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The generic rank conjecture

We study the generic and typical ranks of 3-tensors of dimension

l × m × n using results from matrices and algebraic geometry. We

state a conjecture about the exact values of the generic rank of 3-

tensors over the complex numbers, which is verified numerically

for l,m, n ≤ 14. We also discuss the typical ranks over the real

numbers, and give an example of an infinite family of 3-tensors of

the form l = m, n = (m − 1)2 + 1,m = 3, 4, . . ., which have at

least two typical ranks.
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1. Introduction

The subject of tensors, their rank and the approximation of tensors by low rank tensors became

recently a very active area of pure and applied mathematics. See [1,2,5–10,13,17–23,25,27–32]. 2-

dimensional tensors, which are identified as matrices, are well understood theoretically and numeri-

cally. Tensors of dimension greater than 2, are much more complicated theoretically and numerically

thanmatrices. Basically,matrices are strongly connected to linear operators, while tensors are strongly

connected to the study of polynomial equations in several variables, which are best dealtwith the tools

of algebraic geometry. Indeed, there is a vast literature in algebraic geometry discussing tensors. See for

example [4, Chapter 20] and references therein. Unfortunately, it is unaccessible to most researchers

in applied and numerical analysis.
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The object of this paper threefold. First, we give a basic introduction to one of the most interesting

topics: the rank of 3-tensors. Second, we state our conjecture for the generic tensors of 3-tensors over

thecomplexnumbers. Third,wegivegeneral results for the typical ranksof3-tensorsover the realnum-

bers. We illustrate the strength and generality of our results by comparing them to the known results

in the literature. The novelle results of this paper are obtained by using results on matrices and basic

results of algebraic geometry on polynomial equations over complex and real numbers. For reader’s

benefit we added a short appendix on complex and real algebraic geometry. The exact references for

the results in complex and real algebraic geometry used in this paper are given in the appendix.

This paper is written for the audience who has the knowledge of matrix theory and was only

occasionally exposed to the study of polynomial maps in several complex variables. This paper is an

expanded version of the talk I gave inWorkshop on Algorithms for Modern Massive Data Sets, sponsored

by Computer Forum of the Stanford Computer Science Department, NSF and Yahoo! Research, June

21–24, 2006, [10].

We now survey briefly the contents of this paper. Section 2 deals with the basic notions of the

tensor product of three vector spaces over any field F, 3-tensors and their rank. Theorem 2.4 gives a

simple anduseful characterization of the rank of a given tensor over anyfieldF, in terms of theminimal

dimension of a subspace spanned by rank onematrices, containing a given subspace L ofFm×n. Section

3 introduces the notion of the generic rank in Cl×m×n, denoted by grank(l,m, n). (grank(l,m, n) is

a symmetric function in l,m, n.) Section 4 introduces the notion of the maximal rank in Cl×m×n,

denoted bymrank(l,m, n). Section 5 gives known values for grank(l,m, n) and states the conjectured

values of grank(l,m, n) in the range 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1) − 1. This conjecture is

verified numerically for all values of l,m, n ≤ 14. (Compare these results with the numerical results

for grank(l,m, n) given in [7, Table 1], for the values l ≤ 4,m ≤ 5, n ≤ 12.) Section 6 shows how

to apply some results on matrices to obtain bounds on grank(l,m, n) and mrank(l,m, n). Section 7

discusses the notion of typical ranks of real tensorsRl×m×n, which are the analogs of generic rank over

the complex numbers. In this case one has a finite number of typical ranks taking all the values from

grank(l,m, n) to mtrank(l,m, n). The typical ranks for the case l = 2 ≤ m ≤ n are known. Form < n

there is one typical rankwhich is equal to grank(2,m, n) = min(n, 2m). For 2 ≤ m = n there are two

typical ranks grank(2,m,m) = m and mtrank(2,m,m) = m + 1. See [29] and [32]. In this paper we

give another countable set of examples of the form 3 ≤ l = m, n = (m− 1)2 + 1,m = 3, . . ., where

the maximal typical rank is strictly bigger than grank(m,m, (m− 1)2 + 1) = (m− 1)2 + 1, i.e. there

are at least two typical ranks in these cases. The case m = 3 is studied in [31]. It is shown there that

mtrank(3, 3, 5) = 6. (It is not known that if mtrank(l,m, n) ≤ grank(l,m, n) + 1, which holds in all

known examples.) Appendix A gives a concise exposition of facts in complex and algebraic geometry

needed here, with suitable references.

2. Basic notions and preliminary results

In this section we let F be any field. Usually we denote by a bold capital letter a finite dimensional

vector spaceUoverF, unless statedotherwise.Avectoru ∈ U is denotedbyabold face lowercase letter.

A matrix A ∈ Fm×n denoted by a capital letter A, and we let either A = [aij]m×n
i=j=1 or simply A = [aij].

A 3-tensor array T ∈ Fl×m×n is denoted by a capital calligraphic letter. So either T = [tijk]l,m,n
i=j=k=1 or

simply T = [tijk].
Let U1,U2,U3 be three vectors spaces. Let mi := dimUi be the dimension of the vector space Ui.

Let u1,i, . . . , umi,i be a basis of Ui for i = 1, 2, 3. Then U := U1 ⊗ U2 ⊗ U3 is the tensor product of

U1,U2,U3. U is a vector space of dimension m1m2m3, and

ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj, j = 1, 2, 3, (2.1)

is a basis ofU. For any permutation σ : {1, 2, 3} → {1, 2, 3} the tensor productUσ(1) ⊗Uσ(2) ⊗Uσ(3)

is isomorphic to U. Hence it will be convenient to assume that

1 ≤ m1 ≤ m2 ≤ m3, (2.2)
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unless stated otherwise. A 3-tensor is a vector in U. We will call 3-tensor a tensor, and denote it by a

Greek letter. A tensor τ has the representation

τ =
m1,m2,m3∑
i1=i2=i3=1

ti1i2i3ui1,1 ⊗ ui2,2 ⊗ ui3,3, (2.3)

in the basis (2.1). If the basis (2.1) is fixed then τ is identified with T = [ti1i2i3 ] ∈ Fm1×m2×m3 .

Recall that x1 ⊗ x2 ⊗ x3, were xi ∈ Ui, i = 1, 2, 3, is called a rank one tensor, or an indecomposable

tensor. (Usually one assumes that all xi �= 0. Otherwise 0 = x1 ⊗ x2 ⊗ x3 is called a rank zero tensor.)

(2.3) is adecompositionofτ as a sumofatmostm1m2m3 rankone tensors, as ti1i2i3ui1,1⊗ui2,2⊗ui3,3 =
(ti1i2i3ui1,1) ⊗ ui2,2 ⊗ ui3,3. A decomposition of τ �= 0 to a sum of rank one tensors is given by

τ =
k∑

i=1

xi ⊗ yi ⊗ zi, xi ∈ U1, yi ∈ U2, zi ∈ U3, i = 1, . . . , k. (2.4)

The minimal k for which the above equality holds is called the rank of the tensor τ . It is completely

analogous to the rank of matrix A = [ai1i2 ] ∈ Fm1×m2 , which can be identified with 2-tensor in∑m1,m2

i1=i2=1 ai1i2ui1,1 ⊗ ui2,2 ∈ U1 ⊗ U2. It is well known that, unlike in the case of matrices, the rank of

a tensor may depend on the ground field F. In particular, by considering the algebraic closed field C
versus R, one may decrease the rank of the real valued tensor τ .

For j ∈ {1, 2, 3} denote by jc := {p, q} = {1, 2, 3}\{j}, where 1 ≤ p < q ≤ 3. Denote by

Ujc = U{p,q} := Up ⊗Uq. A tensor τ ∈ U1 ⊗U2 ⊗U3 induces a linear transformation τ(j) : Ujc → Uj

as follows. Assume that u1,l, . . . , uml,l is a basis in Ul for l = 1, 2, 3. Then any v ∈ Ujc is of the form

v = ∑mp,mq

ip=iq=1 vipiquip,p ⊗ uiq,q. Define

τ(j) v =
mj∑
ij=1

⎛
⎝mp,mq∑

ip,iq=1

ti1i2i3vipiq

⎞
⎠ uij,j. (2.5)

The rankjτ is the rank of the operator τ(j). Equivalently, let A(j) = [alij ] ∈ Fmpmq×mj , where each

integer l ∈ [1,mpmq] corresponds to the pair (ip, iq), for ip = 1, . . . ,mp, iq = 1, . . . ,mq, and

ij ∈ [1,mj] ∩ N. (For example arrange the pairs (ip, iq) in the lexicographical order. Then ip = � l
mq

	
and iq = l− (ip − 1)mq.) Set alij = ti1i2i3 . Then rankjτ = rank A(j). Associating a matrix A(j)with the

3-tensors is called unfolding τ in direction j. The following proposition is straightforward.

Proposition 2.1. Let τ ∈ U1 ⊗ U2 ⊗ U3 be given by (2.3). Fix j ∈ {1, 2, 3}, jc = {p, q}. Let Tij,j :=
[ti1i2i3 ]mp,mq

ip=iq=1 ∈ Fmp×mq, ij = 1, . . . ,mj. Then rankjτ is the dimension of subspace of mp ×mq matrices

spanned by T1,j, . . . , Tmj,j .

The following result is well known.

Proposition 2.2. Let τ ∈ U1 ⊗ U2 ⊗ U3. Let rj := rankjτ for j = 1, 2, 3. Denote by 0 ≤ R1 ≤ R2 ≤ R3
the rearranged values of r1, r2, r3. Then R3 ≤ rank τ ≤ R1R2.

Proof. We first show that r3 ≤ rank τ . Since ui1,1 ⊗ ui2,2 ∈ U{1,2} it follows that the decomposition

(2.3) is adecompositionofτ3 to a sumof rankone linear operators fromU{1,2} toU3.Hence r3 ≤ rank τ .

Let j ∈ {1, 2, 3}, jc = {p, q}. Recall that U is isomorphic to U′ := Up ⊗ Uq ⊗ Uj . Hence rj ≤ rank τ
for j = 1, 2. Thus R3 ≤ rank τ .

Let v1,j, . . . , v1,rj be the basis of Xj := τj(Up ⊗ Uq) ⊆ Uj . It is straightforward to show that

τ ∈ X1 ⊗ X2 ⊗ X3. So τj : Xp ⊗ Xq → Xj . Assume that R1 = rj . Decompose τj = ∑R1
l=1 zl ⊗ xl ,

where zl ∈ Xp ⊗ Xq, xl ∈ Xj for l = 1, . . . , R1. Since zl ∈ Xp ⊗ Xq, it follows that each zl is at most
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a sum of R2 rank one tensors in Xp ⊗ Xq. Hence τ is a sum of at most R1R2 rank one tensors in X1 ⊗
X2 ⊗ X3. �

The following proposition is obtained straightforward:

Proposition 2.3. Let the assumptions and the notations of Propositions 2.1-2.2 hold. Let [v1,1, . . . , vm1,1],[v1,2, . . . , vm2,2] be two bases in U1,U2, respectively, where

[u1,1, . . . , um1,1] = [v1,1, . . . , vm1,1]Q1, [u1,2, . . . , um2,2] = [v1,2, . . . , vm2,2]Q2,

Q1 = [qpq,1]m1

p,q=1 ∈ GL(m1, F), Q2 = [qpq,2]m2

p,q=1 ∈ GL(m2, F).

Let

τ =
m1,m2,m3∑
i,j,k=1

t̃ijkvi,1 ⊗ vj,2 ⊗ uj,3, T̃k,3 := [t̃ijk]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3.

Then T̃k,3 = Q1Tk,3Q
T
2 for k = 1, . . . ,m3.

Let [v1,3, . . . , vm3,3] be another basis of U3, where

[u1,3, . . . , um3,3] = [v1,3, . . . , vm3,3]Q3, Q3 = [qpq,3]m3

p,q=1 ∈ GL(m3, F).

Then τ = ∑m1,m2,m3

i,j,k=1 t′ijkui,1 ⊗ uj,2 ⊗ vk,3 and T ′
k,3 = [t′ijk]m1,m2

i,j=1 = ∑k
l=1 qkl,3Tl.

Let [v1,i, . . . , vmi,i] be a basis in Ui such that τiUic = span(v1,i, . . . , vri,i) for i = 1, 2, 3. Then

τ = ∑m1,m2,m3

i=j=k t̂ijkvi,1⊗vj,2⊗vk,3 and T̂k,3 := [t̂ijk]m1,m2

i=j=1 ∈ Fm1×m2 for k = 1, . . . ,m3. Then T̂k,3 = 0

for k > r3 and T̂1,3, . . . , T̂r3,3 are linearly independent. Furthermore, each T̂k,3 = Sk ⊕ 0 :=
⎡
⎣ Sk 0

0 0

⎤
⎦,

where Sk ∈ Fr1×r2 for k = 1, . . . , r3. Moreover, the span of range S1, . . . , range Sr3 and the span of

range S
1 , . . . , range S

r3
are Fr1 and Fr2 , respectively.

The following result is a very useful characterization of the rank of 3-tensor.

Theorem 2.4. Let τ ∈ U1 ⊗ U2 ⊗ U3 be given by (2.3). Fix j ∈ {1, 2, 3}, jc = {p, q}. Let Tij,j :=
[ti1i2i3 ]mp,mq

ip=iq=1 ∈ Fmp×mq , ij = 1, . . . ,mj. Then rank τ is theminimal dimension of a subspace ofmp×mq

matrices spanned by rank one matrices, which contains the subspace spanned by T1,j, . . . , Tmj,j .

Proof. It is enough to prove the Proposition for the case j = 3. Proposition 2.2 and its proof yields that

it is enough to consider the case where r3 = m3, i.e. T1,3, . . . , Tm3,3 are linearly independent. Let r be

the dimension of the minimal subspace of m1 × m2 matrices spanned by rank one matrices, which

contains the subspace spanned by T1,3, . . . , Tm3,3.

Suppose that equality (2.4) holds. Since r3 = m3 it follows that z1, . . . , zk span U3. Without loss

of generality we may assume that z1, . . . , zm3
form a basis in U3. For each l > m3 rewrite each zl as

al linear combination of z1, . . . , zm3
. Thus

zl =
m3∑
p=1

bljzj, l = m3 + 1, . . . , k, τ =
m3∑
j=1

(xj ⊗ yj +
k∑

l=m3+1

bljxl ⊗ yl) ⊗ zj. (2.6)

Hence

Tj,3 = xjy

j +

k∑
l=m3+1

bljxly

l , j = 1, . . . ,m3. (2.7)

In particular, the subspace spanned by T1,3, . . . , Tm3,3 is contained in the subspace spanned by k rank

one matrices x1y

1 , . . . , xky


k . Therefore r ≤ k, hence r ≤ rank τ .
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Assume now that there exist xi ∈ Fm1 , yi ∈ Fm2 , i = 1, . . . , k such that Tp,3 = ∑k
i=1 apixiy


i for

p = 1, . . . ,m3. View xiy

i as xi ⊗ yi. Then

τ =
m3∑
p=1

⎛
⎝ k∑

i=1

apixi ⊗ yi

⎞
⎠ ⊗ zp =

k∑
i=1

xi ⊗ yi ⊗
⎛
⎝ m3∑

p=1

apizp

⎞
⎠ . (2.8)

Hence k ≥ rank τ . So rank τ = r. �

3. Generic rank

From now and F is either the field of complex numbers C or the field of real numbers R, unless

stated otherwise.We refer the reader to Appendix A for the notations and results in algebraic geometry

used in the sequel. Let xi ∈ Cmi , i = 1, 2, 3. Then a rank one tensor x1 ⊗ x2 ⊗ x3 is a polynomial

map f : Cm1+m2+m3 → Cm1×m2×m3 ≡ Cm1m2m3 , i.e. f(x1, x2, x3) := x1 ⊗ x2 ⊗ x3. Thus we identify

a vector z = (z1, . . . , zm1+m2+m3
) ∈ Cm1+m2+m3 with (x

1 , x
2 , x

3 ), which is also denoted by

(x1, x2, x3), and a vector y ∈ Cm1m2m3 with T = [ti1i2i3 ]m1,m2,m3

i1=i2=i3
∈ Cm1×m2×m3 . (Herewe arrange the

three indices of [ti1i2i3 ] in the lexicographical order.) Then Df , the Jacobianmatrix of partial derivatives

is given as

Df(x1, x2, x3) = [A1(x2, x3)|A2(x1, x3)|A3(x1, x2)] ∈ Cm1m2m3×(m1+m2+m3), (3.1)

is viewed as a block matrix, where Ai ∈ Cm1m2m3×mi for i = 1, 2, 3. More precisely, let

eij,j = (δ1ij , . . . , δmjij)
, ij = 1, . . . ,mj

be the standard bases in Cmj for j = 1, 2, 3. Then

A1(x2, x3) = [e1,1 ⊗ x2 ⊗ x3| · · · |em1,1 ⊗ x2 ⊗ x3] ∈ Cm1m2m3×m1 ,

A2(x1, x3) = [x1 ⊗ e1,2 ⊗ x3| · · · |x1 ⊗ em2,2 ⊗ x3] ∈ Cm1m2m3×m2 , (3.2)

A3(x1, x2) = [x1 ⊗ x2 ⊗ e1,3| · · · |x1 ⊗ x2 ⊗ em3,3] ∈ Cm1m2m3×m3 .

So the pth column of A1(x2, x3) is the tensor ep,1 ⊗x2 ⊗x3. Similar statements holds for A2(x1, x3)
and A3(x1, x2).

Proposition 3.1. Let xi ∈ Cmi , i = 1, 2, 3, and denote by f : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 the

map f(x1, x2, x3) := x1⊗x2⊗x3. IdentifyCm1 ×Cm2 ×Cm3 , Cm1×m2×m3 withCm1+m2+m3 , Cm1m2m3 ,

respectively. Then

rank Df(x1, x2, x3) ≤ m1 + m2 + m3 − 2. (3.3)

Equality holds for any xi �= 0 for i = 1, 2, 3.

Proof. Let A1(x2, x3), A2(x1, x3), A3(x1, x2) be defined as in (3.1). Note that

m1∑
i1=1

xi1,1ei1,1 ⊗ x2 ⊗ x3 =
m2∑
i2=1

xi2,2x1 ⊗ ei2,2 ⊗ x3 =
m3∑
i3=1

xi3,3x1 ⊗ x2 ⊗ ei3,3 = x1 ⊗ x2 ⊗ x3

That is, the columns of A1(x2, x3), A2(x1, x3) and A3(x1, x2) all span the vector x1 ⊗ x2 ⊗ x3. Hence

the inequality (3.3) holds.

Choose x1 = e1,1, x2 = e2,1, x3 = e1,3. Then in Df(e1,1, e1,2, e1,3) the column e1,1 ⊗ e1,2 ⊗ e1,3
appears three times. After deleting two columns e1,1 ⊗ e1,2 ⊗ e1,3, we obtain m1 + m2 + m2 − 2

linearly independent columns, i.e. rank Df(e1,1, e1,2, e1,3) = m1 + m2 + m3 − 2. If x1, x2, x3 �= 0,

then each xi can be extended to a basis in Cmi . Hence equality holds in (3.3). �
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Let k be a positive integer and consider the map fk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3 given

by

fk(x1,1, x1,2, x1,3, . . . , xk,1, xk,2, xk,3) =
k∑

l=1

f(xl,1, xl,2, xl,3) =
k∑

l=1

xl,1 ⊗ xl,2 ⊗ xl,3,

xl,j ∈ Cmj , j = 1, 2, 3, l = 1, . . . , k. (3.4)

In this paper the closure of a set S ⊂ Fn, denoted by Closure S, is the closure in the standard

topology of Fn. Since fk is a polynomial map it follows, (see Appendix A.1).

Definition 3.2. Let Yk ⊆ Cm1×m2×m3 be the closure of fk((Cm1 × Cm2 × Cm3)k). Denote by r(k,m1,
m2,m3) the dimension of the variety Yk . Let Uk � Yk be the constructible algebraic subset of Yk , of

dimension r(k,m1,m2,m3)−1 atmost, possibly an empty set, such that fk((Cm1 ×Cm2 ×Cm3)k) =
Yk\Uk .

T ∈ Cm1×m2×m3 has a border rank k if T ∈ Yk\Yk−1, where Y0 = {0}. The border rank of T is

denoted by brank T . T is called rank ill conditioned if brank T < rank T .

Clearly, r(k,m1,m2,m3) is a nondecreasing sequence in k ∈ N. (See for more details the proof of

Theorems 3.4 and 4.1.) The notion of border rank was introduced in [2].

Proposition 3.3. The set of all ill conditioned tensorsT ∈ Cm1×m2×m3 of border rank k equals toUk\Yk−1.

This set is a constructible algebraic set of dimension r(k,m1,m2,m3) − 1 at most.

Proof. Recall that Yk \Yk−1 is the set of tensors of border rank k. Hence fk((Cm1 ×Cm2 ×Cm3)k)\Yk−1

is the set of all tensorwhose rank and border rank are k. By definition Yk is a disjoint union of fk((Cm1 ×
Cm2 × Cm3)k) and Uk. Hence the set of all ill conditioned tensors of border rank k is Uk \ Yk−1. Since

Uk is a constructible algebraic subset of Yk , where dimUk < dim Yk , and Yk−1 is an algebraic set, it

follows from the results in Appendix A.1. that Uk \ Yk−1 is a constructible algebraic set of dimension

dimUk at most. �

See [9] for related results on rank ill conditioned tensors. The following theorem is a version of

what is called in literature Terracini’s Lemma [34].

Theorem 3.4. Let m1,m2,m3 ≥ 2 be three positive integers. Assume that eij,j = (δ1ij , . . . , δmjij)
 ∈

Cmj , ij = 1, . . . ,mj is the standard basis in Cmj for j = 1, 2, 3. Let grank(m1,m2,m3) be the smallest

positive integer k satisfying the following property. There exist 3k vectors xl,1 ∈ Cm1 , xl,2 ∈ Cm2 , xl,3 ∈
Cm3 , l = 1, . . . , k such that the following k(m1 + m2 + m3) tensors span Cm1×m2×m3 :

ei1,1 ⊗ xl,2 ⊗ xl,3, xl,1 ⊗ ei2,2 ⊗ xl,3, xl,1 ⊗ xl,2 ⊗ ei3,3, (3.5)

ij = 1, . . . ,mj, j = 1, 2, 3, l = 1, . . . , k.

Then there exist three algebraic sets U � V ⊆ W � Cm1×m3×m3 ≡ Cm1m2m3 such that the following

holds.

(1) Any T = [ti1i2i3 ] ∈ Cm1×m2×m3\U has rank grank(m1,m2,m3) at most.

(2) Any T = [ti1i2i3 ] ∈ Cm1×m2×m3\V has exactly rank grank(m1,m2,m3).

(3) Let T = [ti1i2i3 ] ∈ Cm1×m2×m3\W. Then rank T = grank(m1,m2,m3). Furthermore the set of

all 3grank(m1,m2,m3) vectors

xl,1 ∈ Cm1 , xl,2 ∈ Cm2 , xl,3 ∈ Cm3 , l = 1, . . . , grank(m1,m2,m3)
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satisfying the equality

T =
grank(m1,m2,m3)∑

l=1

xl,1 ⊗ xl,2 ⊗ xl,3 (3.6)

is a union of deg fk of pairwise disjoint varieties Ti(T ) � (Cm1 × Cm2 × Cm3)grank(m1,m2,m3) of

dimension (m1 +m2 +m3)grank(m1,m2,m3)−m1m2m3 for i = 1, . . . , deg fk. View each rank

one tensor xl,1 ⊗ xl,2 ⊗ xl,3 as a point in (C\{0}) × CPm1−1 × CPm2−1 × CPm3−1. Then the set

of all grank(m1,m2,m3) rank one tensors

(x1,1 ⊗ x1,2 ⊗ x1,3, . . . , xgrank(m1,m2,m3),1 ⊗ xgrank(m1,m2,m3),2 ⊗ xgrank(m1,m2,m3),3)

in (C\{0}) × PCm1−1 × PCm2−1 × PCm3−1 satisfying (3.6) is a disjoint union of deg fk varieties

each of dimension (m1 + m2 + m3 − 2)grank(m1,m2,m3) − m1m2m3.

Proof. (3.1) yields that

Dfk(x1,1, . . . , xk,3) = [A1(x1,2, x1,3)|A2(x1,1, x1,3)|A3(x1,1, x1,2)| . . . (3.7)

|A1(xk,2, xk,3)|A2(xk,1, xk,3)|A3(xk,1, xk,2)].
Moreover the column space of Dfk is spanned by the vectors (3.5). As in the proof of the Proposition

3.1, generically the rank of Dfk(x1,1, . . . , xk,3) is equal to r(k,m1,m2,m3). (See Appendix A.1., top

of page 495, for the definition of the term generically.) Thus, there exists a strict algebraic set Xk �
(Cm1 × Cm2 × Cm3)k such rank Dfk(x1,1, . . . , xk,3) = r(k,m1,m2,m3) for any (x1,1, . . . , xk,3) ∈
(Cm1 ×Cm2 ×Cm3)k\Xk and rank Dfk(x1,1, . . . , xk,3) < r(k,m1,m2,m3) for any (x1,1, . . . , xk,3) ∈
Xk .

Let k = 1. Then Proposition 3.1 yields that generically rank Df1(x1,1, x1,2, x1,3) = m1+m2+m3−
2. Hence f1(Cm1 ×Cm2 ×Cm3) is a constructible algebraic set of dimensionm1+m2+m3−2. (In this

case it is straightforward to showthat f1(Cm1×Cm2×Cm3) is avariety.) Ifm1+m2+m3−2 = m1m2m3

then f1(Cm1 × Cm2 × Cm3) = Cm1×m2×m3 , grank(m1,m2,m3) = 1 and the theorem is trivial in this

case. That is every tensor T is either rank one or rank zero tensor.

Assume now thatm1m2m3 > m1 +m2 +m3 − 2. Then f1(Cm1 × Cm2 × Cm3) � Cm1×m2×m3 is a

strict subvariety of tensors of rank 1 at most. Since fk(x1,1, . . . , xk,3) = fk+1(x1,1, . . . , xk,3, 0, 0, 0),
it follows

fk((Cm1 × Cm2 × Cm3)k) ⊆ fk+1((Cm1 × Cm2 × Cm3)k+1), k = 1, . . . (3.8)

and fk((Cm1 × Cm2 × Cm3)k) = Cm1×m2×m3 for k ≥ m1m2m3.

In particular

r(k,m1,m2,m3), k = 1, . . . a nondecreasing sequence,

r(grank(m1,m2,m3) − 1,m1,m2,m3) < m1m2m3, (3.9)

r(k,m1,m2,m3) = m1m2m3 for k ≥ grank(m1,m2,m3).

So 1 < grank(m1,m2,m3) ≤ m1m2m3. Furthermore, Ygrank(m1,m2,m3)−1 is a strict subvariety of

Cm1×m2×m3 . SinceCm1×m2×m3 is the only variety of dimensionm1m2m3 inCm1×m2×m3 it follows that

Yk = Cm1×m2×m3 for k ≥ grank(m1,m2,m3).
Let U := Ugrank(m1,m2,m3) as defined in Definition 3.2. Then any T ∈ Cm1×m2×m3\U is equal to

some fgrank(m1,m2,m3)(x1,1, . . . , xgrank(m1,m2,m3),3), i.e. T is of rank

grank(m1,m2,m3) at most. This proves 1.
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Let V = U ∪ Ygrank(m1,m2,m3)−1. Then T ∈ Cm1×m2×m3\V has rank grank(m1,m2,m3), i.e. 2

holds. Let T ∈ Cm1×m2×m3\V . Then f
−1
grank(m1,m2,m3)

(T ) is a nonempty algebraic set of (Cm1 × Cm2 ×
Cm3)grank(m1,m2,m3). As stated in Appendix A.1., there exists a strict algebraic subsetW ⊂ Cm1×m2×m3 ,

which contains V , such that the first claim of 3 holds.

Recall that rank one tensor xl,1 ⊗ xl,2 ⊗ xl,3 is a point in the manifold (C\{0}) × PCm1−1 ×
PCm2−1 ×PCm3−1 of dimensionm1 +m2 +m3 −2. Hence fk can be viewed as amap f̃k : ((C\{0})×
PCm1 × PCm2 × PCm3)k → Cm1×m2×m3 . This interpretation of fk , combined with the first part of 3

yields the second part of 3. �

Definition 3.5

• The integer grank(m1,m2,m3) is called the generic rank of T ∈ Cm1×m2×m3 .
• k (≤ grank(m1,m2,m3)) is called small if there is a rank k tensor T of the form (2.4) such that the

Jacobian matrix at T has rank k(m1 + m2 + m3 − 2).
• k (≥ grank(m1,m2,m3)) is called big if there is a rank k tensor T of the form (2.4) such that the

Jacobian matrix at T has rank equal to the maximal rank m1m2m3.• (m1,m2,m3) is called perfect if k = m1m2m2

m1+m2+m3−2
is a small integer.

Corollary 3.6. brank T ≤ grank(m1,m2,m3) for any T ∈ Cm1×m2×m3 .

The generic rank grank(m1,m2,m3) has the following interpretation. Assume that the entries of

T ∈ Cm1×m2×m3 are independent randomvariables,withnormal complexGaussiandistribution. Then

with probability 1 the rank of T is grank(m1,m2,m3). Furthermore, Proposition 3.3 yields that with

probability 1 the border rank of T is also equal to grank(m1,m2,m3).
Since the dimension of any algebraic variety is nonnegative the second part of 3 of Theorem 3.4

yields the well known result, e.g. [4, Chapter 20]:

Corollary 3.7. grank(m1,m2,m3) ≥ � m1m2m3

m1+m2+m3−2
	.

The following result is known, e.g. [28, Proposition 2.3], and we give its proof for completeness.

Proposition 3.8. Let m1 ≥ l1,m2 ≥ l2,m3 ≥ l3 be positive integers. Then grank(m1,m2,m3) ≥
grank(l1, l2, l3).

Proof. Since grank(m1,m2,m3) is a symmetric function in m1,m2,m3, it is enough to show that

grank(m1,m2,m3),m1 = 1, 2, . . . is a nondecreasing sequence. Assume that (T1,1, . . . , Tl+1,1) ∈
(Cm2×m3)l+1 is a generic point. Then (T1,1, . . . , Tl,1) ∈ (Cm2×m3)l is also a generic point. Theo-

rem 2.4 implies that the minimal dimensions of subspaces spanned by rank one matrices contain-

ing span(T1,1, . . . , Tl+1,1), span(T1,1, . . . , Tl,1) are grank(l + 1,m2,m3), grank(l,m2,m3). Hence
grank(l + 1,m2,m3) ≥ grank(l,m2,m3). �

Proposition 3.9. Let l ≥ 3,m ≥ 4 be integers. Then grank(l,m,m) ≥ m + 2.

Proof. Fix m ≥ 4 and let φ(t) = tm2

t+2m−2
be a function of t > 0. Then φ(t) is increasing. Hence for

t ≥ 3

φ(t) ≥ φ(3) = 3m2

2m + 1
> m + 1 for m ≥ 4.

Therefore for l ≥ 3,m ≥ 4 grank(l,m,m) ≥ m + 2. �
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As grank(3, 3, 3) = 5, see (5.4) it follows that grank(l,m,m) ≥ m + 2 for l,m ≥ 3, which was

shown in [33].

4. Maximal rank

Theorem 4.1. Let m1,m2,m3, k be three positive integers and assume that fk is given by (3.4). Let

mrank(m1,m2,m3) be the smallest integer k such that equality holds in (3.8). I.e.

fk((Cm1 × Cm2 × Cm3)k) = fk+1((Cm1 × Cm2 × Cm3)k+1) (4.1)

for k = mrank(m1,m2,m3), and

fk((Cm1 × Cm2 × Cm3)k) � fk+1((Cm1 × Cm2 × Cm3)k+1), (4.2)

for k < mrank(m1,m2,m3). Then themaximal rankofall3-tensors inCm1×m2×m3 ismrank(m1,m2,m3),
and

grank(m1,m2,m3) ≤ mrank(m1,m2,m3). (4.3)

For each integer k ∈ [1,mrank(m1,m2,m3)] the set of all tensors of rank k is a nonempty constructible

algebraic set fk((Cm1 × Cm2 × Cm3)k)\fk−1((Cm1 × Cm2 × Cm3)k), ( f0((Cm1 × Cm2 × Cm3)0) :=
{0}). If strict inequality in (4.3) holds then the set of all 3-tensors in Cm1×m2×m3 of rank greater than

grank(m1,m2,m3) is a constructible algebraic set of Cm1×m2×m3 of dimension m1m2m3 − 1 at most.

Furthermore for each nonnegative integer k < grank(m1,m2,m3) the following holds:

dim fk((Cm1 × Cm2 × Cm3)k) < dim fk+1((Cm1 × Cm2 × Cm3)k+1). (4.4)

In particular for k ≤ grank(m1,m2,m3) the dimension of the constructible algebraic set of all 3-tensor of

rank k is

dim fk((Cm1 × Cm2 × Cm3)k) = r(k,m1,m2,m3), (4.5)

which is the rank of the Jacobian matrix Dfk at the generic point (x1,1, . . . , xk,3) ∈ Cm1×m2×m3 , (which

is also the maximal rank of Dfk(x1,1, . . . , xk,3)).

Proof. Assume the notation of Definition 3.2 for k ≥ 0, where Y0 := {0} ∈ Cm1×m2×m3 ,U0 = ∅.
Suppose that (4.1) holds for k = p. Then any tensor of the form

∑p+1
l=1 xl,1 ⊗ xl,2 ⊗ xl,3 is of the form∑p

l=1 yl,1⊗yl,2⊗yl,3. Hence the rank of any tensor is p atmost. Thus (4.1) holds for any k ≥ p. The sec-

ond part of (3.8) yieldsmrank(m1,m2,m3) ≤ m1m2m3, and fk((Cm1 ×Cm2 ×Cm3)k) = Cm1×m2×m3

for k = mrank(m1,m2,m3). Thus the rankof any3-tensor is atmostmrank(m1,m2,m3). Fromthede-

finition of mrank(m1,m2,m3) we deduce (4.2). That is for each integer k ∈ [1,mrank(m1,m2,m3)],
Zk := (Yk\Uk)\(Yk−1\Uk−1) is the nonempty constructible algebraic set of rank k tensors.

From the definition of q := grank(m1,m2,m3)we deduce that Yk = Cm1×m2×m3 for k ≥ q. Hence

fk((Cm1 × Cm2 × Cm3)k) = Cm1×m2×m3\Uk, k ≥ q, where each Uk for k ≥ q is a constructible

algebraic set satisfying

Uq � Uq+1 � . . . � Umrank(m1,m2,m3) = ∅.

(Note that Uk = ∅ for k > mrank(m1,m2,m3).)
We now show (4.4) for k < q. Definition 3.2 implies the equality (4.5). Assume to the contrary that

r(k,m1,m2,m3) = r(k+1,m1,m2,m3) for some integer k ∈ [1, q−1]. Let s be the smallest positive

integer satisfying this condition. Then there exists an algebraic setXs � (Cm1 ×Cm2 ×Cm3)s such that
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rank Dfs(x1,1, . . . , xs,3) = r(s,m1,m2,m3) for any (x1,1, . . . , xs,3) ∈ (Cm1 × Cm2 × Cm3)s\Xs. I.e.,

s(m1 + m2 + m3) tensors given in (3.5) span r(s,m1,m2,m3) dimensional subspace in Cm1×m2×m3

for any (x1,1, . . . , xs,3) ∈ (Cm1 × Cm2 × Cm3)s\Xs.

Let (x1,1, . . . , xs+1,3) ∈ (Cm1 × Cm2 × Cm3)s+1. Then

rank Dfs+1(x1,1, . . . , xs+1,3) ≤ r(s + 1,m1,m2,m3) = r(s,m1,m2,m3).

I.e., (s+ 1)(m1 +m2 +m3) tensor given in (3.5) span at most r(s,m1,m2,m3) dimensional subspace

inCm1×m2×m3 . Assume that (x1,1, . . . , xs,3) ∈ (Cm1 ×Cm2 ×Cm3)s\Xs. Then (s+1)(m1 +m2+m3)

tensor given in (3.5) span exactly r(s,m1,m2,m3) dimensional subspace in Cm1×m2×m3 . Moreover,

the s(m1 + m2 + m3) tensor given by (3.5) for k = s span the above subspace. Hence the tensors

ei1,1 ⊗ xs+1,2 ⊗ xs+1,3, xs+1,1 ⊗ ei2,2 ⊗ xs+1,3,

xs+1,1 ⊗ xs+1,2 ⊗ ei3,3, ij = 1, . . . ,mj, j = 1, 2, 3,

are spanned by s(m1 + m2 + m3) tensor given by (3.5) for k = s.

Let k > s+1andconsider rank Dfk(x1,1, . . . , xk,3),which is equal to thedimensionof the subspace

spannedbyk(m1+m2+m3) tensor givenby (3.5). Let (x1,1, . . . , xs,3) ∈ (Cm1×Cm2×Cm3)s\Xs. Then

theabovearguments showthat rank Dfk(x1,1, . . . , xk,3) = r(s,m1,m2,m3).SinceXs×(Cm1×Cm2×
Cm3)k−s is analgebraic set of (Cm1×Cm2×Cm3)k it follows that r(k,m1,m2,m3) = r(s,m1,m2,m3).
This is impossible, since r(s,m1,m2,m3) < m1m2m3 = r(q,m1,m2,m3). Hence (4.4) holds for

k < q. �

Combine the arguments of the proof of Theorem 3.4 with the results in Appendix A.1. to obtain.

Theorem 4.2. Let m1,m2,m3, k be three positive integers and assume that fk is given by (3.4). Suppose

that k ≤ grank(m1,m2,m3). Let T ∈ Cm1×m2×m3 be a generic tensor of rank k, i.e. a generic point in

fk((Cm1×Cm2×Cm3)k) ⊂ Cm1×m2×m3 . Then the set of all possible decompositions ofT as a sumof k rank

one tensors is a disjoint union of deg fk varieties of dimension k(m1 +m2 +m3 − 2)− r(k,m1,m2,m3).
In particular, if r(k,m1,m2,m3) = k(m1 + m2 + m3 − 2), i.e. k is small, then T can be decomposed as

a sum of k-rank tensors in a finite number of ways given by a number N(k,m1,m2,m3) = deg fk.

We remark that in the case r(k,m1,m2,m3) = k(m1 + m2 + m3 − 2) the positive integer

N(k,m1,m2,m3) isdivisiblebyk!, sincewecanpermute thek summands in (2.4). IfN(k,m1,m2,m3) =
k!, this means that a generic rank k tensor T has a unique decomposition to k factors. As we can see

later,the numerical evidence points out that the equality r(k,m1,m2,m3) = k(m1 + m2 + m3 − 2)
occurs for many k < grank(m1,m2,m3).

5. Known theoretical results

The following results are known. See the references below.

grank(m1,m2,m3) = min(m3,m1m2) if m3 ≥ (m1 − 1)(m2 − 1) + 1, (5.1)

in particular grank(2,m2,m3) = min(m3, 2m2) if 2 ≤ m2 ≤ m3, (5.2)

grank(3, 2p, 2p) =
⌈

12p2

4p + 1

⌉
and

⌊
12p2

4p + 1

⌋
is small, (5.3)

grank(3, 2p + 1, 2p + 1) =
⌈
3(2p + 1)2

4p + 3

⌉
+ 1, (5.4)

(n, n, n + 2) is perfect for n �= 2 (mod 3), (5.5)
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(n − 1, n, n) is perfect for n = 0 (mod 3), (5.6)

grank(4,m,m) =
⌈

4m2

2m + 2

⌉
, (5.7)

grank(n, n, n) =
⌈

n3

3n − 2

⌉
and

⌊
n3

3n − 2

⌋
is small for n �= 3, (5.8)

(m1, 2m
′
2, 2m

′
3) perfect if

2m1m
′
2

m1 + 2m′
2 + 2m′

3 − 2
is integer , (5.9)

where (2.2) holds.

See [6] for (5.1), [28] for (5.3–5.6), [4] for (5.7), [23] and [1, Theorem 5.3] for (5.8–5.9). Note that in

view of (5.1)

(m1,m2, (m1 − 1)(m2 − 1) + 1) is perfect. (5.10)

We bring another proof of (5.1) using matrices in Section 6. It was conjectured in [10].

Conjecture 5.1. Let 3 ≤ m1 ≤ m2 ≤ m3 ≤ (m1 − 1)(m2 − 1) and (m1,m2,m3) �= (3, 2p+ 1, 2p+
1), p ∈ N. Then grank(m1,m2,m3) = � m1m2m3

m1+m2+m3−2
	.

Combine Corollary 3.7, Proposition 3.8 and (5.10) to deduce.

grank(m1,m2,m3) =
⌈

m1m2m3

m1 + m2 + m3 − 2

⌉
= grank(m1,m2,m3 + 1) (5.11)

for m3 = (m1 − 1)(m2 − 1) and 3 ≤ m1,m2.

I.e., the above conjecture holds form3= (m1 − 1)(m2 − 1). A more precise version of Conjecture 5.1 is

Conjecture5.2. . Let theassumptionsofConjecture5.1hold.Thenany integerk ∈ [2, � m1m2m3

m1+m2+m3−2
	−

1] is small.

We call (m1,m2,m3) regular if (m1,m2,m3) satisfies Conjecture 5.1 and � m1m2m3

m1+m2+m3−2
� is small.

We verified numerically 1 the above two conjectures for m1 ≤ m2 ≤ m3 ≤ 14 as follows. We

chose at random k ∈ [2, � m1m2m3

m1+m2+m3−2
	] vectors xl,i ∈ (Z ∩ [−99, 99])mi , i = 1, 2, 3, l = 1, . . . , k

such that the rank of the Jacobian matrix at the corresponding rank k tensor

T =
k∑

l=1

xl,1 ⊗ xl,2 ⊗ xl,3 (5.12)

was min(k(m1 + m2 + m3 − 2),m1m2m3). See also [7] for numerical results.

The values of mrank(m1,m2,m3) are much harder to compute. The following results are known.

First, [21, p. 10], (see also [18]),

mrank(2,m, n) = m + min

(
m,

⌊
n

2

⌋)
for 2 ≤ m ≤ n. (5.13)

Second, it is claimed in [25] that

mrank(3, 3, 3) = 5 (5.14)

1 I thank M. Tamura for programming the software to compute grank(m1,m2,m3) and r(k,m1,m2,m3).
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6. Matrices and the rank of 3-tensors

In this section we use known results for matrices to find estimates on the generic and maximal

rank of tensors.

Proposition 6.1. LetUi be mi-dimensional vector space overF, for i = 1, 2, 3. Thenmrank(m1,m2,m3)= m1m2 for m1m2 ≤ m3. More precisely, let τ ∈ U1 ⊗ U2 ⊗ U3 be given by (2.3). Let R1, R2, R3 be

defined as in Proposition 2.2. Assume that R3 = R1R2. Then rank τ = R1R2.

Proof. Since Fm1×m2 is spanned bym1m2 rank one matrices, Theorem 2.4 yields that mrank(m1,m2,
m3) ≤ m1m2. Choose τ represented by (2.3), such that T1,3, . . . , Tm3,3 ∈ Fm1×m2 span Fm1×m2 .

Theorem 2.4 yields that rank τ = m1m2, i.e. mrank(m1,m2,m3) = m1m2. The second part of the

proposition follows from Proposition 2.2. �

(The above results in this section hold for any field F. We remind the reader that from now and on

F = R, C.) We now show how to deduce (5.1) using matrices. For a finite dimensional vector space

U over F of dimension N denote by Gr(k,U), the k-Grassmannian, the manifold of all k dimensional

subspaces of U. (k ∈ [0,N].) Note that Gr(1, Fm×n) can be identified with PFmn−1, a the projective

space of dimension mn − 1. Equivalently, if 0m×n �= A ∈ Fm×n, then Â ∈ Gr(1, Fm×n) corresponds

to all points tA, t ∈ F\{0}. Note that rank A = rank tA for any t ∈ F\{0}. Thus we define rank Â :=
rank A. Usually we will identify Â ∈ Gr(1, Fm×n) with one of tA ∈ Fm×n\{0} and no ambiguity will

arise.

Let L ⊆ Fm×n be a subspace of dimension d ≥ 1. Then proj L ⊂ Gr(1, Fm×n), the set of all one

dimensional subspaces in L. The dimension of proj L is d − 1 and proj L can be identifies with PFd−1.

proj L is called a linear space in proj Fm×n. The following result is known [16,11].

Theorem 6.2. LetUk,m,n(F) ⊆ Fm×n be the set of all m×nmatrices of rank k at most. ThenUk,m,n(F) is
an irreducible variety of dimension k(m+n−k). Furthermore,Uk,m,n(F)\Uk−1,m,n(F) is quasi-projective
variety of all matrices of rank k exactly, which is a manifold of dimension k(m + n − k).

Any complex subspace of L ⊂ Cm×n of dimension (m − k)(n − k) + 1 contains a nonzero matrix of

rank k at most. More precisely, for a generic subspace L ⊂ Cm×n of dimension (m − k)(n − k) + 1, the

linear space proj L contains exactly

γk,m,n :=
n−k−1∏
j=0

(
m+j

m−k

)
(
m−k+j

m−k

) =
n−k−1∏
j=0

(m + j)! j!
(k + j)! (m − k + j)! , (6.1)

distinct matrices of rank k exactly.

Theorem 6.3. Let 2 ≤ m, n and d ∈ [(m − 1)(n − 1) + 1,mn − 1] be fixed integers. Then a generic

subspace L ⊂ Cm×n of dimension d is spanned by rank one matrices.

Proof. We first consider the case d = (m − 1)(n − 1) + 1. It is not difficult to check that d ≤ γ1,m,n.

Let L be a generic subspace L of dimension (m−1)(n−1)+1 Then L∩Uk,m,n(F) = {A1, . . . , Aγ1,m,n}
be a set of γ1,m,n distinct matrices. We show that for a generic L A1, . . . , Ad are linearly independent.

Otherwise, for any subspace L of dimension d any d rank onematrices in Lmust be linearly dependent.

(This follows from the fact that linear dependence of d matrices can be stated in terms of polynomial

equations in the entries of A1, . . . , Ad.) To show that the last condition does not always hold, choose

d linearly independent rank one matrices, and let L be the subspace spanned by these matrices.

Assume now that L is a generic subspace of dimension d ∈ [(m − 1)(n − 1) + 2,mn − 1]. Then
L ∩ Uk,m,n(F) is a variety of dimension d − (m − 1)(n − 1) − 1. Similar arguments show that any d

generic matrices in L ∩ Uk,m,n(F) are linearly independent. �
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Corollary 6.4

(1) (5.1) holds.

(2) grank(m1,m2, (m1 − 1)(m2 − 1)) = (m1 − 1)(m2 − 1) + 1 for m1,m2 ≥ 2, i.e. (5.11) holds.

Proof. In view of Proposition 6.1 we discuss first the casem3 ∈ [(m1 − 1)(m2 − 1) + 1,m1m2 − 1].
View a generic T = [tijk] ∈ Cm1×m2×m3 as m3 generic matrices Ak = [tijk]m1,m2

i=j=1 ∈ Cm1×m2 for

k = 1, . . . ,m3. Hence L = span(A1, . . . , Am3
) is a generic subspace of dimension m3. Theorem 6.3

yields that L is spanned by rank one matrices. Theorem 2.4 yields that grank(m1,m2,m3) = m3.

Assume now that m3 = (m1 − 1)(m2 − 1) and T = [tijk] ∈ Cm1×m2×m3 be a generic tensor.

Let L ⊂ Cm1×m2 be the generic subspace defined as above. Theorem 6.2 yields that L is not spanned

by rank one matrices. Hence the minimal dimension of a subspace spanned by rank one matrices

containing L is at leastm3 + 1. Let X ∈ Cm1×m2 be a generic matrix. Then L1 = span(L, X) is a generic
subspace of dimension (m1 − 1)(m2 − 1) + 1. Hence L1 is spanned by rank one matrices. Therefore

rank T = m3 + 1. �

Corollary 6.5. grank(2,m2,m3) = min(m3, 2m2) for 2 ≤ m2 ≤ m3.

We now show how to apply the above results to obtain upper estimates of grank(m1,m2,m3) and
mrank(m1,m2,m3). Let us start with the casem2 = m3 ≥ 3.

Theorem 6.6. Let m, n ≥ 3 be integers. Then

grank(n,m,m) ≤
⌊
n

2

⌋
m + (n − 2�n

2
�)(m − �√n − 1�) if m ≥ 2�√n − 1� (6.2)

grank(n,m,m) ≤ n(m − �√n − 1�) if m < 2�√n − 1� < 2(m − 1), (6.3)

grank(n,m,m) = min(n,m2) if n ≥ (m − 1)2 + 1, (6.4)

mrank(n,m,m) ≤
�√n−1�∑

i=1

(2i − 1)(m − i + 1) + (m − �√n − 1�2)(m − �√n − 1�). (6.5)

Proof. We first discuss the grank(n,m,m). Clearly, (6.4) is implied by Corollary 6.4.

Assume now that n < (m − 1)2 + 1, i.e. 2�√n − 1� < 2(m − 1). Let τ ∈ Cn×m×m be a tensor

of the form (2.3). Assume that (T1,1 = [t1jk], . . . , Tn,1 = [tnjk]) ∈ (Cm×m)n is a generic point. Let

l = �√n − 1�. So n ≥ l2 + 1. Theorem 6.2 yields that span(T1,1, . . . , Tn,1) contains at least γm−l,m,m

distinct matrices of rankm− l. It is straightforward to show that γm−l,m,m ≥ n. Since (T1,1, . . . , Tn,1)
was a generic pointwemayassume span(T1,1, . . . , Tn,1) containn linearly independent rankm−lma-

tricesQ1, . . . ,Qn. (See theproof of Theorem6.3.) This gives the inequality (6.3) for alln < (m−1)2+1.

Since T1,1, . . . , Tn,1 are generic, we can assume that T2i−1,1 is invertible and T
−1
2i−1,1T2i,1 is diago-

nable. Hence T2i−1,1, T2i,1 are contained in a subspace spanned by m rank one matrices. If n is even

we obtain that span(T1,1, . . . , Tn,1) are contained in n
2
m dimensional subspace spanned by rank one

matrices. Theorem 2.4 yields the inequality (6.2). If n is odd, we can assume thatQ1 = Tn,1−∑� n
2
�

i=1 Ti,1

has at rankm − �√n − 1�. Hence, we deduce (6.2) in this case too.

We nowprove the inequality (6.5).We assume theworst casewhichwill give the upper bound. So it

is enough to consider the case where T1,1, T2,1, . . . , Tn,1 linearly independent. Now we choose a new

base S1, . . . , Sn in span(T1,1, . . . , Tn,1) such that rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn. So the worst

case is rank S1 = m. Since any 2 dimensional space contains a singular matrix we can assume that

rank Si ≤ m − 1 for i = 2, 3, 4. According to Theorem 6.2 any 5 dimensional vector space contains a

nonzeromatrix of rankm−2 atmost. Hence rank Si ≤ m−2 for i = 5, 6, 7, 8, 9. Theorem6.2 implies
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that any subspace of dimension 10 contains a nonzeromatrix of rankm−3. Hence rank Si ≤ m−3 for

i = 10, . . . ,. Continuing the use of Theorem 6.2, and combing it with Theorem2.4we deduce (6.5). �

Use Corollary 3.7, Proposition 3.8 and the above theorem to deduce:

Corollary 6.7

4 ≤ grank(3, 3, 3) ≤ 5 = 1 · 3 + 2, mrank(3, 3, 3) ≤ 7 = 3 + 2 + 2,

grank(4, 3, 3) = 5 (4 = (3 − 1)2), mrank(4, 3, 3) ≤ 9 = 3 + 2 + 2 + 2,

grank(5, 3, 3) = 5 (5 > (3 − 1)2), mrank(5, 3, 3) ≤ 10 = 3 + 2 + 2 + 2 + 1,

6 ≤ grank(3, 4, 4) ≤ 7 = 1 · 4 + 3, mrank(3, 4, 4) ≤ 10 = 4 + 3 + 3,

7 ≤ grank(4, 4, 4) ≤ 8 = 2 · 4, mrank(4, 4, 4) ≤ 13 = 4 + 3 + 3 + 3,

8 ≤ grank(5, 4, 4) ≤ 10 = 2 · 4 + 2, mrank(5, 4, 4) ≤ 15 = 4 + 3 + 3 + 3 + 2,

7 ≤ grank(3, 5, 5) ≤ 9 = 1 · 5 + 4, mrank(3, 5, 5) ≤ 13 = 5 + 4 + 4,

9 ≤ grank(4, 5, 5) ≤ 10 = 2 · 5, mrank(4, 5, 5) ≤ 17 = 5 + 4 + 4 + 4,

10 ≤ grank(5, 5, 5) ≤ 13 = 2 · 5 + 3, mrank(5, 5, 5) ≤ 20 = 5 + 4 + 4 + 4 + 3.

Recall that inall theexamplesofgrank(n,m,m)givenbyCorollary6.7weknowthatgrank(3, 3, 3) =
5, grank(3, 5, 5, ) = 8, while all other values of grank(n,m,m) are given by the lower bound. It is

claimed that mrank(3, 3, 3) = 5 [25].

Note that if n is even and m � n then the upper bound (6.2) combined with Corollary 3.7 implies

that grank(n,m,m) is of order nm
2
. However if n = O(m1+a) for a ∈ (0, 1] then the upper bounds

(6.2) and (6.3) are not of the right order, (which is m2).

7. Typical ranks of real 3-tensors

The study of the rank of a real 3-tensor is closely related to the real semi-algebraic geometry. See

Appendix A.2. for the results in semi-algebraic geometry needed here.

Theorem 7.1. The space Rm1×m2×m3 ,m1,m2,m3 ∈ N, contains a finite number of open connected

disjoint semi-algebraic sets O1, . . . ,OM satisfying the following properties.

(1) Rm1×m2×m3\ ∪M
i=1 Oi is a closed semi-algebraic set Rm1×m2×m3 of dimension strictly less than

m1m2m3.

(2) Each T ∈ Oi has rank ri for i = 1, . . . ,M.

(3) min(r1, . . . , rM) = grank(m1,m2,m3).
(4) mtrank(m1,m2,m3) := max(r1, . . . , rM) is theminimal k ∈ N such that the closure of fk((Rm1×

Rm2 × Rm3)k) is equal to Rm1×m2×m3 .

(5) For each integer r ∈ [grank(m1,m2,m3),mtrank(m1,m2,m3)] there exists ri = r for some

integer i ∈ [1,M].
Proof. Consider the polynomial map fk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3 be given by (3.4).

Note that fk : (Rm1 × Rm2 × Rm3)k → Rm1×m2×m3 . Denote by Yk and Qk the closure of fk((Cm1 ×
Cm2 × Cm3)k) and Zk := fk((Rm1 × Rm2 × Rm3)k), respectively. Clearly,

Yi ⊆ Yi+1, Qi ⊆ Qi+1 for i ∈ N, Ym1m2m3
= Cm1×m2×m3 , Qm1m2m3

= Rm1×m2×m3 .

Let mtrank(m1,m2,m3) be the smallest k such that Qk = Rm1×m2×m3 .
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Let q = grank(m1,m2,m3). Then Yq−1 is a strict complex subvariety ofCm1×m2×m3 . (SeeDefinition

3.2.) In particular YR
q−1 = Yq−1 ∩ Rm1×m2×m3 is a strict real subvariety of Rm1×m2×m3 . Hence Qq−1 ⊆

YR
q−1 is a semi-algebraic of dimension dim Yq−1 at most, which is strictly less than m1m2m3 − 1. In

particular

mtrank(m1,m2,m3) ≥ grank(m1,m2,m3). (7.1)

Fromtheproof of Theorem4.1 it follows that there exists an algebraic subsetXq ⊂ (Cm1×Cm2×Cm3)q

such that rank Dfq is m1m2m3 at each point of (Cm1 × Cm2 × Cm3)q\Xq. Then XR
q = Xq ∩ (Rm1 ×

Rm2 × Rm3)q is a real algebraic set of (Rm1 × Rm2 × Rm3)q. Thus the Jacobian of the real map

fq : (Rm1×Rm2×Rm3)k → Rm1×m2×m3 has rankm1m2m3 ateachpointof theopensemi-algebraic set

Pq := (Rm1 ×Rm2 ×Rm3)q\XR
q . Hence fq(Pq) is an open semi-algebraic set inRm1×m2×m3 . Therefore

fq(Pq)\YR
q−1 is anopen semi-algebraic set inRm1×m2×m3 . ClearlyQq\Qq−1 ⊇ Qq\YR

q−1 ⊇ fq(Pq)\YR
q−1.

Hence the interior ofQq\Qq−1, denoted as int (Qq\Qq−1) is an open semi-algebraic set,which consists

of tensors of rank q exactly. The theory of semi-algebraic sets implies that int (Qq \ Qq−1) = ∪M1

i=1Oi,

where each Oi is an open semi-algebraic set. Observe next that the semi-algebraic set (Qq \ Qq−1) \
int (Qq \ Qq−1) has dimensionm1m2m3 − 1 at most. Since dimQq−1 ≤ m1m2m3 − 1 we deduce that

dimQq \ Closure(∪M1

i=1Oi) ≤ m1m2m3 − 1. (7.2)

SupposeQq = Rm1×m2×m3 , i.e. equality holds in (7.1), soM = M1.We claim thatWq := Rm1×m2×m3 \
Closure(∪M1

i=1Oi) is an empty set. OtherwiseWq is a nonempty open semi-algebraic set. Hence dimWq= m1m2m3 which contradicts (7.2). The proof of the theorem is completed in this case.

Assume now that Qq � Rm1×m2×m3 . Recall that dim Closure(S) \ S < dim S for any semi-algebraic

set.HencedimQq+1 = dim Zq+1.Weclaim thatdim(Zq+1\Qq) = m1m2m3, i.e. the interior ofZq+1\Qq

contains an open set. Assume to the contrary that dim(Zq+1\Qq) < m1m2m3. Hence dim(Zq+1\Zq) <
m1m2m3. (dimQq \ Zq < dim Zq = m1m2m3.) So a sum of generic q + 1 real rank one tensors is a

sum of generic q real rank one tensors. Hence a sum of genericm1m3m3 rank one tensors is a sum of q

generic rank one tensors. So Qq = Rm1×m2×m3 , which contradicts our assumption. Thus, the interior

of Qq+1 \Qq is an open semi-algebraic set, which is a union of disjoint open connected semi-algebraic

sets OM1+1, . . . ,OM2
. Note that the rank T ∈ Oj is grank(m1,m2,m3) + 1 for j = M1 + 1, . . . ,M2.

Continue in this manner we deduce the rest of the theorem. �

Definition 7.2. Let r be a positive integer. T ∈ Rm1×m2×m3 has a border rank r, denoted as brank T ,

if T ∈ Closure fr((Rm1 × Rm2 × Rm3)r) \ Closure fr−1((Rm1 × Rm2 × Rm3)r−1). (f0((Rm1 × Rm2 ×
Rm3)0 = {0}.) r is calledan (m1,m2,m3) typical rank,or simply typical rank, if r ∈ [grank(m1,m2,m3),
mtrank(m1,m2,m3)].

The proof of Theorem 7.1 yields.

Corollary 7.3. Assume that the entries of T ∈ Rm1×m2×m3 are independent random variables with stan-

dardnormalGaussiandistribution. Then theprobability that rank T = r is positive if andonly if r is a typical

rank. Assume that r is a typical rank. Then the probability that rank T > brank T , provided that (rank T −
r)(brank T − r) = 0, is 0. In particular, the probability that rank T = grank(m1,m2,m3) is positive.

The last part of this Corollary is shown in [33, Appendix B] for m1 = m2 = 4,m3 = 3. For

l = 2 ≤ m ≤ n the following is known: mtrank(2,m,m) = grank(2,m,m) + 1 = m + 1 [29] and

mtrank(2,m, n) = grank(2,m, n) = min(n, 2m) form < n [32]. [25] claims that mtrank(3, 3, 3) =
grank(3, 3, 3) = 5. It is shown in [31] that mtrank(3, 3, 5) = grank(3, 3, 5) + 1 = 6. For other

additional known results for typical rank see [7]. In particular, mtrank(4, 4, 12) = grank(4, 4, 12) +
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1 = 12 [7, Table I]. We now give additional examples, where a strict inequality holds in (7.1). All of

them, except the above mentioned examples, are new.

Theorem 7.4. In the following cases mtrank(m1,m2,m3) > grank(m1,m2,m3).

(1) m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1.

(2) m1 = m2 = 4,m3 = 11, 12.

We do not know if mtrank(m,m, (m − 1)2 + 1) = grank(m,m, (m − 1)2 + 1) + 1 form ≥ 4. To

prove Theorem 7.4 we need a few auxiliary results. The following result is known, e.g. [11, Proposition

5.2].

Proposition 7.5. Let F = C, R, n ≥ 2, p ≥ 1 be integers and assume that p ≤ � n
2
�. Let proj An(F) ⊇

proj W2p,n(F)be theprojectivevarietyof all (nonzero) skewsymmetricmatrices and theprojective subvari-

ety of all skewsymmetricmatrices of rank2patmost, respectively. Thenproj W2p,n(F) is an irreducible pro-

jective variety in proj An(F) of codimension
(
n−2p

2

)
. The variety of its singular points is proj W2(p−1),n(F).

Corollary 7.6. A generic subspace L of the linear space of n × n skew symmetric matrices An(F) ⊂ Fn×n

of dimension
(
n−2p

2

)
does not contain a nonzero matrix of rank 2p at most. In particular, for each generic

point T := (T1, . . . , T(n−2p
2 )) ∈ An(F)(

n−2p
2 ), there exists an open neighborhood of O ⊂ An(F)(

n−2p
2 ) such

that for each X := (X1, . . . , X(n−2p
2 )) ∈ O, L(X) := span(X1, . . . , X(n−2p

2 )) is a subspace of dimension of(
n−2p

2

)
which does not contain a nonzero matrix of rank 2p at most.

Proof. A subspace L ⊂ An(F) of dimension d induces a linear space proj L of dimension d − 1 in the

projective space proj An(F). Hence the dimension count implies that proj L ∩ PW2p,n(F) = ∅ for a

generic subspace L of dimension
(
n−2p

2

)
. Hence L does not contain a nonzeromatrix of rank 2p atmost.

A generic point T ∈ An(F)(
n−2p

2 ) generates a generic subspace L(T) of dimension
(
n−2p

2

)
. Hence

proj L(T) ∩ proj W2p,n(F) = ∅. For a small enough open neighborhood O of T, for any X ∈ O, the

subspace L(X) is a perturbation of L(T). Hence proj L(X) ∩ proj W2p,n(F) = ∅. �

It is well known that for F = R the above corollary can be improved for certain values of n, p. See
[11] and the references therein. We now bring a well known improvement of the above corollary for

n = 4, p = 1.

Proposition 7.7. There exists an neighborhood O of T = (T1, . . . , Tl) ∈ A4(R)l such that for any

X = (X1, . . . , Xl) ∈ A4(R)l the subspace L(X) does not contain a matrix of rank 2 for l = 2, 3.

Proof. Let l = 3 and

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, T2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 −0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, T3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let T = (T1, T2, T3). Note that any nonzero matrix B ∈ L(T) is a multiple of an orthogonal matrix.

Hence rank B = 4 and dim L = 3. Thus proj L(T) ∩ proj W2,4(R) = ∅. Therefore, there exists a small

open neighborhood O of T such that for any X = (X1, X2, X3) ∈ O proj L(X) ∩ proj W2,4(R) = ∅.
Similar results hold for l = 2 if we let T = (T1, T2). �
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The next result appears in [12].

Proposition 7.8. Let Sn,0 ⊂ Rn×n be the subspace of real symmetric matrices of trace zero. Then Sn,0 is

an
(n+1)n

2
− 1 dimensional subspace which does not contain a rank one matrix.

Proof. Clearly, dim Sn,0 = (n+1)n
2

−1. Assume to the contrary that a rank onematrix B is in Sn,0. Since

B is symmetric B = ±xx, where 0 �= x ∈ Rn. Then trace B = ±xx = 0. So x = 0, contradicting

our assumption. �

Proof of Theorem 7.4.We first begin with the case (m,m, l = (m − 1)2 + 1). Assume firstm = 2, 3.
Note that dim Sm = l. Choose a basis T1, . . . , Tl in Sm. Let T = (T1, . . . , Tl). Proposition 7.8 yields

that proj Sn,0 ∩ proj U1,m,m = ∅. The arguments of the proof of Corollary 7.6 yield that there exists

an open neighborhood O of T ∈ (Rm×m)l so that for each X = (X1, . . . , Xl) ∈ (Rm×m)l we have

proj L(X) ∩ proj U1,m,m = ∅. Hence L(X) is not spanned by rank one matrices.

Let T = [tijk] ∈ Rm×m×l be the set of C ⊂ Rm×m×l of all 3-tensors such that X ∈ O, where

Xk := [tijk]mi=j=1 for k = 1, . . . , l. Clearly, C is open. Theorem 2.4 implies that the rankRT > l

for each T ∈ C. In view of Theorem 7.1, C has a nontrivial intersection with at least one Oi. Hence

ri > l = grank(m,m, l). Assume now that m > 3. Let L1 ⊂ Am(R) be a generic subspace of

dimension
(
m−2

2

)
. Then L1 does not contain a matrix of rank 2. Clearly Sm,0 ∩ L1 = {0m×m}. Then

L = Sm,0 + L1 is l = (m − 1)2 + 1 dimensional subspace of trace zero matrices. Observe that if B ∈ L

then B ∈ L. We claim that L does not contain a rank one matrix B ∈ Rm×m. Assume to the contrary

that B ∈ L is a rank one matrix. Proposition 7.8 implies that B �∈ Sm,0. So

B = B1 + B2, B1 = 1

2
(B + B) ∈ Sm,0, B2 = 1

2
(B − B) ∈ L1.

Since B is a rank one nonsymmetric matrix B2 is a skew symmetric matrix of rank 2. This contradicts

our assumption. Hence proj L∩ proj U1,m,m = ∅. The above arguments show that mtrank(m,m, l) >
l = grank(m,m, l).

Assume finally that m = 4 and l = 11, 12. Repeat the above arguments where L1 has dimension 2

or 3, as given in Proposition 7.7. �

Appendix A. Complex and real algebraic geometry

In this sectionwe give basic facts in complex and real algebraic geometry needed for this paper. The

emphasize is on simplicity and intuitive understanding. We supply references for completeness. Our

basic references are [24,26,15] for complex algebraic geometry, and [3] for real algebraic geometry.

Wefirst startwith somegeneral definitionswhich hold for general fieldF. Denote byF[x1, . . . , xn],
F(x1, . . . , xn) the ring of polynomials and its field of rational functions in n variables x1, . . . , xn with

coefficients in F, respectively. We will identify F[x] = F[x1, . . . , xn], F(x) = F(x1, . . . , xn), where

x = (x1, . . . , xn)
 ∈ Fn. For p1, . . . , pm ∈ F[x] denote by Z(p1, . . . , pm) = {y ∈ Fn, pi(y) =

0, i = 1, . . . ,m}. Equivalently let P = (p1, . . . , pm) be a polynomial map P : Fn → Fm.

Then Z(p1, . . . , pm) = P−1(0). V ⊂ Fn is called an algebraic set, if V = Z(p1, . . . , pm) for some

p1, . . . , pm ∈ F[x]. Note that ∅ and Fn algebraic sets.

Recall that PFn, the n-dimensional projective space over F, is identified with one dimensional

subspaces of Fn+1, i.e. lines through the origin in Fn+1. So Fn is viewed as a subset of PFn where each

x = (x1, . . . , xn)
 is identified with a one dimensional subspace spanned by x̂ = (x1, . . . , xn, 1)

.

PFn can be viewed as the union of two disjoint setsFn andPFn−1, wherePFn−1 is all one dimensional

subspaces in Fn+1 spanned by nonzero y = (y1, . . . , yn, 0)
.

Denote by Fh[y], y = (y1, . . . , yn+1)
, the set of homogeneous polynomials in y1, . . . , yn+1.

Let q1, . . . , qm ∈ Fh[y]. Consider the variety Z(q1, . . . , qm) ⊂ Fn+1. If 0 �= y ∈ Z(q1, . . . , qm)
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then span(y) ⊂ Z(q1, . . . , qm). Hence Z(q1, . . . , qm) induces a subset Z̃(q1, . . . , qm) ⊂ PFn. (If

Z(q1, . . . , qm) = {0} then Z̃(q1, . . . , qm) = ∅.) V ⊆ PFn+1 is called a projective algebraic set if

V = Z̃(q1, . . . , qm) for some q1, . . . , qm ∈ Fh[y]. It is easy to show that an intersection and union

of two affine or projective algebraic sets is an affine or projective algebraic. An affine or projective

algebraic set is called irreducible if it cannot be written as the union of two proper algebraic subsets.

An irreducible affine or projective algebraic set is called an affine or projective variety, respectively.

(An affine variety will be referred sometimes as variety.) Let V be a projective variety in PFn, and

W � V a projective algebraic set. Then V \ W is called a quasi-projective variety. Note that an affine

variety Z(p1, . . . , pm) can be viewed as a quasi projective variety. First homogenize p1, . . . , pm to

p̂1, . . . , p̂m ∈ Fh[y]. Let W ⊂ PFn to be the zero set of yn+1 = 0. Then Z(p1, . . . , pm) can be

identified with Z̃(p̂1, . . . , p̂m)\W .

A.1. Complex algebraic sets and polynomial maps

In this section F = C. Let P = (p1, . . . , pm) : Cn → Cm be a polynomial map. Denote by

DP(x), the derivative of P or the Jacobian matrix of P, the matrix [ ∂pi
∂xj

]m,n
i=j=1. For any U ⊆ Cn de-

note rankUDP = maxx∈U rank DP(x). Assume that U is a variety. Note that the set Sing U = {x ∈
U, rank DP(x) < rankUDP} is a strict algebraic subset of U. (Observe that x ∈ Sing U if and only if

all minors of DP(x), x ∈ U of order rankUDP vanish.) Sing U is called the set of singular points of U.

Let V = Z(p1, . . . , pm) be a variety. The dimension of V , denoted by dim V , equals to n − rankVDP.

Then V\Sing V , the set of regular (smooth) points of V , is a quasi-projective variety, and a complex

manifold of dimension dim V . See [24, Section 1A]. For any variety V and a strict algebraic subsetW in

V , the quasi-projective variety V \ W is connected [24, Corollary 4.16], and its dimension equal to the

dimension of the complex manifold V \ (W ∪ Sing V), which is dim V . We say that a given property

holds generically in V , if it holds for each x ∈ V \ W , for some strict algebraic subsetW of V , whereW

depends on the given property.

Hilbert basis theorem, (Nullstellensatz), claims that a countable intersection of algebraic sets is

an algebraic set [26, p. 17]. An algebraic set U ⊂ Cn is a union of finitely many pairwise distinct

varieties U1, . . . ,Uk , and this decomposition is unique [26, Theorems I.3.1 and I.3.2]. We define

dimU = max dimUi. A product of two irreducible varieties is an irreducible variety [26, Theorem

I.3.3]. Similar results holds for projective algebraic sets.

A set V ⊂ Cn is called a constructible algebraic set of dimension d if it can be represented as V \ W

were V is an algebraic set of dimension d andW is a constructible algebraic set of dimension d − 1 at

most [15]. Note that a constructible algebraic set of dimension 0 is a set consisting of a finite number

of points. It is easy to show that a finite union and a finite intersection of constructible algebraic sets

is a constructible algebraic set. Finally if V,W ⊂ Cn are constructible algebraic sets then V \ W is

constructible algebraic.

Let P be a polynomial map as above. From the definition of an algebraic set we deduce that for any

algebraic set W ⊂ Cm the set P−1(W) is an algebraic set of Cn. Denote rank DP = rankCnDP. Then

V = Closure P(Cn) is a variety, of dimension rank DP. (Here the closure is in the standard topology

in Cn or Rn.) Moreover, Sing P = {x ∈ Cn, rank DP(x) < rank DP} is a strict algebraic subset of Cn.

HenceP(Cn\Sing P) is a constructive algebraic variety inCm of dimension rank DP [15]. Furthermore,

there exists a strict algebraic set W � V , such that for each z ∈ V \ W the algebraic set P−1(z) is a

disjoint union of k varieties U1(z), . . . ,Uk(z) ⊂ Cn, each of dimension n − rank DP. The integer k is

independent of z ∈ V \ W , and is called the degree of P [24, Corollaries 3.15 and 3.16].

More general, let U ⊂ Cn be a constructible algebraic set. Then P(U) ⊂ Cm is a constructible

algebraic set of dimension rankUDP. This applies in particular to a projections P, where P(x) obtained
from x be deleting a number of coordinates. See [26, Sections 3 and 4].

A.2. Real semi-algebraic sets and polynomial maps

In this section the topology on Rn is assumed to be the standard topology: open sets, closed sets,

the interior and the closure of sets are in the standard topology of Rn. A real algebraic set in Rn is
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the zero set of m polynomials p1, . . . , pm ∈ R[x], and is denoted by ZR(p1, . . . , pm) ⊂ Rn. We

can view p1, . . . , pm as polynomials with complex variables z = (z1, . . . , zn)
 ∈ Cn with real

coefficients. Then U = Z(p1, . . . , pm) = {z ∈ Cn, p1(z) = . . . = pm(z) = 0} and UR =
ZR(p1, . . . , pm) = U ∩Rn. ZR(p1, . . . , pm) is called irreducible, if Z(p1, . . . , pm) is irreducible. Since
any algebraic set U ⊂ Cn is a finite union of pairwise distinct irreducible varieties V1, . . . , Vk it

follows that any real algebraic set is a finite union of irreducible real algebraic sets. A set S is called

semi-algebraic if S is a finite union of subsets S1, . . . , Sk , where each Si is of the following form. There

exists an algebraic set VR
i ⊂ Rn and a finite number of polynomials g1,i, . . . gni,i ∈ R[x] such that

Si = {x ∈ VR
i , gj,i(x) > 0, j = 1, . . . , ni} for i = 1, . . . , k. Here each ni ≥ 0. So if ni = 0

then Si = VR
i . (Algebraic set is semi-algebraic.) Since each algebraic set is a finite union of irreducible

real varieties we may assume that in the definition of semi-algebraic set S each VR
i is irreducible.

Furthermore, without loss of generality, we may assume that each Si ⊂ VR
i is relative open, i.e. Si is a

nonempty intersection of an open set inRn and VR
i . Hence dim Si = dim VR

i , and dim S = max dim Si.

See [3, Section 2.8].

Semi-algebraic sets are stable under finite union, finite intersection, taking complements and clo-

sures [3, Section 2.2]. (I.e. all the above operations on semi-algebraic sets yield semi-algebraic sets.)

Hence if S, T are semi-algebraic subsets ofRn then A\B = A∩ (Rn \B) is a semi-algebraic set. For any

semi-algebraic set S the following inequality holds dim Closure(S) \ S < dim S [3, Proposition 2.8.13].

A projection of semi-algebraic set is semi-algebraic [3, Theorem 2.2.1]. Hence the image of a semi-

algebraic set by a polynomial map is semi-algebraic [3, Proposition 2.2.7]. The closure and the interior

of semi-algebraic set are semi-algebraic [3, Proposition 2.2.2]. Every open semi-algebraic subset S of

Rn is a finite union of disjoint open connected semi-algebraic sets in Rn. For more general statement

see [3, Theorem 2.4.4].
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