complex has been solved and has pro- 
vided valuable insight. 

In a technological tour de force, the Harrison and Verdine 
laboratories [lOI used a combination of clever chemical 
and biological engineering and careful crystallography to 
obtain a structure for an HIV-l RT-DNA-dNTP ternary 
complex. Working with information from crystallographic 
studies of the RT in complex with DNA [4] and molecu- 
lar-modeling studies [ll] based on this binary structure, 
they chose residues in HIV-l RT (Gln258, Gly262 and 
Trp266) that were close to the nucleic acid. Mutant RTs 
(Gln258+Cys, Gly262+Cys, Trp266+Cys) and modified 
dsDNA, which had a thiol group attached to the NZ posi- 
tion of a guanine base in the minor groove, were prepared 
(Figure 1). Huang et a/. [ 101 hypothesized that, when close 
enough, the cysteine residue would become cross-linked 
to the modified nucleic acid. Single rounds of nucleotide 
addition were used to align the cysteine residues and the 
modified guanine (Figure 1). Based on this biochemical 
screening approach, the Gln258+Cys RT mutant was 
chosen for structural analysis. For crystallization, the mod- 
ified RT was covalently cross-linked to a dsDNA that con- 
tained a modified guanine base in the template strand six 
base pairs from the polymerase active site. In addition to 
the Gln258+Cys mutation, other mutations were intro- 
duced into RT to facilitate purification and prevent oxida- 
tion without compromising the activity of the enzyme 
(Table 1). 

Overall structure of the HIV-1 RT-DNA-dNTP ternary complex 
Superposition of the structures of unliganded RT and the 
RT-DNA binary complex [2,3] showed that binding of the 
DNA involves a major conformational rotation of the thumb 
subdomain of ~66. Comparison of the structures of the 
binary (RT-DNA) [12] and the ternary (RT-DNA-dNTP) 
[lo] complexes suggests that the overall conformation of 
the DNA (excluding the single-stranded S’-template over- 
hang) is maintained after a dNTP enters the polymerase 
active site. The DNA is predominantly in the B form. The 
base pairs close to the polymerase active site have an A-like 
structure with a widened minor groove, which is also the 
case for DNA bound to other DNA polymerases 
[4,7-9,13-161. In the binary complex the direction of the 
helical axis of the nucleic-acid substrate suggested that a 
longer template might pass through the crevice between 
the thumb and fingers [4,17]. In the ternary complexes of 
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Figure 1 

\ 
N- 

C \ 

Chemfstry & Biology 

Chemistry of the cross-linking between the 
sidechain of engineered Cys256 of HIV-1 RT 

and a thiol group in the minor groove of DNA, 

which is attached by a trimethylene linker to 
the N2 position of a guanine base in the 

template strand. 

i 

HIV-l RT and other polymerases the 5’ overhang of the 
template is bent away from the helical axis of the DNA 
duplex and extends over the outside surface of the fingers 
subdomain [6,8-10,161 (Figure 2). 

Structure of the dNTP-binding site 

Comparison of the structures of the ternary (RT-DNA- 
dNTP) and binary (RT-DNA) complexes reveals that 
binding of a dNTP induces substantial conformational 
changes in the HIV-l RT [lo]. Parts of the fingers sub- 
domain rotate inwards towards the template-primer, 
bringing the tips of the fingers towards the palm sub 
domain and the polymerase active site (Figure 2). As a 
result of this movement, Lys65 and Arg72, conserved 
residues in the fingers subdomain, make contact with the 
incoming dNTP. Specifically, the E-amino group of Lys6.5 
and the guanidinium of Arg72 make salt bridges with the 
-r- and a-phosphates, respectively. Although this is the 
first report of the structural changes that take place when 
a dNTP binds to HIV-l RT, similar structural changes in 
the fingers have been reported for other polymerases. In 
human DNA polymerase p, an enzyme with structural 
similarity but no evolutionary relationship to the HIV-l 

Table 1 

Engineered mutations in HIV-l RT. 

Mutation/change Function/role Location 

Gln258+Cys Introduces cross-linking site p66 thumb 

Cys28O+Ser Prevents oxidative complications p66 and p5 1 
thumbs 

Glu478-tGln Eliminates RNase H activity p66 RNase H 

C terminus Hiss tag facilitates purification p51 C terminus 

RT, binding of a dNTP leads to a closing down of the 
subdomain equivalent to the fingers subdomain in RT 
[6]. In bacterial type I polymerases, enzymes distantly 
related to RT, the functional equivalent of a portion of 
the RT fingers subdomain has been shown to shift signifi- 
cantly towards the template-primer and the polymerase 
active site after binding of template-primer and dNTP 

Figure 2 

Open and closed conformations of dNTP-binding site of HIV-1 RT. The 

fingers in the binary complex (red) move towards the bound dNTP in 
the ternary complex (green). Lys65 and Arg72 interact with the y and 

cc-phosphates of the dNTP, respectively. Glnl51 is at the center of a 
hydrogen-bond network that involves the 3’-OH of dTTP, the 

mainchain carbonyl oxygen of Lys73 and the guanidinium of Arg72. 

Dashed lines indicate possible hydrogen bonds. 
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Figure 3 

Metal chelation in polymerase active sites of 
four ternary enzyme (E)-DNA-dNTP 

complexes. The ternary complexes were 

superimposed on their corresponding binary 
(E-DNA) complexes (a binary complex 

structure is not available for the T7 DNA 

polymerase). In ternary complexes (E-DNA- 

dNTP) protein residues are cyan, metal ions 
are magenta and nucleotides are yellow. The 

only ‘open’ ternary complex, Klentaq-DNA- 
dCTP, is silver. Binary complex structures 

are gray. The octahedral coordination 

geometry of the nucleotide-binding metal ion 
B is highly conserved in all four polymerases. 

Axial positions are occupied by an 

cc-phosphate oxygen and a mainchain 
carbonyl oxygen (in DNA polymerase p a 

water molecule coordinates the metal ion 

instead of a carbonyl oxygen). Equatorial 
positions are filled by two oxygens from 

p- and y-phosphates and two &oxygens from 

two catalytic carboxylates. Catalytic rnetal 

ion A is ligated to the a-phosphate of dNTP, 
the 3’.OH of primer terminus and two 

oxygens from the carboxylates that chelate 
metal B. Although the first of the two 

chelating carboxylates maintains a similar 

orientation after binding of a dNTP, a 

sidechain rotation introduces the second 
chelating carboxylate (Asp1 10 in RT, 

Asp61 0 in Klentaq, Asp1 90 in polymerase p 
and possibly Asp475 in T7 polymerase) into 

coordinating position with metal ions A and 

B. A third carboxylate coordinates metal ion 
A only in polymerase p. Repositioning of the 

HIV-1 reverse transcriptase T7 DNA polymerase 

Klentaq DNA polymerase I DNA polymerase p 

Chemistry & Blclogy 

3’-primer terminus is observed consistently 
after binding of dNTP. A 3’-OH was 

modeled on the primer 2’,3’ deoxyribose of 

the ternary complexes. 

[8]. The Lys65-Arg72 pair of residues in RT is struc- 
turally analogous to the Arg.518-Lys.522 pair in T7 DNA 
polymerase [B], the Arg754-Arg758 pair in the Klenow 
fragment [18] and the Arg659-Lys663 pair in Klentaq [9], 
respectively. The structural analogy between these pairs 
is consistent, at least in the cases of HIV-l RT and the 
Klenow fragment; biochemical experiments have sug- 
gested that Arg72 [19] and Lys65 of HIV-l RT [ZO] and 
Arg754 and Arg758 of the Klenow fragment [Zl] are 
involved in pyrophosphate binding. 

Binding of dNTP and metals consistently induces 
sidechain repositioning at polymerase active sites. In the 
structures of the binary (enzyme-DNA) or ternary 
(enzyme-DNA-dNTP) complexes that are available, 
similar changes are seen: there is a repositioning of the 
primer 3’ terminus with respect to the rest of the poly- 
merase active site; and there is considerable rearrange- 
ment of the carboxylate sidechains that brings one 
carboxylate (Asp110 in HIV-l RT, Asp610 in Klentaq or 
Asp192 in polymerase fl) close enough to the metal ion 
brought in by the incoming dNTP to permit chelation 
(metal ion B; Figure 3). 

Reminiscent of the metal coordination reported in previ- 
ous high-resolution structures of ternary complexes of 
polymerases with DNA and ddNTPs [6,8], the two diva- 
lent metal ions in the RT-DNA-dNTP ternary complex 
coordinate the oxygens of all three phosphates of the 
dNTP, the sidechains of strictly conserved Asp185 and 
AspllO, as well as the backbone carbonyl oxygen of 
Vall 11. The metal ions are also close to the expected posi- 
tion of the primer 3’-OH, which is absent from the 
dideoxy-terminated DNA in the RT ternary structure. 
The two R@+, one catalytic (A) and the other nucleotide- 
binding (B) [6], are believed to facilitate an SN, nucle- 
ophilic attack by the 3’-OH of the primer terminus on the 
a-phosphorus of the incoming dNTP and to stabilize the 
negative charge in the transition state [6&Z]. In the 
ternary complexes the triphosphate is coordinated to the 
nucleotide-binding metal ion (B) as an a-, p-, y-tridentate 
Mg*+-dNTP complex [6,8]. The conformation of the 
triphosphate moiety is similar to that found in crystal 
structures of free Na+-ATP and MgZ+-dNTP in solution 
[6,23,24]. The similarity of Mg’f-dNTP in solution and at 
the active site of polymerases may provide a significant 
entropic advantage for a reaction that has a fast turnover 
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Table 2 

Residues in the dNTP-binding pocket of HIV-l RT and functional homologs in Klenow fragment, T7 DNA polymerase and Klentaq. 

Residue in RT 
(KlenowlT7 DNA pol/Klentaq) Possible function Comment 

Interactions with dNTP phosphates 

Arg72 (Arg758ILys522ILysI663) dNTP binding, 

PPi removal 

Arg72AAla RT and Arg758+Ala Klenow 

are deficient in pyrophosphorolysis; Arg72 

guanidinium also stacks with base of dNTP 

Lys65 (Arg754/Arg518/Arg659) 

Interactions at 3’ pocket with sugar ring and base 
Glnl51 (Phe762/Tyr526/Phe667) 

Tyrl15 (Glu71 O/Glu480/Glu615) 

dNTP binding, 
PPi removal 

Recognition of 3’-OH of 

dNTP and sugar ring 

Arg754+Ala Klenow is deficient 

in pyrophosphorolysis [21 I 

Mutants of RT and Thermus aquaticus polymerase 

have altered sensitivities to ddNTPs 

Active-site carboxylates 
Asp1 10 (Asp705/Asp475/Asp610), 

Asp1 85 (Asp882/Asp654/Asp785), 

Asp1 86 (Glu883/Glu655/Glu786) 

Metal-ion chelation, catalysis of 

bond formation 

Asp1 86 and its homologs do not chelate metals 

in structures of ternary complexes 

Interactions with primer terminus 

Met184 (HisEEl/His653/His784) Positioning of 3’-primer terminus, 
binding of dNTP 

Crystal structure of Met1 84-+lle mutant shows 

shifted primer terminus [471 

rate. Although it has been proposed that the three con- 
served acidic residues are involved in metal-ion binding 
during polymerization by RT and other polymerases 
[25,26], only two carboxylate residues appear to be coordi- 
nated to metals in HIV-l RT, T7 polymerase and Klentaq 
[g-10]. Nevertheless, mutation of any of the three car- 
boxylates results in severe impairment in polymerization 
[25,27-291, underscoring the importance of all three 
groups in the reaction. A possible role for the third car- 
boxylate (Asp186 in HIV-l RT, Glu883 in the Klenow 
fragment and Glu65.5 in T7 DNA polymerase) might be to 
help position the primer terminus by interacting with an 
oxygen atom of the 3’-terminal phosphate [12]. In the T7 
DNA polymerase, a third carboxylate (Glu655) has a 
similar indirect interaction with the 3’-terminal phosphate 
of the primer strand, mediated by a conserved and indis- 
pensable residue (His704) [8]. Other similarities in the 
dNTP-binding pocket of polymerases are based on steric 
and electrostatic constraints that are summarized in 
Table 2 and shown in Figure 4 for HIV-l RT. 

The rearrangement that takes place upon dNTP binding 
to HIV-l RT creates what Huang et ad. [lo] have called 
the ‘3’ pocket’. This pocket accommodates the 3’-OH of 
the incoming dNTP and is lined with the sidechains of 
the conserved residues Ala114, Tyrll.5 and Gln151, as 
well as by the peptide backbone between Asp113 and 
TyrllS. Because the nucleoside analogs used as reverse- 
transcriptase inhibitors (NRTIs) all lack a 3’-OH, residues 
of the 3’ pocket play important roles in the HIV-l RT 
becoming resistant to NRTIs, as will be discussed below. 
A similar interaction between the 3’-OH of the incoming 
dNTP and Tyr526 is seen in the ternary structure of T7 

DNA polymerase [8] (Table 2); mutation of this residue 
alters the sensitivity of T7 DNA polymerase to ddNTPs 
[30], consistent with a role for Tyr526 in recognizing the 
3’-OH of the incoming dNTP. 

Although there is no reason to suspect that adenylyl cyclase 
is evolutionarily related to polymerascs, the coordination 
geometry proposed for the binding of ATP to adenylyl 
cyclase is quite similar to the binding of dN’I’P by HIV-l 
RT [31,32]. Both HIV’-1 RT and adenylyl cyclase catalyze a 
phosphoryl-transfer reaction. IJnlike DNA polymerases, 
which catalyze a bimolecular reaction, in the reaction cat- 
alyzed by adenylyl cyclase the 3’-OH of the ATP substrate 
is the nucleophile that attacks the a-phosphate of the same 
ATP molecule, converting it to cyclic 3’5’-AhIP and releas- 
ing PPi. In adenylyl cyclase, as in HIV-l RT, two divalent 
metal ions are proposed to bind two carboxylates and a 
backbone carbonyl of the adenylyl cyclasc V C,, domain, 
as well as the three phosphates of ATP. The interactions of 
Arg72-Lys65 with the phosphates of dNTP in HIV-l RT 
are similar to the interactions of Arg1029 of the a4 helix 
and Lys1065 of the p7-p8 loop of an adjacent adenylyl 
cyclase II C2 subunit. IJpon ATP binding, the p7-p8 loop 
of adenylate cyclase undergoes a conformational change 
similar to the closing of the fingers subdomain of HIV-1 
after binding a dNTP. The interactions within the active 
sites of divergent polymerases and adenylyl cyclasc is con- 
sistent with a universal strategy for metal-assisted phospho- 
ryl transfer by evolutionary unrelated enzymes. 

Resistance to nucleoside reverse transcriptase inhibitors 

Although the emergence of NRTI-resistant viruses has 
been a major problem in the treatment of AIDS, NRTIs 
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Figure 4 

A view of the dNTP-binding pocket in the 
ternary RT-DNA-dNTP complex. The color 

code for Van der Waals volumes shown is as 

follows: residues at the 3’- pocket, green; 

residues involved in resistance to AZT, blue; 
residues interacting with template and primer, 

cyan. Potential interactions are shown as 

yellow dotted lines. For the sake of clarity 
some active-site residues have been omitted. 

remain key components in current combination-drug ther- 
apies. Understanding the molecular aspects of NRTI resis- 
tance has been complicated by intricate patterns of 
mutations and resistance data that do not always correlate 
with the available biochemical and structural information. 
For example, most of the nucleoside-resistance mutations 
were not in the dNTP-binding site of the binary RT-DNA 
complex [4]. Molecular modeling based on the structure of 
the binary complex [17] suggested that most NRTI muta- 
tions were likely to alter the interactions of RT with the 
template-primer. We now know from the structure of RT- 
DNA-dNTP that the extended template overhang bends 
away from the DNA duplex [lo] and most NRTI-resis- 
tance mutations are closer to the bound dNTP than previ- 
ously predicted. Although repositioning of template- 
primer remains a mechanism for inducing resistance to 
NRTIs (Table 3), the new structure [lo] suggests that 
NRTI resistance mutations can also affect inhibitor 
binding by directly changing interactions with inhibitor or 
by indirectly altering residues proximal to the dNTP- 
binding pocket. Some of the mutations listed in Table 3 
are discussed below in view of these mechanisms. 

In the crystal structure of the ternary complex, Gln151 
interacts directly with the 3’-OH and the p phosphate of 
dNTP, as well as with residues that either directly interact 
with dNTP (e.g. Arg72, which hydrogen bonds with 
dNTP) or affect the position of important structural ele- 
ments (e.g. the mainchain carbonyl oxygen of residue 73 
hydrogen bonds with Gln151, bridging the palm and 
fingers subdomains) [lo]. The Glnl51+Met mutation 

might therefore engender multidrug resistance to AZT, 
d4T and ddC/ddI (NRTI drugs) [33,34] by inducing both 
direct and indirect changes at the dNTP-binding pocket. 
The GlnlSl--+Met mutation is generally accompanied by 
mutations at four neighboring residues (Ala-+62Val, 
Va175+Ile, Phe77+Leu and Phell6-+Tyr; Table 3). 
These secondary mutations appear to ‘fine tune’ and rein- 
force the effects of the primary mutation both by increas- 
ing resistance and by improving polymerase activity, 
which is impaired by mutation at Gln151 [33,35]. 

In the structure of RT-DNA-dNTP, Leu74 is not in a posi- 
tion to directly affect dNTP binding. However, it does 
interact with the template nucleotide that is base paired to 
the incoming dNTP and is also proximal to Gln151, which 
is a key residue in the dNTP-binding pocket. The 
Leu74+Val mutation might therefore reduce sensitivity to 
dd1 and ddC [36] by altering template position [10,17] 
and/or by affecting the orientation of the Arg72 and Gln1.51 
sidechains [lo]. The LyshS+Arg mutation is also associated 
with resistance to ddC, dd1 [37,38] and PMEA [39]. The 
Lys65+Arg mutation probably-affects the interaction of the 
RT with the triphosphate moiety of dNTPs, and might also 
alter the nucleotide-binding specificity of the enzyme. 

A recently reported mutation that confers resistance to 
several nucleoside analogs is an insertion of two or more 
residues (usually serines) after position 69 in HIV-l RT 
([40] and references in [41]). This insertion is likely to 
indirectly affect the dNTP-binding pocket, and might 
affect the interactions of neighboring residues Lys65, 
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Table 3 

HIV-l RT residues involved in resistance to NRTls. 

Residue change Resistance phenotype Mechanism Comments 

Met41 +Leu AZT 

Lys65+Arg 

Asp67+Asn 

PMEA, ddC, 

ddl, 3TC 

AZT 

69-Ser-Ser-X 

Lys70+Arg 

AZT+d4T+ddl/ddC 

(MDR) 

AZT 

Leu74+Val Ddl, ddC, DXG 

Val75-+Thr DdC, d4T, d4C 

Glu89+Gly 

Glnl51 -Met 

ddG 

AZT+d4T+ddl/ddC 

(MDR) 

Met1 84+lle/ 
Met1 84+Val/ 

Met1 84+Thr 

3TC, (-)FTC, L-FddC 

LeuPl O-tTrp 

Thr215+Tyr/ 

Thr215+Phe 

AZT 

AZT 

Lys219-+Gln/ 

Lys219+Glu 

AZT 

Causes indirect rearrangement of dNTP- 
binding pocket through residue 116 

Packing rearrangement of dNTP through 

interactions with y-phosphate of dNTP and Arg72 

Changes interaction with residue 219 

and formation of dNTP-binding pocket 

Possible conformational effect on fingers loop, 

transmitted to dNTP by contacts from other residues 

Arg70 might make a new hydrogen bond with 

y-phosphate of dNTP or Asp1 13 

Template repositioning; packing rearrangements 

of dNTP through interactions with Arg72 and Glnl51 

Might modify hydrophobic core of fingers and inter- 
actions of residue 151 with dNTP. Template repositioning 

Template repositioning 

Key residue. Resistance might be caused by disruption 
of hydrogen-bond network involving Glnl51, mainchain 

residue 73, 3’-OH of dNTP, y-phosphate and Arg72 

Steric interactions between sidechain of 

b-branched residue at position1 84 and ring of 

p-L-enantiomer of NRTI. 
Template-primer repositioning 

Stabilize hydrophobic substitution at position 215 

Hydrophobic substitution may reposition Asp1 13 
and affect structure of 3’ pocket that accommodates 

azido group of AZT. Needs further hydrophobic 

stabilization provided by Met41 +Leu and Leu21 O+Trp 

Affect interactions of residue 219 with residue 67 across 

the cleft, as well as formation of the 3’ pocket 

Found with Thr215+Tyr/Phe, 

which might ‘tune’ its effect 

Suppresses resistance to AZT 

Might ‘tune’ effects of Thr21 S+Tyr/Phe 

Insertion can also be after Ser68 [68] 

p3-p4 poorly ordered in Huang et al. [lo] 

Suppresses resistance to AZT 

mc75 interacts with template 
through hydrogen bond 

Cross-resistant to foscarnet 

Associated with mutations at positions 

62, 75, 77 and 116; causes 

MDR alone. Two-base mutation. 

Met1 84+lie/Val restores AZT sensitivity 

to Thr215+Tyr/Phe AZT mutants 

No effect alone 

Hydrophobic substitution required. 
Enhances initial AZT resistance due 

to Lys70+Arg. Two-base mutation 

Associated with mutations at 
positions 67, 70 and 215 

mc, main chain; MDR, multidrug resistance (mutants resistant to AZT, ddl and ddC) 

Asp67 and Lys 70, which have been implicated in RT 
resistance to NRTIs [42,43]. 

The Metl84+Ile, Met184+Val or Metl84+Thr [44-46] 
mutations might cause NRTI resistance through multiple 
structural changes. The structure of Metl84-+Ile HIV-l 
RT in complex with DNA shows a repositioning of the 
template-primer along with smaller changes at the 
dNTP-binding site [47]. Modeling the p-L-enantiomer of 
3TC (another NRTI) at the active sites of the 
Met184+Ile [47] and wild-type [lo] enzymes suggests 
that resistance to 3TC might be due primarily to steric 
hindrance between the P-branched sidechains of Met184 
mutant residues (isoleucine, threonine or valine) and the 
j3-I,-nucleoside ring of 3TC. The steric interaction in the 
Metl84+Ile-DNA-3TC-triphosphate complex would be 
exacerbated by the positioning of the template-primer in 
the Metl84-+Ile-RT-DNA complex [47], consistent with 
the unusually high resistance reported for mutations at 

position 184 (>lOO times the resistance due to any other 
single NRTI mutation [45,48,49]). 

In AZT-resistant mutants, two base changes are required 
to convert position 215 to a hydrophobic residue (tyrosine 
or phenylalanine). This change could indirectly affect the 
conformation of the portion of the 3’ pocket that accommo- 
dates the azido group of AZT (Table 3, Figure 3). Muta- 
tion at a neighboring amino acid (e.g. position 210) could 
stabilize the ThrZlS-+Tyr or ThdlS-+Phe mutants [SO] 
and the Met41-+Leu mutation might rearrange part of the 
wall of the 3’ pocket (Phel16), further altering the interac- 
tions between the azido group and the 3’ pocket (Table 3). 
Other residues associated with AZT resistance could either 
directly alter the interaction of RT with the dNTP triphos- 
phate moiety (Lys70+Arg [lo]) or indirectly affect the for- 
mation of the 3’ pocket through changes in interactions of 
fingers and palm [lo]. Analysis of AZT resistance has been 
hampered by the difficulties of measuring a strong effect of 
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Figure 5 

Structural interpretation of the mechanism of 
DNA polymerization by HIV-1 RT. (a), (b) and 

(c) represent the structure of RT in the 

unliganded [2,3], binary complex [4], and 

ternary complex [lOI, respectively. Cornparing 
(a) with (b) shows a large movement of the 

p66 thumb subdomain associated with DNA 
binding. Comparing (b) with (c) shows 

conformational changes in the fingers 

subdomain associated with dNTP binding. 
Commonly observed NRTI-resistance- 

mutation sites are shown as gold spheres. 

. “.... 

a+ b 

(c) RT*-DNA,-dNTP 

(b) 

PPi 

f 
~2E’-DNAn-dNTPs~3E*-DNAn-CiNTPs~ E’-DNA”+1 

‘i t, 
Cc) (b) 

Chemistry & Biology 

the resistance mutations on inhibition of HIV-l RT by 
AZT triphosphate ifz vitro, however [Sl-541. It has been 
suggested that resistance to AZT might result from 
hydrolytic removal of the AZT monophosphate of an AZT- 
monophosphate-terminated template-primer. This reac- 
tion occurs in the presence of rnillimolar concentrations of 
PP, or dNTP and is more pronounced in RTs containing 
AZT-resistance mutations [55-571. 

Finally, based on the RT-DN.4-dNTP structure [lo] we 
can now propose a model to explain why wild-type HIV-l 
RT becomes sensitive to ddNTP inhibitors only when the 
template overhang is at least three nucleotides long [17]. 
It seems likely that there are hydrophobic interactions of 

the n+l, n+2 and n+3 template bases with conserved 
hydrophobic residues at positions 74, 61 and 24, respec- 
tively. These interactions could help to stabilize the 
p3-p4 strands in a conformation (Figure 4) that might 
permit favorable interactions of the incoming nucleotide 
with residues from/near p3-/34 (for example residues 65, 
74, 75, 69/151) that have been implicated in resistance to 
ddNTP inhibitors. It is possible that in ddNTP binding 
these interactions can partly compensate for the loss of 
affinity that normally involves the 3’-OH of dNTPs. 

Structures of intermediate steps in DNA polymerization 

A general mechanism for nucleotide incorporation by the 
HIV-l RT has been established and the rates for each of 
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the steps in the process have been determined (Figure 5) 
[S&63]. Polymerization begins with the binding of a tem- 
plate-primer to the unhganded enzyme (E) to form the 
E’-DNA, complex (step 1). Nucleotide incorporation into 
the E’-DNA, complex is initiated with binding of a dNTP 
to E’-DNA, to form the E’-DNA,-dNTP complex 
(step 2). The third step, which is the rate-limiting step in 
the reaction cycle, involves the conversion of E’-DNA,- 
dNTP to an activated complex (E”-DNA,-dNTP) 
[61,64,65]. The cycle is completed by an SN, nucleophilic 
attack by the 3’-OH primer terminus on the a-phosphate of 
dNTP that results in phosphodiester-bond formation and 
removal of the pyrophosphate product (step 4). After incor- 
poration of the nucleotide, the polymerase can either disso- 
ciate from the template-primer and restart the cycle at 
another 3’-OH primer terminus (distributive mode of poly- 
merization) or translocate along the elongated DNA 
product (‘DNA,+,‘) towards the new 3’-primer terminus 
(processive mode of polymerization). During the distribu- 
tive mode of polymerization the cycle will restart from 
step 1; in the processive mode of polymerization the E’- 

DNA,+ 1 complex will continue the reaction from step 2. 
The unliganded RT with the thumb subdomain in the 
‘closed’ position probably corresponds to the E form [2,3]. 
The structure of RT-DNA [12] is likely to represent an 
‘open state’ of the enzyme that would occur after initial 
DNA binding (E’-DNA,). A ‘missing’ structure in terms of 
an HIV-l RT reaction scheme is the one that corresponds 
to the initial binding of dNTP, prior to the conformational 
change (E’-DNA-dNTP). At the time this review was 
being written, Li etal. [9] had just published the structure 
of ternary complex of Klentaq (E’-DNA-dNTP) with the 
fingers in the ‘open’ form. The structure of Huang etal. [lo] 
is likely to represent the activated E*-DNA-dNTP 
‘closed’ complex at the stage just after the rate-limiting 
step, in which the 3’-OH is poised to attack the a-phospho- 
rus in an SN, nucleophilic reaction (with pyrophosphate as 
the leaving group). Finally, after addition of the dNTP is 
complete, and the complex has translocated to the next 
position, the fingers are likely to return to the ‘open’ confor- 
mation to allow binding of the next dNTP, thereby assum- 
ing a conformation (E’-DNA,+,) likely to be the same as in 
the RT-DNA binary complex (E’-DNA,) [lz] (Figure 5). 

Solution of the ternary structures of DNA polymerases has 
offered new insight into the fidelity of polymerization. 
Fidelity can be viewed as the ability to discriminate 
against incoming mismatched nucleotides, and to abort 
polymerization on template-primers already containing a 
mismatch. Discrimination against mismatched nucleotides 
can be accomplished at three levels: initial dNTP binding 
in the ‘open’ form, ensuing conformational changes to 
transform to the ‘closed’ form and catalytic incorporation. 
The structure of the ternary complex shows a ‘tightly 
packed’ dNTP-binding site that can carefully test the 
base-pair size and shape in the closed ternary state. 

Therefore, the rate-limiting conformational change can 
only be achieved for correct incoming nucleotides [66] 
that comply with the strict steric requirements [67]. Tem- 
plate-primers already containing a mismatch are likely to 
have a high dissociation constant due to unfavorable steric 
interactions of RT residues with mismatched base pairs 
that have incorrect geometry in the minor groove [lo-121. 

Conclusions and future perspectives 
In conclusion, the structure of the HIV-l RT-DNA- 
dNTP complex from the Harrison and Verdine laborato- 
ries [lo] has provided valuable insights into how changes 
in the intricate interactions between the RT, dNTPs and 
the template-primer can affect resistance of HIV-l RT to 
NRTIs. Furthermore, details of the specific interactions 
and structural changes at the dNTP-binding pocket 
should be valuable for designing new NRTIs. Compar- 
isons with structures of unliganded and binary complexes 
of RT and with equivalent structures of other polymerases 
highlight the structural changes that occur during the 
course of DNA polymerization for all the polymerases 
whose structures are known. 

Although this work has greatly extended our understand- 
ing of HIV-l RT, further structural studies of inhibitor- 
bound wild-type and drug-resistant mutant HIV-l RT 
structures promise to shed additional light on mysteries of 
fundamental scientific and medical importance. 
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