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Metacirculants were introduced by Alspach and Parsons in 1982
and have been a rich source of various topics since then, including
the Hamiltonian path problem in metacirculants. A metacirculant
has a vertex-transitive metacyclic subgroup of automorphisms, and
a long-standing interesting question in the area is if the converse
statement is true, namely, whether a graph with a vertex-transitive
metacyclic automorphism group is a metacirculant. We shall an-
swer this question in the negative, and then present a classification
of cubic metacirculants.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A circulant is a graph that has a cyclic vertex-transitive automorphism group. Alspach and Parsons
introduced metacirculants in [2], refer to [14] for the following stated version of definition.

Definition 1.1. A graph Γ = (V , E) is called an (m,n)-metacirculant, where m,n are positive integers,
if Γ is of order |V | = mn and has two automorphisms ρ,σ such that

(a) 〈ρ〉 is semiregular and has m orbits on V ,
(b) σ cyclically permutes the m orbits of 〈ρ〉 and normalizes 〈ρ〉, and
(c) σm fixes at least one vertex of Γ .
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There are lots of interesting graphs which are (m,n)-metacirculants. Circulants are of course
metacirculants; the Petersen graph, and vertex-transitive generalized Petersen graphs are (2,n)-
metacirculants; dihedrants (graphs which have a dihedral vertex-regular group of automorphisms)
are (2,n)-metacirculants. For any m,n � 2, the grids Cn�Cm are (m,n)-metacirculants.

In the literature, the class of metacirculants provides a rich source of various research projects,
see for instance [3,15,16,19,20]. It has been therefore studied extensively in the past 30 years. Spe-
cial classes of metacirculants have been well investigated, see [1,8,10] for edge-transitive circulants;
[6,14] for 2-arc-transitive dihedrants; [11,21] for half-arc-transitive metacirculants of prime-power or-
der; [15,23] for half-arc-transitive metacirculants of valency 4.

We observe that, using the notation defined in Definition 1.1, the subgroup 〈ρ,σ 〉 is metacyclic and
transitive on the vertex set V . A long-standing interesting question is whether a graph is a metacir-
culant if it has a vertex-transitive metacyclic subgroup of automorphisms. For example, Marušič and
Šparl in [15] called a graph a weak metacirculant if it has a vertex-transitive metacyclic automorphism
group, and asked “if the class of weak metacirculants is indeed larger than that of metacirculants”.
We shall prove that the class of weak metacirculants is indeed larger than the class of metacirculants.

The ‘general’ metacirculants called ‘weak metacirculant’ are defined as follows.

Definition 1.2. A graph Γ = (V , E) is called a weak metacirculant if AutΓ contains a subgroup R which
is metacyclic and transitive on V . To emphasis the transitive metacyclic subgroup R , this graph Γ is
called a weak metacirculant relative to the group R .

The Petersen graph is a metacirculant relative to the Frobenius group Z5:Z4; more generally,
vertex-transitive generalized Petersen graphs are metacirculants relative to Zn:Z4 or Zn:Z2. The point-
hyperplane incidence graph of the projective geometry PG(d − 1,q) is a metacirculant relative to the
group Z(qd−1)/(q−1).Z2; the Holt graph (the smallest half-arc-transitive graph) is a metacirculant rela-
tive to the 3-group Z9:Z3 [21].

A graph Γ = (V , E) is called half-arc-transitive if AutΓ is transitive on both V and E but not
transitive on the set of arcs. Half-arc-transitive graphs have been extensively studied, and many ex-
amples are constructed as weak metacirculants refer to [3,12,15,19,21,23]. The first theorem of this
paper stated below shows that the class of weak metacirculants is strictly larger than the class of
metacirculants. It clarifies the long-standing problem mentioned above.

Theorem 1.3. Each non-split metacyclic p-group with p an odd prime has a half-arc-transitive weak metacir-
culant of valency 4 which is not a metacirculant.

The next theorem gives a classification of cubic weak metacirculants, and it turns out that cubic
weak metacirculants are all metacirculants. See Section 3 for the definitions of the graphs appeared
in the theorem.

Theorem 1.4. Let Γ be a connected cubic weak metacirculant relative to a group R. Then one of the following
holds:

(i) Γ = M2m, a Möbius band of order 2m;
(ii) Γ is a generalized Petersen graph P(n,k), where k2 = ±1 (mod n) or (n,k) = (10,2);

(iii) Γ = C(2n,2k + 1) or Dih(�,m) with �m = 2n, and R = D2n;
(iv) Γ = MeC1(�,m,k) or MeC2(�,m,k), which is a cover of Mm/2 or Cm/2�K2 , respectively.

We remark that P(10,2) ∼= MeC1(5,4,2) is the dodecahedron graph; in the notation of [17], the
graph C(2n,2k + 1) is of type F (n, i), and graph Dih(l,m) is of type H(n, i, j).

We will construct metacirculants and weak metacirculants in Section 2, provide a proof of The-
orem 1.3. In Section 3, we construct various examples of cubic weak metacirculants, and then in
Section 4, we classify cubic weak metacirculants, and prove Theorem 1.4.
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2. Metacirculants and AP-metacirculants

We study here the relation between metacirculants and weak metacirculants, and prove Theo-
rem 1.3.

We first quote some properties of metacyclic groups. Let R be a metacyclic group, that is, R has a
cyclic normal subgroup M such that R/M is also cyclic. Then R is an extension of the cyclic subgroup
M = Zm by the cyclic group R/M = Zn , and we write R ∼= Zm.Zn . Thus, R has a generating set {a,b}
such that

am = bl = 1, bl/n = ar, and ab = as,

where m,n, l, r, s are integers. If the extension Zm.Zn = Zm:Zn is split, then R is called a split meta-
cyclic group.

Finite metacyclic p-groups have been classified [7,22]. For an odd prime p, these groups satisfy
the following lemma.

Lemma 2.1. (See [22].) Let p > 2 be an odd prime, and let R be a metacyclic p-group. Then R has a presenta-
tion:

R = 〈
a,b

∣∣ apr+s+u = 1, bpr+s+t = apr+s
, b−1ab = a1+pr 〉

.

Further, R is split if and only if stu = 0.

In terms of metacyclic groups, we have a criterion for a weak metacirculant to be a metacirculant.

Lemma 2.2. Each metacirculant has a split metacyclic group of automorphisms.

Proof. We observe that, using the notation defined in Definition 1.1, ρ and σ generate a subgroup
R := 〈ρ,σ 〉 � AutΓ , such that 〈ρ〉 is normal. Hence R is metacyclic, and transitive on the vertex
set. Since σm fixes at least one vertex, either σm = 1, or 〈σm〉 is core-free in R . For the later,
〈σm〉 ∩ 〈ρ〉 = 1. So, in either case, R = 〈ρ〉:〈σ 〉 is split. �

For a weak metacirculant graph Γ , this lemma tells us that, if AutΓ does not contain split vertex-
transitive metacyclic subgroups, then Γ is not a metacirculant. Because of this, a weak metacirculant
which has a vertex-transitive split metacyclic group of automorphisms sometimes will be called a
split metacirculant. Otherwise, a weak metacirculant Γ is said to be a non-split metacirculant if AutΓ
does not contain any split metacyclic subgroup which is vertex-transitive.

A large special class of weak metacirculants are Cayley graphs on metacyclic groups.

Definition 2.3. For a group R and a subset S , the Cayley digraph Cay(R, S) is the digraph with vertex
set R and arc set (x, y) with yx−1 ∈ S . If further S = S−1 = {s−1 | s ∈ S}, then Cay(R, S) is undirected,
simply called a Cayley graph. For convenience, an undirected edge {x, y} is called a g-edge if yx−1 =
g ∈ S .

A Cayley graph Cay(R, S) has a subgroup of automorphisms which is isomorphic to R and regu-
lar on the vertex set, that is, the right regular multiplication group R̂ . Thus, if R is metacyclic, then
Cay(R, S) is a weak metacirculant. However, not all weak metacirculants are Cayley graphs. For ex-
ample, the Petersen graph is a metacirculant relative to Z5:Z4, but it is not a Cayley graph. A weak
metacirculant is called a metacirculant Cayley graph if it is a Cayley graph of a metacyclic group. We
do not know whether it is true that a weak metacirculant which is a Cayley graph must be a weak
metacirculant Cayley graph.

Suppose that Γ = Cay(R, S) is G-edge-transitive such that R̂ � G � AutΓ . If R̂ is normal in G , then
Γ is called a normal edge-transitive Cayley graph. We will call a G-edge-transitive weak metacirculant
Γ a normal edge-transitive weak metacirculant if G contains a normal transitive metacyclic subgroup. In
particular, if AutΓ = R̂ and Γ is undirected, then Γ is called a graphical regular representation of R , or
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simply called a GRR. If Γ is directed and AutΓ = R̂ , then Γ is called a directed regular representation
of R , or DRR for short.

In the following we will construct weak metacirculants which are not metacirculants.

Example 2.4. Let P be a generalized quaternion group of order at least 16, that is, for some n � 2,

P = 〈
a,b

∣∣ a2n = b2, b4 = 1, ab = a−1〉.

Let S = {a,b}, and let Γ = Cay(P , S). Then Γ is connected, and AutΓ = P̂ . Since P is metacyclic, Γ is
a weak metacirculant. Now 〈â〉 has index 2 in P̂ , and it thus has exactly two orbits �1 and �2 on
the vertex set. However, AutΓ has only one involution â2n−1

which fixes �1 and �2 but has no fixed
point. Thus, AutΓ has no element g which interchanges �1 and �2 such that g2 fixes a vertex. So
Γ is not a metacirculant. �

In the example, an important property is that the Cayley digraph Γ is a DRR of P . It follows from
Lemma 2.2 that GRRs and DRRs of a non-split metacyclic group are non-split weak metacirculants. In
the early 1980s, the finite groups which have GRR and DRR were determined. By Babai [4], except for
the quaternion group Q8, every non-split metacyclic p-group with p prime has a DRR. Thus, we have
the following conclusion.

Proposition 2.5. Except for Q8 , every generalized quaternion group has at least one non-split directed weak
metacirculant.

Undirected non-split weak metacirculants can be constructed from metacyclic p-groups for odd
prime p.

Lemma 2.6. Let P be a non-split metacyclic p-group with p � 3, and let Γ be a Cayley graph of P . Suppose that
X := AutΓ = P̂ Xv such that the vertex stabilizer Xv is a 2-group. Then Γ is a non-split weak metacirculant.

Proof. We observe that a Sylow p-subgroup of X = AutΓ is isomorphic to P and regular on the
vertex set. Let R be a transitive metacyclic subgroup of X . Then R contains a Sylow p-subgroup, we
assume that R � P . Suppose that R is split. Then R = 〈a〉:〈b〉. Since Γ is of order a power of p, 〈a〉 is a
p-group. Let bp be the p-part of b, that is, 〈bp〉 is a Sylow p-subgroup of 〈b〉. Then R p = 〈a〉:〈bp〉 is a
Sylow p-subgroup of X . This is a contradiction since we assume that P ∼= R p is non-split. So X = AutΓ
does not have a transitive split metacyclic subgroup, and thus Γ is a non-split weak metacirculant. �

By Lemma 2.1, there are a lot of non-split metacyclic p-groups for odd primes p, which provides
resources for the construction of non-split weak metacirculants.

Now we are ready to prove our first theorem.

Proof of Theorem 1.3. Let p be an odd prime, and let

P = 〈
a,b

∣∣ apr+s+u = 1, bpr+s+t = apr+s
, b−1ab = a1+pr 〉

with stu �= 0.

Then P is a non-split metacyclic p-group of order p2r+2s+t+u . It is easily shown that P has an auto-
morphism σ such that

aσ = a−1, bσ = b.

Let

S = {
ab, (ab)−1,a−1b,

(
a−1b

)−1}
,

and let Γ = Cay(P , S). Then S generates P , and Γ is connected. Let X = AutΓ . Then by [11], X =
P̂ :Xv , and Xv is a 2-group. Thus, Lemma 2.6 tells us that Γ is a non-split weak metacirculant. So Γ

is not a metacirculant.
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Moreover, (ab)σ = a−1b, and ((ab)−1)σ = (a−1b)−1. It follows that σ induces an automorphism
of Γ , and maps all (ab)-edges to (a−1b)-edges. Thus, Γ is edge-transitive. Further, by [11], we have
that Xv ∼= Z2. Hence Γ is a half-arc-transitive graph of valency 4. This completes the proof of Theo-
rem 1.3. �
3. Examples of cubic weak metacirculants

Here we study examples of weak metacirculants. It is easily shown that a connected cubic cir-
culant is a Möbius band or a prism, defined below. A Möbius band M2n is a graph with vertex set
{α0,α1, . . . ,α2n−1}, and edge set {{αi,αi+1}, {αi,αi+n} | 0 � i � 2n − 1}, reading the subscripts mod-
ulo 2n. Möbius bands are all vertex-transitive, and among them, M4 ∼= K4 and M6 ∼= K3,3 are the only
edge-transitive graphs. A prism Cn�K2 is a graph with vertex set {α0,α1, . . . ,αn−1}∪{β0, β1, . . . , βn−1}
and edge set {{αi,αi+1}, {αi, βi}, {βi, βi+1} | 0 � i � n − 1}. Prisms are all vertex-transitive, and among
them, the only edge-transitive one is C4�K2 ∼= Q3, which is the cube.

A natural generalization of prisms are generalized Petersen graphs. A generalized Petersen graph
P(n,k) is a graph with vertex set and edge set as follows

{α0,α1, . . . ,αn−1} ∪ {β0, β1, . . . , βn−1},
{{αi,αi+1}, {αi, βi}, {βi, βi+k}

∣∣ 0 � i � n − 1
}

reading the subscripts modulo n, and k � n
2 . Obviously, P(n,1) ∼= Cn�K2 is an n-prism. It is known

that P(n,k) is vertex-transitive if and only if (n,k) = (5,2), or k2 ≡ ±1 (mod n). In particular, P(5,2)

is the Petersen graph.
As mentioned before, a graph Γ = (V , E) is a dihedrant if AutΓ contains a dihedral subgroup

which is regular on the vertex set V . The next construction produces two classes of cubic dihedrants.

Construction 3.1.

(a) Let n be a positive integer and 1 � k � n − 1, and define a graph C(2n,2k + 1) which has vertices
α0,α1, . . . ,α2n−1, edges {αi,αi+1}, and {α2i,α2i+2k+1}, reading the subscripts modulo 2n.

(b) Let m,n be two integers, and define a graph Dih(m,n) with vertex set V and edge set E , where

V = {αi j, βi j | 0 � i � m − 1, 0 � j � n − 1},
E = {{αi j, βi j}, {βi j,αi, j+1}, {βi j,αi+1, j}

∣∣ 0 � i � m − 1, 0 � j � n − 1
}
.

We next define a family of cubic weak metacirculants as Cayley graphs.

Construction 3.2. Let G = 〈a〉:〈b〉 ∼= Zl:Zm be such that ab = ak for some integer k. Assume further
that the order o(b) is even, and one of o(a) and m/2 is odd. Let z ∈ 〈b〉 be an involution, and let i be
coprime to o(b). Define graphs

MeC1(l,m,k) = Cay(G, Si), where Si = {
abi,

(
abi)−1

, z
}
, and

MeC2(l,m,k) = Cay(G, Ti), where Ti = {
ab2i,

(
ab2i)−1

, z
}
, with m/2 odd.

The concepts of quotient and cover is important in the study of transitive graphs, refer to [5,13,18].
Let Γ = (V , E) be a G-vertex-transitive graph, where G � AutΓ . Let N � G be intransitive on V , and
let V N be the set of N-orbits on V . The normal quotient ΓN of Γ induced by N is defined as the graph
with vertex set V N such that B, C ∈ V N are adjacent if some vertices β ∈ B and γ ∈ C are adjacent
in Γ . If the valency of ΓN equals the valency of Γ , then Γ is a cover of ΓN , that is, each edge of ΓN
is the image of a perfect matching of Γ , see [13,18].

Lemma 3.3. The graph MeC1(l,m,k) is a normal cover of Mm/2 , and MeC2(l,m,k) is a normal cover of
Cm/2�K2 .
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Proof. Let G = G/〈a〉, and let Si and T i be the images of Si, Ti in G/〈a〉, respectively. Then G ∼= Zm ,
Cay(G, Si) ∼= Mm/2, and Cay(G, T i) ∼= Cm/2�K2. Thus, MeC1(l,m,k) = Cay(G, Si) is a cover of Mm/2,
and MeC2(l,m,k) = Cay(G, Ti) is a cover of Cm/2�K2. �

More general representations for vertex-transitive graphs are coset graphs. Let G be a finite group,
and let H be a subgroup of G . Let [G : H] = {Hx | x ∈ G}, the set of right cosets of H in G . For a subset
S ⊂ G \ H , define a coset graph Γ = Cos(G, H, H S H) to be the graph with vertex set [G : H] such that
{Hx, H y} is an edge if and only if yx−1 ∈ H S H . The following statements for coset graphs are well
known.

(a) Γ is undirected if and only if H S H = H S−1 H .
(b) G acts transitively on the vertex set [G : H] with kernel being the core of H in G; so G is a

subgroup of AutΓ if and only if H is core-free in G .
(c) Γ is connected if and only if 〈H, S〉 = G .
(d) Γ is G-arc-transitive if and only if H S H = H g H where g ∈ G such that g2 ∈ H .

Construction 3.4. Let G = 〈a〉:〈b〉 = Zn:Z4 such that ab2 = a−1. Let H = 〈b2〉 and S = {a,a−1,b}. Then
the coset graph Γ = Cos(G, H, H S H) is connected and cubic.

Lemma 3.5. The graphs constructed in Construction 3.4 are generalized Petersen graphs.

Proof. For the group G = 〈a〉:〈b〉 as in Construction 3.4, there exists an integer k such that bab−1 = ak

and b−2ab2 = a−1. Then k2 ≡ −1 (mod n). Label αi = Hai and βi = Hbai , where 0 � i � n − 1,
which give rise to all vertices of Γ . Then {αi,αi+1} and {αi, βi} are edges. Moreover, βi = Hbai and
β j = Hba j are adjacent if and only if a( j−i)k = ba j−ib−1 = ba j(bai)−1 equals a or a−1, if and only
if ( j − i)k = ±1 (mod n). This is equivalent to j = i ± k (mod n). Therefore, this coset graph Γ is
isomorphic to the generalized Petersen graph P(n,k). �
4. Proof of Theorem 1.4

In this section, we classify cubic weak metacirculants, by proving Theorem 1.4. Let Γ = (V , E)

be a connected cubic weak metacirculant. Let R � G = AutΓ be a vertex-transitive metacyclic group.
Let R = 〈a,b〉 = 〈a〉.〈b〉. Then the quotient graph Γ〈a〉 is a circulant. If Γ〈a〉 has only two vertices,
then Γ is a bicirculant, see [17]. Based on several previous known results, cubic bicirculants were
classified by Pisanski [17]. (The authors are grateful to a referee for pointing out this.) Employing
Pisanski’s classification, the proofs of the next two lemmas can be slightly shortened. However, for
the completeness, we present here a different, direct, independent proof. Moreover, this argument
can be developed to treat metacirculants of larger valencies.

Since the vertex stabilizer Rα is core-free, it follows that Rα is cyclic. There are two different
cases: Rα = 1, or Rα �= 1, where α ∈ V .

Lemma 4.1. If Rα �= 1, and Γ is not R-arc-transitive, then Rα = Z2 , and Γ is a Möbius band or a generalized
Petersen graph.

Proof. The stabilizer Rα is core-free in R , and hence Rα ∩ 〈a〉 = 1. Since R is metacyclic, Rα = 〈z〉 is
cyclic. As Γ is not R-arc-transitive, Γ (v) = {β1, β2, γ } such that {β1, β2} is an orbit of Rα , and γ is
fixed by Rα . Then z2 fixes every vertex which is adjacent to α. It easily follows that z2 fixes Γ (β1)

and Γ (β2) pointwise. If z2 does not fix Γ (γ ) \ {α} pointwise, then the induced action of 〈z〉 on Γ (γ )

is isomorphic to Z4, which is not possible. Thus, z2 fixes each vertex in Γ (γ ), and so fixes all vertices
which are at distance up to 2 from α. In particular, z2 ∈ Gβi = 〈xi〉 ∼= 〈z〉, where i = 1 or 2. Arguing
as above with xi in the place of z, we conclude that z2 fixes all vertices which are at distance up
to 2 from βi . Since Γ is connected, it easily follows that z2 fixes all vertices of Γ . So z2 = 1, and
Rα = 〈z〉 = Z2. As Rα = 〈z〉 is core-free in R , 〈z〉 ∩ 〈a〉 = 1. So z /∈ 〈a〉.
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Let s, t ∈ R be such that (α,β2)
s = (β1,α) and (α,γ )t = (γ ,α). Then αs−1 = β2, and αsz = βz

1 =
β2 = αs−1

. Hence αszs = α, and so szs = 1 or z. And it’s obvious that o(s) �= 2. Suppose that szs = 1.
Then z = s2, and so s normalizes Rα = 〈z〉. Since t interchanges α and γ , we have that t normalizes
Rαγ = Rα . Thus, Rα � 〈Rα, s, t〉 = R , which is not possible. So szs = z, or equivalently, as z is an
involution, sz = s−1.

Observe that αtz = γ z = γ = αt , and so tzt−1 = 1 or z. Since tzt−1 is of order equal to o(z) = 2, we
have tzt−1 = z, and hence tz = zt . Because Γ is connected, we have that 〈s, t, z〉 = R . Since sz = s−1

and tz = t , the metacyclic group R has a normal subgroup 〈s, t〉. Moreover, we claim that s ∈ 〈a〉. Since
sz = s−1, and R/〈a〉 is cyclic, if s /∈ 〈a〉, then the image s of s under R〈a〉 is of order 2. It follows that
zs ∈ 〈a〉. Further, zszs = 1. Thus zs = an/2, which implies that o(s) = 2. This is a contradiction occurs
and we conclude that s ∈ 〈a〉.

Assume first that z /∈ 〈s, t〉. Then R = 〈s, t〉:〈z〉. Since o(z) = o(t) = o(tz) = 2, and z /∈ 〈a〉, it follows
that t or zt lies in 〈a〉. On the other hand, as we mentioned before, s ∈ 〈a〉. Thus, 〈s, t〉 or 〈s, zt〉 is
a subgroup of 〈a〉, and we conclude that 〈s, t〉 = 〈a〉 or 〈s, zt〉 = 〈a〉, say 〈s, t〉 = 〈a〉. Further, either
〈s, t〉 = 〈s〉, or o(s) is odd and 〈s, t〉 = 〈s〉 × 〈t〉. In either case, 〈st〉 = 〈a〉, (st)z = (st)−1, and R =
〈s, t, z〉 ∼= D2n with n = o(st) = o(a). If 〈s, t〉 = 〈s〉, then Γ = Mn/2, while if 〈s, t〉 = 〈s〉 × 〈t〉, then
Γ = Cn/2�K2 = P(n/2,1).

Assume now that z ∈ 〈s, t〉. Since αt2 = (αt)t = γ t = α, we have that t2 ∈ Rα . Thus, t2 = 1 or z.
Since Rα = 〈z〉 is core-free, z /∈ 〈a〉, and thus the image z of z in R/〈a〉 is an involution. If t2 = 1,
then as z ∈ 〈s, t〉 and s ∈ 〈a〉, we conclude that t /∈ 〈a〉, and hence the image t equals z. It follows that
R = D2n , and in this case, Γ = Cn/2�K2. If t2 = z, then o(t) = 4, and since sz = s−1, we conclude that
R = 〈s〉:〈t〉 = Zn:Z4 such that the center Z(R) � Z2. In this case, Γ is a generalized Petersen graph
P(n,k), where k2 ≡ 1 (mod n). �
Lemma 4.2. Rα �= 1 and Γ is R-arc-transitive, then R = Zn:Z6 = D2n:Z3 and Γ is a Cayley graph of D2n.

Proof. Let N = 〈a〉� R , and let K be the kernel of R on V N . Then N � K , and so R/K ∼= (R/N)/(K/N)

is cyclic. Let R = R/K . Then R � AutΓN , and Rα = 1. Thus ΓN ∼= K2, K = 〈a〉:Kα
∼= Zn:Z3, and

R/K ∼= Z2.
Suppose that Kα centralizes a Sylow subgroup of 〈a〉. Then we have K = 〈ap〉 × (〈ap′ 〉:Kα), where

a = apap′ such that 〈ap〉 is a Sylow p-subgroup of 〈a〉 and 〈ap′ 〉 is the Hall p′-subgroup of 〈a〉. Hence
M := 〈ap′ 〉:Kα is normal in R , and as Mα = Kα

∼= Z3, the normal quotient ΓM is of order 2o(ap) and
of valency 1, which is not possible. Moreover, since Aut(〈a〉) is abelian, we have

R = (〈a〉:Kα

)
.Z2 = (〈a〉.Z2

):Kα.

Suppose that 〈a〉.Z2 centralizes a Sylow p-subgroup of 〈a〉. Then 〈a〉.Z2 = 〈ap〉 × (〈ap′ 〉.Z2), where
〈ap′ 〉 is the Hall p′-subgroup of 〈a〉, and the normal quotient of Γ induced by 〈ap′ 〉.Z2 is 〈ap′ 〉:Z3-arc-
transitive unless 〈ap′ 〉 = Z2. Thus, we conclude that 〈a〉.Z2 ∼= D2n , and so R = Zn:Z6 and Γ is a Cayley
graph of D2n . �

Next we consider weak metacirculant Cayley graphs. A connected cubic weak metacirculant on an
abelian group is a Möbius band or a prism. We thus focus on arc-transitive dihedrants. Arc-transitive
dihedrants were studied in [6] for 2-arc-transitive case, and [9] for dihedrants admitting arc-regular
groups actions. A rough characterization of cubic arc-transitive dihedrants was given in [17]. Here we
present a simple classification of cubic arc-transitive dihedrants.

Lemma 4.3. Let Γ be a connected cubic dihedrant of order 2n. Then Γ is Mn, Cn�K2 , C(2n,2k + 1), or
Dih(l,m) with lm = 2n.

Proof. Let G = 〈a〉:〈b〉 ∼= D2n be regular on the vertex set of Γ . Then a connected cubic Cayley graph
Γ = Cay(G, S) is such that 〈S〉 = G , where either S = {x, x−1, y} with o(x) � 3, or S = {x, y, z} con-
sisting of three involutions. If S = {x, x−1, y}, then since 〈S〉 = G , we have o(x) = o(a) = n, and
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Γ ∼= Cay(G, {a,a−1,b}) ∼= Cn�K2. Thus, we next assume that S consists of three involutions x, y and z.
There are two different cases.

Suppose that two of the three involutions generate G , say 〈x, y〉 = G . We may assume that a = xy,
and z = ak or akx. If z = ak , since o(z) = 2, z = an/2. Then Γ = M2n . Assume that z = akx for some inte-
ger k. Label α2i = (xy)i and α2i+1 = (xy)i x, where 0 � i � n−1. Then {αi,αi+1}, and {α2i,α2i−(2(k+1))}
are edges, and hence Γ ∼= C(2n,2k + 1).

Finally, assume that any two of the three involutions generate a proper subgroup of G .
Let c = xy, and label αi j = (zy)ic j and βi j = y(zy)ic j . Then αi, j+1(βi, j)

−1 = (zy)ic(zy)−i y−1 =
c(zy)−1

y. Since there are three involutions, without loss of generality, suppose zy ∈ 〈a〉. Then
αi, j+1(βi, j)

−1 = cy = x. So there is an edge between αi, j+1 and βi, j . Also, it is easily to shown that
(βi, j,αi, j), (βi, j,αi+1, j) ∈ E . So the graph Γ = Dih(l,m), where l = o(zy) and m = o(xy). �

Next, we consider the case where R is regular on the vertex set of Γ .

Lemma 4.4. If R is a 2-group, then either R is cyclic, or R ∼= Zn:Z2 .

Proof. If R is abelian, then since R = 〈x, y, z〉 contains an involution, either R is cyclic, or R = Zn ×Z2.
Suppose that R is not abelian. We prove the lemma by induction. Let 〈a〉 � R be such that R/〈a〉

is cyclic. Let N = 〈a0〉 � R , where a0 ∈ 〈a〉 is an involution. If ΓN is of valency 1, then since R is not
abelian, it follows that Γ = K4 and R = D8. Suppose ΓN is of valency 2. Then S = {x, y, z} consists
three involutions, with z = a0 and S = {x, y}. Thus R = Z

2
2 or is a dihedral so that R = Z2.R . As R is

metacyclic, we have R = D8 or Zn:Z2.
Thus, assume that ΓN is cubic. Recall that S = {x, y, z}, where either x, y, z are all involutions, or

y = x−1 has order at least 4 and o(z) = 2. Inductively, we may assume that R/N is cyclic or has the
form Zm:Z2. If R/N is cyclic, then R is abelian, which is a contradiction. Suppose that R/N is not
cyclic. Then R/N = 〈a〉.〈b〉 ∼= Zm:Z2. Assume that o(a) � 4. Then a is an element of R of order 1

2 |R|.
Since ΓN is cubic, z /∈ 〈a〉 and hence R = 〈a〉:〈z〉. Assume that o(a) = 2. Then 〈a〉 = Z4, and so ab = a
or a−1. Since R is not abelian, ab = a−1. Let z = aib j , where i, j are positive integers.

If j is odd then 1 = z2 = aib jaib j = ai(b jaib− j)b2 j = b2 j , and hence b is an involution, and R =
〈a,b〉 = D8.

Suppose that j is even. Then 1 = z2 = a2ib2 j , and (ai)2 = b−2 j . If i is odd, then a2 ∈ 〈b〉, and 〈b〉 has
index 2 in R , and thus 〈b〉 is normal. It follows that R is a generalized quaternion group, which is not
possible. If both i and j are even, then z = aib j lies in the center of R , and hence R = 〈x, y〉 × 〈z〉 or
〈x, y〉. The former is not possible as R is metacyclic, and so R = 〈x, y〉 is dihedral. �
Lemma 4.5. Assume that R = 〈a〉.〈b〉 is non-abelian and regular on V , and assume further that R is not
dihedral. Then Γ = Cay(R, S) is a Cayley graph of R, and one of the following statements is true:

(i) R = Zn:Z2 , and Γ is a generalized Petersen graph.
(ii) Γ = MeC1(l,m,k) or MeC2(l,m,k), where l = o(a), m = o(b) and k is such that ab = ak.

Proof. Since R is regular on V , Γ is a Cayley graph of R , and there exists a subset S ⊂ R such that
Γ = Cay(R, S). Since Γ is cubic, S = {x, y, z} such that either x, y, z are all involutions, or o(x) > 2,
z = x−1, and o(y) = 2.

Suppose that x, y, z are all involutions. Since 〈a〉 contains at most one involution, at least two of
x, y, z do not lie in 〈a〉, say x, y /∈ 〈a〉. Now R/〈a〉 is cyclic and generated by x, y, z. Thus R/〈a〉 ∼= Z2,
and so R = 〈a〉:〈x〉 = Zn:Z2. Since R is not dihedral, any two of x, y, z do not generate R . Hence
z ∈ 〈a〉 and R = 〈x, y〉 × 〈z〉 = Dn × Z2. Since R is metacyclic, n/2 is odd, and so R = D2n , which is a
contradiction.

Thus, we have o(x) = n > 2 and z = x−1.
Suppose that Γ〈a〉 is a cycle of size at least three. Since R/〈a〉 is cyclic and vertex-transitive on Γ〈a〉 ,

it is edge-transitive on Γ〈a〉 . Thus, Γ〈a〉 = Cay(R/〈a〉, {x, x−1}), and so y = 1. Thus, y ∈ 〈a〉, a unique
involution of 〈a〉, and 〈y〉 � R . Then the quotient graph Γ〈y〉 is a cycle, and so R = Z2.Zn or Z2.Dn . It
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follows that R = Z2 × Zn , Z2n or Zn:Z2. The first two cases are not possible by our assumption. For
the last case, either R is dihedral, or 〈S〉 �= R so it is not possible either. Thus, Γ〈a〉 is of valency 1
or 3.

Assume first that Γ〈a〉 ∼= K2. Then x ∈ 〈a〉 and R = 〈a〉:〈y〉 = 〈x〉:〈y〉. Let xy = xk for some positive in-
teger k. As o(y) = 2, k2 ≡ 1 (mod n). Label the vertices αi = xi and βi = yxi , where 0 � i � n − 1. Then
{αi,αi+1} and {αi, βi} are edges of Γ . Moreover, {βi, β j} is an edge if and only if xk( j−i) = yx j x−i y =
β jβ

−1
i equals x or x−1, and if and only if j = i ±k (mod n). Thus, Γ = P(n,k) is a generalized Petersen

graph.
Finally, assume that Γ〈a〉 is cubic. Then x2, y /∈ 〈a〉, and Γ is a cover of Γ〈a〉 . Since R/〈a〉 is

cyclic, Γ〈a〉 is a cubic circulant, and so Γ〈a〉 = Mm or Cm�K2. Let P be a Sylow p-subgroup of R
with p odd which is normalized by y. Suppose that P = 〈s, t〉 = 〈s〉.〈t〉 is non-split metacyclic.
Then 〈P , y〉 = 〈s〉.〈t y〉 and sy = s−1. Let Q = 〈s〉 ∩ 〈t〉 = 〈c〉, where c = si = t j . Then c y = c−1 and
P/Q = (〈s〉/Q ):(〈t〉/Q ) = 〈s∗〉:〈t∗〉. Further, 〈t〉 = 〈s〉〈t〉/〈s〉 ∼= 〈t〉/〈s〉 ∩ 〈t〉 ∼= 〈t∗〉. It follows that y cen-
tralizes t∗ , and so y centralizes t , which is not possible since (t j)y = c y = c−1 = t− j . Thus, every Sylow
subgroup of R of odd order is split, and letting H be a Hall 2′-subgroup of R , we have H = 〈a1〉:〈b1〉.
Since R is metacyclic, it follows that H � R and R = H :R2, where R2 is a Sylow 2-subgroup. If the quo-
tient ΓH is of valency 1 or 2, then R2 is cyclic or dihedral, while if ΓH is cubic, then by Lemma 4.4,
R2 is cyclic or has the form Zm:Z2. Hence, in either case, R2 = 〈b2〉 is cyclic, or R2 = 〈a2〉:〈b2〉,
where o(b2) = 2. Thus, R = 〈a〉:〈b〉, where either a = a1 and b = b1b2, or a = a1a2 and b = b1b2.
Since 〈x, y〉 = R/〈a〉, we have x = bi and y = bo(b)/2, (i,o(b)) = 1. Thus, x = a jbi and y = a j′bo(b)/2.
Since 〈x, y〉 = R , we conclude that ( j,o(a)) = 1. Since all elements of 〈a〉 of order o(a) are conju-
gate in Aut(R) and all involutions are conjugate by 〈a〉, we may assume that x = abi and y = z. Then
Γ = MeC1(l,m,k) or MeC2(l,m,k), where l = o(a), m = o(b) and k is such that ab = ak . �
Lemma 4.6. If R is abelian and regular on V , then R is cyclic or Zn ×Z2 , and Γ = Cn�K2 is a prism.

Proof. Since R is regular on V , Γ is a Cayley graph of R and there is a subset S of R such that
Γ = Cay(R, S). Because S = {x, y, z}, S contains three involutions, or o(x) > 2, z = x−1, and o(y) = 2.

Suppose x, y, z are all involutions. Since 〈S〉 = R and R is abelian, we have R = Z
3
2 which con-

tradicts the fact that R is metacyclic. So o(x) > 2, z = x−1, and o(y) = 2. Thus R = 〈x, y〉 is cyclic or
Zn ×Z2. And it easily shown that in either case Γ = Cn�K2 is a prism. �

Finally, we prove Theorem 1.4.

Proof of Theorem 1.4. Let Γ = (V , E) be a connected weak cubic metacirculant of a metacyclic
group R of valency 3. Let α ∈ V be a vertex.

If Γ is R-arc-transitive, then by Lemma 4.2, Γ is a dihedrant, and then by Lemma 4.3, Γ satisfies
Theorem 1.4.

We thus assume that Γ is not R-arc-transitive. If Rα �= 1, then by Lemma 4.1, Γ is a Möbius band
or a generalized Petersen graph, as in Theorem 1.4.

Hence, we further assume that Rα = 1, so Γ is a Cayley graph of R . By Lemmas 4.5 and 4.6,
Γ satisfies Theorem 1.4. �
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[6] S.F. Du, A. Malnič, D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory Ser. B 98 (2008) 1349–1372.
[7] B.W. King, Presentations of metacyclic groups, Bull. Aust. Math. Soc. 8 (1973) 103–131.
[8] I. Kovacs, Classifying arc-transitive circulants, J. Algebraic Combin. 20 (2004) 353–358.



48 C.H. Li et al. / Journal of Combinatorial Theory, Series A 120 (2013) 39–48
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[14] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003) 162–196;
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