
Theoretical Computer Science 119 (1993) 1455171

Elsevier

145

Computations in APS

A.A. Letichevsky, J.V. Kapitonova and S.V. Konozenko
Glusltkov Institute of’ Cybernetics, Ukrainian Academy qf Sciences, Kim 252207, Ukraine

Letichevsky, A.A., J.V. Kapitonova and S.V. Konozenko. Computations in APS, Theoretical

Computer Science 119 (1993) 1455171.

An algebraic programming system (APS) integrates four main paradigms of computations: pro-

cedural, functional, algebraic (rewriting rules) and logical. All of them may be used in different

combinations at different levels of implementation. Formal models used in the developing computa-

tional techniques for APS are presented and discussed. These include data structures, algebraic

modules, rewriting and computing, canonical forms, tools for building strategies and data types.

1. Introduction

An algebraic programming system (APS) is under development in the Glushkov

Institute of Cybernetics of the Ukrainian Academy of Sciences. It is a professionally

oriented instrumental tool for the design of applied systems based on algebraic and

logical models of subject domains. The main programming technique used in the

system is rewriting-rule-based programming.

Rewriting technique has been intensively studied [7, 51. There are many implemen-

tations of term rewriting systems. Some of them support algebraic specifications (ASF

[11, ASSPEGIQUE [2]), others are rewriting laboratories based on the Knuth-Bendix

algorithm for computing canonical systems from a set of equational axioms (RE-

VEUR3 [6], for instance). The languages of the OBJ family [3] and O’Donnell’s

languages [l 11 are the bases for equational programming. Rewriting technique was

used in ANALITIC [13], which is in some sense the prototype of APS. It is used in

MathematicaTM [14] and other computer algebra systems.

Unlike a traditional approach, which is oriented to the use of canonical systems of

rewriting rules with “transparent” strategy for their application, in APS it is possible

to combine arbitrary systems of rewriting rules with different strategies of rewriting.

Correspondence to: A.A. Letichevsky, Glushkov Institute of Cybernetics, Ukrainian Academy of Sciences,
Kiev 252207, Ukraine. Email: let%dl05.icyb.kiev.ua(n relay.USSR.EU.net.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82379304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

146 AA. Leticlwrsky, J. V. Kapitonova, S. V. Konozenko

Such an approach essentially extends the possibilities of rewriting technique and

enlarges its flexibility and expressibility. The main features of the experimental version

of the system APS-1 implemented on IBM PC were described in [lo, 81. The

methodology of research may be expressed by the following principles.

(1) Integration of four main paradigms of programming: procedural, functional,

algebraic and logical. This integration is achieved by the adjusted use of correspond-

ing computational mechanisms.

(2) The use of object-oriented methods and ideas of large grain parallelism to

organize complex programs and system implementation. As an example the imple-

mentation of APS on multiprocessor systems is now studied.

(3) Support of the evolutionary development of the system. This includes

the modularity and hierarchical structure of the system, localization of different

computational mechanisms and the possibility of step-by-step transfer of complexity

from high to low levels to achieve more efficiency. The final goal of evolution

is the creation of effective problem solvers on mathematical models of subject

domains.

This paper describes the main computational mechanisms of APS as well as their

interaction and use. These mechanisms include strategies of rewriting, canonical

forms, data types, recursive data structures processing, inheritance and interaction

between modules. The description is based on mathematical models which were built

to ground decisions and to develop the main algorithms in the system.

2. Example of an algebraic program

Let us begin with a typical example of an algebraic program written in APLAN

language for APS. This program is called log.ap and contains some tools to process

propositional formulas.

INCLUDE (ac.ap)

MARK subs (2);

/* Rules for eliminating O, +, and de Morgan rules

NAME R;

R := rs(x,y)(

x * Y=(x-Y) @ (y-x),

x * Y=_(X) llY9

-c(x))=x,

-(xI/Y)=(-(x) @-(Y)),

-(x @ Y) = (-(a II_(Y))7

-(x-Y)= (-(x-Y) II -(Y-x))7

-(x-Y) = (x @ _(Y))

);

*:

Computations in APS

/* Rules for CNF

*I
NAMES Rl, Ql;

Rl := rs(x,y,z,u,v)(

(x~YYl~~~u)~~=~~ll~~~~Yll~~~2Yll~~~~~ll~~~~~

(X@YllZ) @U=(YllZ) @(x!1zI @uu,

(XIl~~~)~Uu=(X//Z)~(X11~)~~,

x~Yll~~~=~~~lI~~~7Y~~~)~~7~Il~~~~Yli~~,

x~Yll~=~~ll~~~~Yll~~,

xllY~~=(xllY)~~~/Iz)

1;
Ql := rs(x,y,z)(

(~~YY)ll~=~~ll~~~TYII~~,

XII (Y @ Z)=(XllY) @ (xllz>,

(x//YNz=xllYllz

1;
NAME cnf;

cnf := proc(x) (

ntb(x,R),
can_ord(x, Rl, Ql),

return(x)

147

I?

NAME deM;

deM := rs(x,y) (

-t-(x)) = x,

-(xIIy)=deM(-(x)) @ deM(xy)),

-(x 8 Y) = deM (xx)) /I deM C-0) >

/T

/* Rules for proving identities in logic

*I
NAME 11;

Id := rs(x,y,z)(

1 + o=o,

0 + x=1,

x + x=1,

x -+ l=l,

x + yii z==x &? deM((y))+z,

x + y @ z=(x-+y) &? (x+z),

x II y + z= (x+z) &? (y-z),

x&?y + -(z)=subs(z= l,x)-tdeM(“(subs(z= l,y))),
x &‘y + z=subs(z=O,x)+deM(-(subs(z=O,y))),

x + y=o

);

148 A.A. Letichecsky, J.V. Kapitonoca, S.V. Konozenko

NAME ntb2;

ntb2 := proc(t, R) (

appls (t, R);
(ART(t)>O)+ntb2

t := can(t);

ntb;?(t, R)

);
NAME is-id;

is-id := proc(x)(

ntb (x, R);

x--+(1+x);

ntb2 (x, Id);

return(x)

);

(t, 11, R);

The first sentence of log.ap means that it includes the previously defined algebraic

program ac.ap which contains some standard definitions and a description of

associativeecommutative operations. Especially, it contains the description of logical

connections - (negation), &?, 11 (disjunction), -+, o, and information that defines &? and

11 as boolean operations. The next sentence introduces a new operation symbol subs

with arity 2. Different interpreters may be used to evaluate algebraic programs. The

interpreter nsint which is to be used for evaluating log.ap interprets subs as

a substitution function: subs((x, = yi, . . , x, = y,), z) substitutes y,, . . . , y,, instead of all

occurrences xi,. ,x, to z where xi, . .., x, are supposed to be different atoms.

The values of names R, Rl, Ql, deM and Id defined by initial assignments are

systems of rewriting rules. To apply them to algebraic expressions (terms) one may use

standard strategies implemented by a current interpreter or write one’s own. Function

cnf computes (some) conjunctive normal form of logical expression. It is defined by

means of a procedure that uses two standard strategies ntb and can-ord The first is

a one-time top-bottom strategy. It passes over the nodes of expressions representing

trees in a top-bottom manner and checks the applicability of rewriting rules in the

order they are written in the system. This strategy is used for the elimination of -+ and

o and transferring negations by de Morgan rules.

Strategy can-ord works with two systems of rewriting rules. The first system is

applied top-bottom, and the second, bottom-up. When the strategy passes over the

nodes bottom-up the subterms are ordered w.r.t. ac- and boolean operations by

means of merging already ordered arguments of such operations. The laws of contra-

diction and excluded third are also used while merging for boolean operations. It is

important to note that after each successive application of the rule the substitution on

the right-hand side (rhs) is reduced to its main canonical form. This reduction varies

from one interpreter to another and usually includes constant computations for

arithmetical and logical operations, computations for interpreted operations (such as

subs) and some other simplifications.

Computations in APS 149

System Id is used for checking that the logical formulas are identically true. If so,

the formula is transformed to 1; otherwise, to 0. System Id is not confluent, but the

result will be defined uniquely if the strategy meets two conditions: it checks the rules

in the order they are written, and it is a normalized strategy that finishes the rewriting

only when no further rules are applicable. Standard strategy applytb which repeats

ntb while this is possible, would be sufficient but it is too slow because while reducing

formula X & Y it will reduce Y even if X is already reduced to 0. The user-defined

strategy ntb2 is much faster. It uses the function can which calls the main canonical

form reduction that especially applies to identity 0 & X =O. Statement appls(t, R)

applies system R to the top operation of t while possible.

3. The structure of APS

Let us consider the main notions of APS.

Data structures. The main data type in the system is the algebra T’Q(Z) of terms

(trees) generated by the set Z of primary objects and the operations of the signature Q.

This algebra is considered as absolutely free Q-algebra and is extended to the algebra

T,*(Z) of infinite (but finitely represented or rational) trees. The values of the names of

these structures may have common parts and may be used to represent arbitrary

labelled graphs. This possibility is realized on a procedural level and is usually ignored

on the level of algebraic programming.

System objects. There are three types of system objects: algebraic programs

(ap-modules), algebraic modules (a-modules) and interpreters.

Algebraic programs are texts in APLAN language. The syntax and (informal)

semantics of this language were described in [9] and will be discussed later. Each

program contains the description of signature Q with a syntax for constructing

algebraic expressions (terms). It also defines the set of names X and atoms A. These

objects, together with numbers and strings, constitute the set Z of primary objects.

The three sets mentioned above define the type (Q, X, A) of ap-module. The types of

ap-modules are partially ordered by the inclusion relation (symbols of Q are con-

sidered jointly with their descriptions, which include, in particular, the arity of each

symbol). If (Q,X, A) c (Q’, X’, A’), ap-module M of the type (Q’, X’, A’) is said to

belong to the class C(Q, X, A). Two classes are said to be compatible if they have

a common lower bound that is a common subclass. Parameters of this subclass

contain parameters of both compatible classes. The algebraic program also defines the

initial values of the names. These values are objects of the type TQ(Z).

Algebraic modules contain internal representations of the data structures defined in

ap-modules. They are being created by system commands that refer to ap-modules as

new object generators. Algebraic module M generated by program P inherits its type

and the initial values of its names. The notion of an a-module is a dynamical one. It

has a state which may change in time. The change of state of an a-module takes place

as a result of executing procedures located in it by means of interpreters. The ordering

150 A.A. Letichersky, .I. V. Kapitonma, S. V. Konozenku

on the set of types of a-modules as well as the notion of classes CA (Q, X, A) for them

are defined similarly to the corresponding notions for ap-modules. Thus, the ap-

modules play the same role w.r.t. a-modules as the classes w.r.t. the objects in the

object-oriented programming.

States. The state of an a-module of the type (Q, X, A) consists of two components.

First is the memory state, i.e. the mapping 0: X+ T= T,*(Z). The second component

expresses the possibility for data to have common parts. Instead of the notion of

a reference or pointer the more abstract notion of node equivalence will be used. To

define this equivalence we use the notions of occurrence of term and subterm defined

by it, which are well known in the theory of rewriting.

The occurrence is a sequence (i 1, . , i,) (which may be empty) of positive integers.

The set of occurrences O(t) for term t is defined jointly with the function ary : S-+ T

where S c T x N* such that (t,p)~S o pEO(t) by the following recursive definition:

(1) ()eO(t) and arg(t,())= t.

(2) PEO(t), ql(t,P)=wl,t.) * (p,i)EO(t), arg(t,(p,i))=ti, i=l,..., n.

These definitions work for finite as well as for infinite terms. The sign ‘0” in

occurrences is used as a binary associative operation. Any term is uniquely defined by

the set O(t) and function root(t,p) defined by equalities:

arg(t,p)=co(tl,...,tn) * root(t,p)=o;

arg(t, p)EZ + root(t, p) = crrg(t, p).

Let o : X+ T be the memory state. Define X-occurrence as a pair (x, p) where XGX,

p is occurrence and the set O(a) of X-occurrences for 0, so that (x,p)~O(c~)

o p~O(a(x)). Now define the node equivalence E for the state Q as an equivalence

relation on the set O(a) satisfying the following axioms:

(1) (x,~)=(x’,P’)(~ * ard~,p)=ar&‘,p’k

(2) (~,p)=(x’,p’)(E), arg(4x),p)=4tl,&I * (x,(P,~))=(x’,(P’,~))(&), i= 1,fi.

(3) node equivalence is a finite index, that is, it has only a finite number of

equivalence classes.

Equivalence (x, p) = (x’, p’) (E) means that subterms arg(a, p) and arg(a’, p’) have

a common root node. Another representation of the module state will be considered

below.

System interpreters. These are programs destined for interpretation of the proced-

ures written in APLAN. They are developed in C language on the base of libraries of

functions and data structures to work with internal representation of system data

structures. The corresponding extension of the C language is called L2C. Each

interpreter is connected with the distinct type (Q,X, A) which defines the classes

CZ(Q, X, A) to which the interpreter belongs in a similar manner as for modules. This

type defines the restricted algebraic modules which can be executed by the given

interpreter. All of them must belong to the class which is compatible with the class

CA@, X, A).

Computations in APS 151

Each interpreter specifies the operational semantics of APLAN for the given class of

a-modules and provides efficient implementation of the procedures, functions and

strategies of rewriting for the systems located in the given module. Classification of the

interpreters given above is syntactical one and there exists a more detailed classifica-

tion w.r.t. to their semantical properties.

Components cf the system. The main component is the naming of system objects,

i.e., the set of ap-modules, a-modules and interpreter names together with their values.

The shell of the system provides the interface of the user with the following sub-

systems:

l control system for problem solving by means of system commands and existing

algebraic programs;

l algebraic programs development system;

l interpreter development system.

System commands provide the possibility of making up the following actions:

l creating a new a-module x by means of the program y: “create xy”, x and y are the

names of files, y already exists, x is to be created as a new file;

l completion of a-module x with the program y: “complete xy”, x and y are the

names of existing files;

l executing the procedure x of the algebraic module y by means of interpreter z:

“zxy”, z is the name of an executable file, x is the name defined in a-module y.

System commands may be executed when required by the user or used as internal

calls in algebraic programs. Such calls, along with some additional possibilities,

provide interactions among algebraic modules.

4. APLAN

Syntax. An algebraic program is defined as a sequence of sentences. The following

types of sentences exist:

l name descriptions,

l mark descriptions,

0 initial assignments,

0 inclusions,

0 comments.

(name description) : := NAMES (sequence of names separated by ‘I,“);

(name) : := (identifier)
(mark description) : := MARK (sequence of mark descriptions

elements separated by “,“);

(mark description element) : := (mark symbol) ((arity))

((mark symbol)(W, (priority), “(infix notation)“)
(mark symbol) : := (identifier)

(arity) : := (positive integer) 1 UNDEF

152 A.A. Letichevsky, J.V. Kapitonova, S.V. Konozenko

(priority) : := (positive integer)

(infix notation) : := (sequence of signs)

(initial assignment) : := (name) := (algebraic expression);

(algebraic expression) : := (primary expression) 1 (prefix expression)

1 (application) 1 (infix expression)

(primary expression) : := (integer or rational number) 1 (string)

1 (empty object) 1 (name) 1 (atom) 1 VAL (name)

1 ((algebraic expression))

(empty object) ::= ()

(application) : := (algebraic expression) (algebraic expression)

(prefix expression) : := (mark symbol) ((sequence of algebraic

expressions separated by “,“)

(infix expression) : := (algebraic expression) (infix notation)

(algebraic expression)

In the prefix expression o(x~, .., x,), where o is a mark symbol, the number of

arguments must be equal to the arity of this mark if arity is an integer and may be

arbitrary if arity=UNDEF. The priority of infix expression xoy, where w is infix

notation, is defined as the priority of o. Expression x must be a primary expression or

application, or an infix expression with priority larger than the priority of w, and if y is

an infix expression its priority must be larger than or equal to the priority of w.

(inclusion) ::= INCLUDE (file name inserted into “()“)

(INCLUDE “(file name)”

Comments are indicated by /* */. Strings are symbol sequences inserted into “ “.

Semantics. An algebraic program has two different meanings. The first meaning

corresponds to an ap-module considered as a generator of new algebraic modules and

is defined by generic semantics. The second meaning depends on the interpreter being

used. It is defined by operational semantics and may vary within wide limits.

Generic semantics. Realized by system commands create and complete. The

a-module is created or completed by means of sequential processing of the sentences

that constitute the ap-module. Inclusion sentence INCLUDE x means that the text of

module x should be inserted instead of the sentence.

When the name description is processed, new names mentioned in it are added to

the set of names. Mark descriptions extend the signature Q of the a-module. Besides

the algebraic operations themselves, marks may be used as a function or to predicate

symbols, names of types, constructors of data structures and so on. This explains why

the neutral term mark is used instead of operation or function. When infix notation is

presented in a mark description it may be used for infix representation of expressions.

In this case prioritizing helps us to omit some brackets. When the arity is UNDEF, the

mark may be used with a different arity >O (this mark may be associated with an

infinite family of operations). The only marks that initially exist and may be used

Computations in APS 153

without descriptions are binary application with empty infix notation and mark

ARRAY(UNDEF), which may be used for array construction. This application always

has the highest priority in the system. Atoms are identifiers which occur in a program

and which were not described as names or marks or infix notations.

Internal representations of algebraic expressions are Q-trees constructed in an

obvious way. After processing of name descriptions the value of each name is

initialized by an empty object which is the only one that exists before initialization.

Initial assignment x:=y makes the value of x equal to the term represented by

algebraic expression JJ. When this object is created the values of names are not

substituted except in the case when the name z follows the symbol VAL. In this case

the value of z will be referenced instead of VAL z. The use of this tool makes it possible

to identify the nodes of internal representations of trees. If VAL z = arg(y, p), then after

this assignment the equivalence arg(x, p) = arg(z, O)(E) will appear.

When the name or mark is redefined the previous definition is cancelled. The same

is true for the initial assignment. Thus it means that it is impossible to create objects

with loops. Indeed, after the initial assignment x := . . . VAL x . . . , all occurrences of

VA.Lx will be replaced by an empty object even if x was already initialized.

5. Operational semantics

The operational semantics of APLAN is implemented by interpreters. Each inter-

preter contains three main computational mechanisms:

l procedure interpreter,

0 interpreter of operations,

0 interpreter of internal calls.

All interpreters in the system are extensions of the minimal interpreter sint which

has the type (Q,, X,,, A,) (standard interpreter) and is described below. The signature

and names of sint are the standard ones. Descriptions of standard operations and

names are contained in the ap-module std.ap, which particularly includes the follow-

ing descriptions:

MARKS
/* Arithmetical and algebraic operations and functions */
POW(2,60, “*“), M(2,58,“*“), DIV(2,57,“/“),
ADD(2,55,“+“), SUB(2,54,“-“),
/* Predicates */
LE(2,40,“<=“), LS(2,40,“<“), ME(2,40,“>=“),
MR(2,40,“>“), EQ(2, ll,“==“), EQU(2, ll,“=“),
/* Logical connections */
-(1,30), AND(2,29, “&3”), OR(2,28, “II”),
IFF(2,26, “~‘0, IF(2,18, “+“),
/* SeParatOrS */ L(2,7, “,“), LL(2,5, ‘I;“),

154 A.A. Letichevsky, J. V. Kapitonova, S. V. Konozenko

/* L2B operations */
SET(2,20, “- -+”), ASS(2,20, “:=“), ELSE(2, lQ,“else”),
do(l), while(2),
/* Special functions */
arg(2,61, “arg”), ‘(l), ART(l), CAN(l), vl(1);

Procedures. The procedures of APLAN are algebraic expressions which meet the
following syntax:

(procedure) : := (sequence of statements separated by “ ,” or “ ; “)
(parametrized procedure) ::= proc((formal parameters list))

(local names) (statement)
(local names) ::= loc((local names list)) 1 (empty)
(formal parameter) : := (identifier)
(statement) ::= (basic statement) ((conditional statement)

1 (while statement) 1 (do statement) 1 (internal call)
1 (external call) 1 return 1 return((algebraic expression))
I ((procedure))

(basic statement) : := (set statement) 1 (assignment statement)
(set statement) : := (selector) ~ + (algebraic expression)
(assignment statement) : := (name) := (algebraic expression)
(selector) : := (name)

I arg((selector), (sequence of expressions separated by “,I’))
(conditional statement) : := (condition) + (statement)

((condition) + (statement) else (statement)
(while statement) : := while ((condition), (statement))
(do statement) : := do ((name))
(internal call) : := (internal name) ((actual parameter list))
(internal name) ::= (atom)
(external call) : := (name) ((actual parameter list))
(actual parameter) : := (algebraic expression)

Procedures may be the values of names and are evaluated by a procedure inter-
preter which is the same for ail system interpreters. It calls operation interpreters and
interpreters of internal calls for evaluating the values of expressions and internal calls,
respectively. Semantics of conditional and while statements are usual. Statement
do(x) executes the value of name x which must be the sequence of statements. The
value of name x in external call x(y,, . . , y,) must be a parameterized procedure
proc(. .). . which is evaluated after transferring the actual parameters.

To explain more precisely the evaluation of expressions, semantics of basic state-
ments and transferring parameters, a formal model for the representation of module
states must be introduced.

Representation of states. Let us consider the state (0, E) for the module of the
type (52,X,A). Let U={ur, u,,,} be the alphabet of symbols set to one-to-one

Computations in APS 155

correspondence with the classes of E. The symbols of U will be identified with

corresponding classes and we shall write (X,P)EU to claim that (x,p) is in the class

corresponding to u. They will also be considered as nodes of a graph representing the

set of data structures contained in the given module in the current state.

Let (X,P)EU, o(x)=t, ary(t,p)=w(t,, t,). Then if (x, (p, ~))Eu~, i = 1, . , n we shall

write u-w(u~,..., 0,) and call this expression the decomposition of the node u. If

ary(t,p)~Z the decomposition of u is u+arg(t,p). Decomposition of class u does not

depend on the representative (x, p) of this class and is determined uniquely by the class

itself. If (x, ())EU then x-+u will be called the decomposition of the nume x. The set of

decompositions for all the nodes and names is called the node representation of the

state (G, E).

It may be shown that the node representation uniquely defines the state it represents.

Indeed, let {ul-+sl, u,+s,, x1 +ul, x, +u,) be the representation of state (c, E).

Define substitution 5 = [u, tsl, . . , u,+s,]. Then a(xi) = Ui5k for sufficiently large k if

g(xi) is finite or is the limit of Ui~k if this value is infinite. The conditions used to

construct decompositions of nodes make is possible to inductively define the node u

such that (x, P)EU for arbitrary X-occurrence (x, p). Conversely, the node represent&on

is unique up to the renaming of classes.

Now let (ul +sl, u,+s,, .yl +ul, x, +L’,} be an arbitrary set of decomposi-

tions of the type (52, X, A) over the node alphabet U such that any node and name has

one and only one decomposition. Call this set clew ofdatu structures. It may be shown

now that any clew is the representation of some module state. Indeed, memory state and

node equivalence are constructed as was shown above; the axiom of representation is

true because ury(a(x), p) depends only on node u such that (x,p)~u.

It is convenient to extend the notion of representation by allowing the rhs’s of

decompositions to be the arbitrary finite terms over TQ(Zu U). Using this extension

one may eliminate some wasteful nodes. The node u is called wasteful if it occurs in the

rhs’s of decompositions no more than once. The wasteful node u may be eliminated

after replacing its unique occurrence by the rhs of its decomposition. The representa-

tion that has no wasteful nodes is called minimal in the difference of the representation

defined above which is called maximal.

Theorem 5.1. There exists a one-to-one correspondence between the states of a

module and their minimal (maximal) representations considered up to the renaming of

nodes.

The theorem follows from the statements proved above.

The minimal representation r= {ul-+sl, u,-+s,, xl-+ul, x,-+u,) of some

current state of the module will be fixed later in this section.

Computing values. There are two kinds of values that may be computed for

algebraic expression t. The first kind, denoted as val(t), belongs to the set TQ(Z u U)

and is expressed by means of a minimal representation of the current state. Another is

denoted as val(t) and belongs to the set T$(Z). The dependency between the two

156 A.A. Lrtichecsky, J. V. Kapitonoca, S. V. Konozenko

kinds of values is expressed by the formula

where P is the limit of rk. The second kind of value does not depend on equivalence

E and is used in “invariant” reasoning about algebraic programs. The first kind is used

to define precisely the operational semantics of procedural tools. Function t&(t)

substitutes the values of names and reduces the expression to its main canonical form

using interpreters of operations (functions) cpW. A formal definition includes the

following rules:

isname(X-+~EY * val(x)=t;

t.Ul(4fl,t.))=~,,(O(uul(t,),...,uul(t,)));

isnume(x), x-+tEr a nd(x)=nd(t);

rid(x)) =x.

Each rule may be applied only if the previous one is not applied. Expression

is&n(f) is true if rid(f)) is a parameterized procedure or rewriting rule system.

Semantics of application is considered in Section 6. Correct computation of the value

of algebraic expression t must preserve the current state of a module. It means

especially that procedures which may be used as functions must be written without

side effects.

Basic statements. In both cases (set and assignment) the value s~To(Zu U) of the

rhs is computed. Consider the set statement. If the Ihs is the name x its decomposition

is replaced by x+s. Let us consider the statement urg(x, p)- + t. The value of p must

be the sequence (i1, i,) of positive integers. If (x, il, . . . , i,z_ 1)~~ and u+qcr then s is

substituted instead of the i,th argument of q. Of course, the arity of q must be greater

than or equal to i,.

Assignment x := t acts differently. Firstly, ifs is a node, the rhs of the decomposition

for this node is taken instead of s. If the rhs of the decomposition for x is not a node

then the assignment is equivalent to the set statement. Otherwise, if x--u, u-+qEr,

decomposition u-+q is changed to U+S.

External culls. Formal parameters and local names are temporarily added to the

module as names. Formal parameters are assigned the values of actual parameters

and the body of the procedure is executed. After that formal parameters and local

names are deleted from the module. The return statement produces the value which is

used when the procedure occurs in the algebraic expression.

Internal culls. Addressed to procedures implemented on the level of L2C language.

The number of formal parameters and how to transfer them (compute values or not)

are defined according to specifications of internal procedures.

Computations in APS 157

Znvariancy. Each procedure defines the transformation of module states, i.e. com-

putes a function F(o, E) = (cJ’, 6’). A procedure is called invariant if CJ’ does not depend

on E. Algebraic procedures, i.e., procedures that compute functions over terms (not

over clews) must be invariant. More practical is the notion of conditional invariancy,

i.e. invariancy on the set of states meeting some given conditions. An important

example of such condition is that top nodes of the values of names are all disjoint

(in maximal representation all rhs’s for the name decompositions are different). Such

states are called disjoint. If a procedure does not use set statements and uses only

invariant calls it is invariant on the set of disjoint states because assignment is

invariant on these states. A stricter condition for states is strong disjointedness. The

state is called strongly disjoint if the values of names do not have common parts,

i.e. (x, p) = (x’, P’)(E) * x =x’.

6. Strategies of rewriting

Rewriting systems. The system of rewriting rules (rewriting system) is the algebraic

expression with the following syntax:

(rewriting system) ::= rs((list of parameters separated by “ ,“))

((list of rules separated by “,“))

(rule) ::= (simple rule) / (conditional rule)

(simple rule) : := (algebraic expression) = (algebraic expression)

(conditional rule) : := (condition) + (simple rule)

(parameter) : := (identifier)

Strategies of rewriting in APS are based on two main internal procedures applr

and appls. The statement applr (t, R) attempts to apply one of the rules of the system

R to the term t. If there are no applicable rules, the name yes gets the value 0;

otherwise, the first applicable rule is applied and yes gets the value 1. The application

of a simple rule is usual; match the lhs with t, if successful then substitute the

parameters to the lhs and replace t by the rhs. Before replacement the redex rhs is

reduced to its main canonical form by the rules similar to computing values but

without substituting the values of names.

To be more precise, let us consider the statement applr(x,y) and let t=val(x),

R = d(y). Let z be an auxiliary name with the decomposition z-+t, x1, . . . , x, be

parameters of system R, I= r be the rule the lhs of which is matched with t and

ul, , u, are z-occurrences corresponding to the values of parameters x1, . . . , x, (nodes

of some representation of the current state). If the rule is not left linear, i.e. 1 has more

than one occurrence of some parameter, the first occurrence of this parameter is

considered. Substitution of the rhs is then equivalent to the assignment z:= Cm(r),

158 A.A. Lrtichewky, J.V. Kapitonoaa, S.V. Konozenko

the function CAN being defined by the following rules:

CAN(Xi)=Ui,

$df) * CAN (f(4) = cp,,,hKf)> x);

XEZ * CAN(x)=.*-;

CAN(o(t,, t,))=cpD,(CAN(t,), CAN(t,)).

Conditional rules are applied to terms in the following manner. Matching is done

first. If successful the condition is reduced to its main canonical form by computing

the function CAN. If the result is 1, applying the rule continues as usual. Otherwise,

application is cancelled.

The statement appls(t, R) calls applr(t, R) while yes= 1.

Semantics oj” application. If the expression f(t) is a subterm of a term and the

function val or CAN is computed, first the condition i&n(f) is checked: Is the value

off (computed by nd) a functional description or not? There are two types of

functional descriptions in APS: procedures and rewriting systems. The evaluation of

procedures was described above. Rewriting systems are evaluated by means of

procedure applr. If nd(f) = R is a rewriting system, then cpappl(R, x) may be defined as

a value of z after evaluating statements:

z:=x:

Function symbolf may occur in some rhs’s of R. It means that the system will be

called recursively. As an example let us consider the following system:

pow := rs(x,y,z)

(x^l=x,

x-o= 1.

);

(x*y)^z=pow(x~z)*pow(y-z),

(x-y) ^z=pow(x^(y* z))

Function pow transforms any term of the form (x*y* . ..*z)-n to

x^n*y-n* * z-n and simplifies it if possible.

Language extension. As an example of how to use the functional possibilities of

APLAN let us consider a simple mechanism built-in to the procedural interpreter

which allows us to easily extend the procedural part of APLAN. There is a system

named compile which has a rewriting system as a value. When the interpreter meets

an unknown statement in the procedure it tries to apply the system compile to it. If

Computations in APS 159

the statement remains unknown the interpreter omits it and produces a correspond-

ing message. The current state of the compile system (a piece of ap-module extstd.ap)

follows.

NAMES compile, cone;

MARKS far(4),

forall(

forallw(3),

as(2,8, “assn”);

compile :=rs(x,y,z,u,i)(

(arg(arg(x,y), z)- --t u)=
compile(arg(x,conc(y,z))-+ u),

(a%(x,y)-+z)=set(x,y,z),
(x- + y)= setname(x,y),

for(x,y,z,u)=(x,while(y,(u,z))),
forall(x=arg(y,i),z)=

for(i:=l,l=‘(ART(y)), i:=i+l,

x--+arg(y,i);

Z

19
forallw(x=arg(y,i),u,z)=

for(i:=l,(ie‘(ART(y))) 6911, i:=i+l,

x--arg(y,i);

LB

);

((x,y)assnz)=(x:=arg(z,l), compile(yassnarg(z,2))),

(xassny)=(x:= y),

dowhile (x, y) = (x; while (y, x))

cone := rs(x,y,z)(

((x, Y), z) = (x, conc(y, z))

);

Canonical forms. A typical approach to algebraic computations to consider alge-

braic expressions up to some congruence consistent with the identities of the algebra

that defines the subject domain. Function CAN may help to realize this idea. It defines

the equivalence t=t’(CAN) o CAN(t)= CAN(t’) which must be the congruence:

t, =t;(CAN), t,=t;(CAN) * o(t,, t,)=o(t;, t;)(CAN). This is equivalent

to the existence of function can such that

CAN(w(t,,..., t,))=can(o(CAN(t,),...,CAN(t,))).

Function CAN defined above does not define the congruence because application

and quote operations prevent it, but if the latter operations are ignored it does. Really,

160 A.A. Letichevsky, J. V. Kapitonova, S. V. Konozenko

function can is defined by means of operation interpreters:

can(o(t,, . ..) L))=cp&(t1,tn)).

Another important property of CAN is that it must define the canonical form for

given congruence: t= CAN(t)(CAN). This property is equivalent to idempotency of

CAN: CAN (CAN(t)) = CAN(t). When CAN possesses idempotency it is called correct.

Term t is called normalized w.r.t. can if can(s)=s for any subterm s of term t.

Theorem 6.1. Thefollowing condition is sujicientfor the correctness of CAN: iftl, . , t,

are normalized w.r.t. can then can(w(tI, . . , t,)) is also normalized.

It is obvious that if t is normalized then CAN(t) = t (induction and taking into

account that CAN(z)=z I~zEZ). Therefore CAN(CAN(t))=CAN(t).

The condition of this theorem reduces the check for the correctness of CAN to

analysis of the normalization properties of operation interpreters.

A simple example realized in most of the APS interpreters are operation inter-

preters that evaluate constant computations for arithmetical and boolean operations

implementing some simple identities such as x + 0 = x or x)I 1 = 1. A more complicated

example is the interpreter of binary operation arg which is defined as follows:

O<idn * (o,,,(arg(o(tl,...,t,),(i,j)))=cp,,p(arg(ti,j));

Odidn * qarg(arg(cO(tI,t.),i))=ti;

(Par&) = t;

Basic strategies. General questions on constructing strategies and the notion of

local strategy were discussed in [lo, S]. Optimization problems were considered in

[9]. Let us consider the main strategies implemented in APS as internal procedures.

All of them may also be written as external ones.

Strategy ntb is a one-time top-bottom strategy:

NAME ntb;
ntb := proc(t,R)loc(s,i)(

appls (t, R);
forall(s=arg(t,i),

ntb(s,R)

);
t := can(t)

);

Strategy nbt is a one-time bottom-up strategy.

Computations in APS 161

NAME nbt;

nbt := proc(t,R)loc(s,i)(

forall(s=arg(t,i),

nbt(s, FL)

);

appls (t, R);
t := can(t)

);

Strategy applytb realizes a top-bottom strategy and repeats it when possible.

Strategy applybt does the same but moves bottom-up.

Strategy ntr applies top-bottom rules when possible but makes one step up after

each successful application.

NAME ntr;

ntr (t, R) (
yes:= 1;

while (yes,

t := can(t);

appls (t, R);
yes := 0;

forallw(s=arg(t,i),-(yes),

ntr(s, R)

1;
t := can(t);

appls (t, R)

Strategy lmt applies relations top-bottom until the first successive application and

then continues from the very beginning. It may also be characterized as a leftmost

outermost strategy.

NAMES lmt, lmtl;

lmt(t, R) (
yes := 1;

while(yes, lmtl (t, R))

);
lmtl := proc(t,R)loc(s,i)(

t := can(t);

appls (t, R);
yes + return;

162 A.A. Letichevsky, J. V. Kapitonoca, S. V. Konozenko

);

forall(s=arg(t,i),

lmtl (s, R);

yes + return

);
t := can(t);

return

Function can(t) calls the interpreter of the main operation of t and all strategies

use this function so that after finishing, the working term will be represented in its

main canonical form even if no rules from R were applied.

Strategies applytb, applybt and lmt are normalized, i.e. finishing the work only

when no rules are applicable, and if the system R is canonical (confluent and

noeterian), the call for strategy is invariant on strongly disjoint sets of states.

Ac-operations. There are two kinds of associative and commutative operations that

may be introduced in APS: arithmetical- and boolean-like ac-operations.

Arithmetical ac-operation w is introduced jointly with coefficient operation cp and

two optional constants: neutral element e and annulator a. Except for associativity

and commutativity, the following identities are true:

(xcpYk4xcp4 = Xcp(Y + 4;

xwe=x;

xoa = a;

xcp0 = e;

xrpl =x;

eqox = e;

acpx = a.

For boolean-like operations the unary negation operation v is used and except for

the neutral element and annulator the outermost element o may be introduced. The

identities for boolean-like operations are:

xwx=x:

xwe=x;

xoa = a;

v(v(x))=x;

xov(x) = 0.

Information about ac-operations is collected in the data structure, which is

the value of the standard name ac_list. This structure is an array of ac-descriptions.

Computations in APS 163

Each description is 5-tuple. For arithmetical ac-operations the description is

(()o(),()cp(),e,a, nil). For boolean-like operations the description is

(()o(), v(), e, a, 0). If one of the three constants is not used the symbol nil must be

set in the corresponding position. As an example, let us consider the following

description:

ac_list := ARRAY(

((>+(

((>*(

>, (> $ (1, 0, nil, nil),
1, (I^(>, 1, 0, nil),

((> @ ()t-((I>, 19 0, 01,
((> II (>Y”((>>T 0, 1, 1)

AC-operations are supported by function mrg and two internal procedures merge

and ord. These procedures and function are used to reduce expressions containing

ac-operations to ac-canonical form that provides ordering and reduction of similar

members for arithmetical operations and simplifications for both types of ac-opera-

tions. Function mrg and procedure merge reduce to canonical form expessions of the

type x~y where x and y are canonized and reduced to canonical form.

Function mrg may be used in rewriting systems, procedures merge and ord may be

used for constructing strategies for the algebras with ac-operations. A useful example

of such a strategy is can-ord. This strategy is equivalent to the following external

procedure:

canord := proc(t,Rl,R2)loc(s,i)(

t := can(t);

appla (t, RI>;
forall(s=arg(t,i),

can_ord(s, Rl, R2)

1;
can-up (t, R2)

1;
can-up := proc(t,R)loc(s,i)(

appla (t, R);
while (yes,

forall(s= arg(t, i),

can-up (s, R)

1;

appla (t, R)

/I

t := can(t);

merge(t)

164 A.A. Letichevsky, J. V. Kapitonova, S. V. Konozenko

Strategies for regular systems. Regular rewriting systems that are left-linear and

nonoverlapping (no critical pairs) are of great importance in the theory and applica-

tions of rewriting technique. They are confluent but not necessarily noeterian. The

completeness of strategies for regular systems means that they are terminated for any

normalized term. It is known (O’Donnel) that the parallel outermost strategy is

complete. This strategy may be presented by the following procedure in APS:

paraut := proc (t, R) lot (cant) (

dowhile (

cant := applpar(t, R),

cant

1;
applpar := proc(t,R)loc(s,i,cont)(

applr(t, R);
yes --t return(1);

cant := 0;

forall(s= arg(t, i),

cant := cant /I applr (s, R)

);
return(cont)

Strictly speaking this strategy is parallel outermost only if the system is right-linear.

Otherwise, some subterms may be identified and additional reductions may appear at

the next step reduction of outermost redexes. But for regular systems it may be proved

that these additional reductions do not change the condition for R to be complete.

Huet and Levy [4] introduced the notion of needed redex occurrences and the

strategy that reduces only needed occurrences was developed for a class of regular

rewriting systems called strongly sequential. The notion of strong sequentiality, as

well as the strategy based on this notion, depends only on the set of lhs’s of rewriting

systems. In [121 a nice generalization of the Huet-Levy theory was proposed based on

the notion of strongly necessary sets of occurrences, and an algorithm was developed

that finds minimal but in some sense strongly necessary sets and uses them for optimal

reduction. In the special case of strongly sequential systems, this algorithm finds one

of the needed occurrence and realizes the Huet-Levy strategy. The procedure nset

presented below is a generalized version of the algorithm from [12]. It is based on

a modification of applr.

The modified procedure appl(t,R) does the same as the original except that the

name yes produces as the value of the standard name failset the set of occurrences

which in the case when yes= 0 satisfy the completeness condition w.r.t. t and the set

L of lhs’s of the system R. To formulate this condition, let us introduce the notion of

the compatibility of the term t with the lhs I from the set L of lhs’s. This notion is

Computations in APS 165

recursive: t is compatible with 1 if it is an instance of 1 or there exist occurrences

pl, , pn such that arg(t, pl), . , arg(t, p,,) are compatible with some lhs’s from L and

tCp1+t1,Pn et,] is the instance of 1 for some tl,t..

Suppose that t is not an instance of any lhs from R. The set { pl,. . , pk} is complete

w.r.t. t and L if there exists the subset {II, lk} of the set L such that arg(t,p,) is not

an instance Of Urg(li, pi), i = 1, . . . , k, t is compatible with no one Ihs from L\ { 1,) . , &}

and, for each () < q < pi, arg(t, q) is not compatible with any Ihs from L, i = 1, . , k.

Note that if k = 0 (the set of occurrences is empty) then completeness means that t is

compatible with no lhs from L.

By definition [12] the set Q of redexes is strongly necessary w.r.t. L if in an arbitrary

reduction sequence by means of an arbitrary rewriting system with the set L of lhs’s at

least one of them or its residual is reduced.

Theorem 6.2. Let (pl, ., pkS be complete w.r.t. t and L, Q1, . .., Qk are correspondingly

strongly necessary sets for arg(t, pl), , arg(t, pk). Then if Q1 u ... u Qk is not empty, this

union is a strongly necessary set for t; otherwise, a nonempty strongly necessary set for

any of arg(t, i) is strongly necessary for t.

The term t cannot be reduced before reducing one of the subterms

arg(t, pl), . , arg(t, pk). But these terms cannot be reduced before at least one from the

union Q, LJ... uQk, is reduced. And if this union is empty, t cannot be reduced at all

and any strongly necessary set for its arguments is strongly necessary for t.

To be effective the modified applr must use some simple sufficient conditions for

noncompatibility which might be checked simultaneously with matching. Such simple

conditions exist for the so-called constructor systems that distinguish between defined

and constructor operations: a term with a constructor operation at the root may never

be compatible with any lhs. Exactly this kind of system is considered in [12] and our

algorithm generalizes that approach to nonconstructor systems.

The strategy nset based on strongly necessary sets and Theorem 6.2 may now be

represented as follows:

nset := proc(t, R)loc(cont, s, i)(

dowhile (

cant := applns(t, R),

cant);

forall(s=arg(t,i),

nset(s,R)

)

applns := proc(t, R) lot (cant, fs, p) (

applr (t, R);
yes + return(1);

cant := 0;

166 A.A. Letichecsky, J.V. Kapitonoca, S.V. Konotenko

fs := failset;

nonempty +

forall(p in fs,

cant :=cont /I applns(arg(t,p), R)

);
return (cant)

Every reduction that is made by one step of the algorithm, i.e. on the outermost call

of applns, rewrites only redexes that belong to some strongly necessary set. It may be

shown that this set includes the set generated by the Sekar-Ramakrishnan algorithm,

and therefore for strongly sequential systems the unique strongly necessary occur-

rence is rewritten.

There are some possible ways to improve the above algorithm. First, the necessary

set which is computed after defining the failset may be reduced dynamically during

computation. Indeed, if in the loop for all p in the failset applns has rewritten the top

occurrence of ary(t,p), the term t may become redex and then it is not necessary to

continue the search for other elements of the low level necessary set. The second

improvement is the decrease of the number of nodes being observed in the process of

rewriting. This may be achieved by means of combining the search for necessary sets

with the process of rewriting. The improved algorithm may be represented in the

following way:

nset :=

);

proc(t,R,L)loc(cont,s,i)(

dowhile (

cant := applns (t, R, L),

cant> 0);

forall(s=arg(t,i),

nset (s, R, L)

)

applns := proc(t,R,L)loc(cont,contl,l,q)(

cant := 0;

applr(t, R);
forall(1 in L,

istype(t, 1) + (

q + compat (t, 1);

equ(q, match) + (

applr(t, R);
return(2)

)else q+ arg(q, 1);
cant 1 := applns (q, R, L);

Computations in APS 167

(contl==2) + (

apW(t, R);
yes -+ return(2)

else cant 1 := 1

);
cant := cant 11 contl

return(cont)

);
compat := proc(t,l)loc(p,q,i)(

is-par(l) + return(match);

p := match;

is_type(t,l) + (

for(i:= 1, itART(i:=i+ 1,

q+ compat(arg(t, i), arg(1, i));

equ(p, match) + p- + q

I?

return(p)

);
return(pt(t))

);

Procedure compat returns atom match if t is matched with 1 or the pointer

(operation pt) to the first subterm oft which is not matched with the corresponding

subterm of 1. Procedure applns now returns 0,l or 2. It returns 0 if the term t can

never be reduced at the root. The value 1 means that some necessary set of occurren-

ces in t was reduced but t cannot be reduced at this moment. The value 2 means the

same but it is possible for t to be rewritten.

The proof of the correctness of the program applns is realized using induction on

the depth of the term and the following invariant for the main loop. If t is the initial

value oft and I 1, . . . , I, are the lhs’s already observed in the loop for all (I in L, . . .) then

there exists the set of occurrences of t which is complete w.r.t. t and 1,) . . . , 1, and the

union of some necessary sets for these occurrences has already been reduced.

The procedures nset and applns allow some other improvements which eliminate

repeated actions such as repeated observation of subterms which are compatible with

no lhs’s, but the main optimization may be obtained by means of mixed computations

by substituting concrete rewriting systems into the strategy [9].

Strategy nset may also be applied to nonregular systems and after some modifica-

tion to the systems with APS semantics (ordering, canonical forms and identifying of

nodes), but it may lose the normalizing property and completeness. The repetition of

the strategy may possibly make it normalizing, but completeness requires special

168 A.A. Letichevsky, J.V. Kapitonova, S.V. Konozenko

investigation. In practice, these problems are not very difficult and the strategy may be

effectively used for the extended classes of the systems.

7. Data types

Multi-sorted algebras. The term algebra used in APS is one-sorted Q-algebra

generated by the set 2. Constants and data as well as names have no types, but types

may be introduced and supported in many different ways. One of the most natural

ways is to construct a multi-sorted algebra D using the subsets of the set T= T,*(Z).

D is a family D = (Dr)ctz with the signature of types E. All types in APS are realized by

the subsets of the set T by the following construction. Let D, c T, <EZ and for every

operation WEQ the nonempty set typeset(w) of admissible operation types, i.e. the

expressions of the type (ti, <,, 5) where n=arity(o), tl, &,, FEZ is given. If

w has more than one type this operation is polymorphic. The algebra T itself is one of

the components of the algebra D, say D,, and so one of the admissible types is

(5, . . , z, z). The family D is called a free multi-sorted extension of the algebra T if the

following closure conditions are satisfied: for every admissible type (5i, . . , (,, 5) for

operation o and for all tl~DcI,...,t,~Dyn the term o(t,,...,t,)EDy.

The next step of construction will be factorization of the algebra D by some

congruence relation which leaves D, as the free component. The algebra obtained in

this way is called a multi-sorted extension of the data algebra T. The construction that

was considered above may be generalized in several directions. Firstly, not only

operations of the signature 52 but their superpositions may be considered as the

operations of D. Secondly, the extension of source algebra may be constructed step by

step, an already built and factorized multi-sorted algebra being considered as the

material for new extension. The parameterization of types may be conveniently

realized by inserting the type signature 3 - into the data algebra and defining the

necessary operations on the types.

Type checking. The following example illustrates some possibilities for the realiza-

tion of a multi-sorted extension with the tools of APLAN. Components of D are

defined by means of predicates on 7’. Here is the piece of algebraic program.

NAMES check, subtype, checktype;

check := rs (t, s, x, y) (

(x;y)=check(x) 153 check(y),

(x,y:t)=check(x:t) &? check(y:t),

(nil:t)= 1,

isname + (x=check(vl(x))),

isname(x)+((x:t)=check(vl(x):t)),

((x : s) : t) = subtype (s, t),

(x:(t of s))=check((xas):t),

(x:t)=t(x)

);

Computations in APS 169

subtype := rs(x)(

(x, any) = 1,
(x,x)= 1,

(x of y, x of u)=subtype(y,u),
x=0

I?

checktype := rs (t, s, x, y) (
(x;y)=(checktype(x);checktype(y)),
(x,y:t)=(x-check(x:t),checktype(y:t)),
(x:t)=(x-check(x:t)),

isname(x (x,y)=(x-check(x),checktype(y)),
isname((x)=(x-check(x))

);

The rewriting system check checks that the data belongs to the given type.

A one-time application of this system to the list (x, y, . . . , z : t) transforms it to 1 if all

data structures x, y, , z belong to the type t. The types are presented by the names of

recognizing predicates. Therefore, t(x) is reduced to 1 or 0 dependently on the result of

recognition. Operation of is used for parameterization of types: t of(tr , . , t,) defines

the type depending on the parameters tI, . . . , t,. The following statements define the

type rsys of the rewriting systems of APLAN. The parameterized type list of(. ..) is

used in this example.

NAMES list, par, eql, rsys;
list := rs(t,x,y)(

check(x:t)+(((x,y)*t)=list(t+y)),
check(x:t)-+((x*t)=l)

);
par := rs(x)(isname(x) 11 isatom((x=1),x=0);
eql := rs(x,y,z)((x=y)=l, (x-+(y=z))=l,x=O);
rsys := rs(x,y)(

check(x:list of par; y:list of eql) + (rs(x)(y)= l),
x=0

);

Suppose now that the algebraic module which contains the above definitions is

completed by the following statements:

typedef := (rsys : rdn, simpl, delmlt;

list of par: plist);

task := prn(checktype(typedef));

170 A.A. Letichevsky, J. V. Kapitonova, S. V. Konozenko

Then if the values of names inserted in typedef meet the corresponding definitions,

the procedure task will print:

rdn 3 1, simpl = 1, delmlt 3 1; plist 3 1

Internal supportfir types. The computation of canonical forms must be generalized

to work with multi-sorted algebras and data types. The program system CANE is used

instead of CAN where 5 ranges over the signature of the types of some extensidn of the

basic data algebra called canonical extension. Program CAN< computes the function

satisfying the relation

CAN,lW,,t.))=cp,,,(CAN,,(t,), . ..>CAN~.(t.J),

where ~=we(~,~,tl, ...,t,)=(41,t.,i”) is one of the admissible types for the

operation w. The function CAN = CAN, is used for the initial computation of the

canonical form where v is the universal type. Functions vu,, are the interpreters of

operations. Together with function type they define the canonical extension of the

data algebra and the general algorithm to reduce the expressions to canonical form.

Function CAN now defines the system of equivalences

t = t’(CAN<) o CAN<(t)= CAN<(t’)

on the components D5 of canonical extension D of the data algebra which must

determine the congruence relation on D. The sufficient condition for these equiva-

lences to define a congruence is as follows: for every 4, w, tl , . . , t, there exists no more

than one type a=((,, <,,<) such that tlEDgl, t,,EDgn and c is admissible for o.

Use of canonical forms for multi-sorted algebras provides correct manipulation with

application and quote operation. Indeed, let us consider the algebra with three sorts:

T, T’, F. T is absolutely free algebra, T’ the algebra of terms, considered up to the

main equivalence (equivalence defied by the main canonical form) and F the algebra

of function descriptions. Then quote may be considered as the operation of the type

(T, T), application has three admissible operation types (T’, T’, T’), (F, T’, T’),

(T, T, T), and the admissible types of other operations may be defined by the function

type.

Another requirement to the realization of CAN is the protection of subobjects of

the object t from being reduced to canonical form. Then applying CAN satisfies the

invariance condition on the set of strongly disjoint states.

8. Concluding remarks

The devolvement of computational systems which integrate different paradigms of

programming and support efficient programming tools presents difficult problems. To

solve them one must use mathematical models for reasoning about programs, find

clear conditions for their correctness and then prove it.

The procedural tools of APS are used first of all to write strategies of rewriting and

enrich the rewriting systems by building into them different canonical forms on

different levels of implementation. Proving the properties of such tools demands the

use of clear semantics of programming language. This is especially important when

graph rewriting is used instead of tree rewriting.

Formalisms that were described in this paper helped the authors to design the APS

system and tools for its further devolvement.

References

[l] J.A. Bergstra, J. Hearing and P. Klint, eds., A&kzic Sprcificntion (ACM Press and Addison-Wesley,

Reading, MA, 1989).

[2] M. Bidoit and C. Choppy, ASSPEGIQUE: an integrated environment for algebraic specifications, in:

Proc. ftrternat. Joint Co@. on T/reorx cmri Pracricr of S&warr Derefopm~trt (Springer, Berlin, 1985),

246-260.

[3] J. Goguen, C. Kirchner, H. Kirchner, A. Megrelis and T. Wincler, An introduction to GBJ-3, in:

J.-P. Jouannaud and S. Kaplan, eds.. Proc. Isf Inrrrmf. Wmkshop OS Conditional ‘Turn Rewritiny

Systems (Springer, Berlin, 1988).

[4] G. Huet and J.J. Levy, Computations in nonambiguous linear term rewriting systems, Tech. Report

359, INRIA, Le Chesney, France, 1979.

[5] J.-P. Jouannaud and S. Kaplan, eds., Prctc. 1st f}7rer~?~t. W&shop orz C~~diti~izui Term Re~sr~ti~7~

Systems (Springer, Berlin, 1988).

[6] C. Kirchner and H. Kirchner, Reveur 3: implementation of a general completion procedure paramet-

rized by built-in theories and strategies, Sci. Comput. Programminy 20 (1986) 69986.
f73 P. Lescanne, ed., Rewritiny Techniyurs and Appiitcztions, Lecture Notes in Computer Science, Vol. 256

(Springer. Berlin, 15187).

[8] A.A. Letichevsky and J.V. Kapitonova, Algebraic programming in APS system, in: Proc. f&SAC ‘30,
Tokyo, Japan (ACM, New York, 1990) 68-75.

[9] A.A. Letichevsky, J.V. Kapitonova and S.V. Konozenko, Optimization of algebraic programs, in:

Proc. ISSAC ‘?I (ACM Press, New York, 1991) 370-376.

[lo] A.A. Letichevsky, J.V. Kapitonova and S.V. Konozenko. Algebraic programming system APS-1, in:

O.M. Tammepuu, ed.. ~~~~~R~~~‘4TlCS ‘89. Proc. S~lliet-~-rt~~c~ Symp., Tallinn (Institute of Cyber-

netics, Estonian Acad. of Sciences, 1989) 46-52.

/I l] M.J. O’Donnell, Term rewriting implementation of equational logic programming, in: P. Lescanne,

ed.. R~~riti~~ ~~~~~~i4z~~s and ~pp~~~ufj~~.~~ Lecture Notes in Computer Science, Vol. 256 (Springer,

Berlin, 1987) 1-12.

[12] R.C. Sekar and LV. Ramakrisl~n~n, Programming in equational logic: beyond strong sequentiality. in:

Proc. Sfh Ann. IEEE Symp. on Logic in Computer Science (IEEE Computer Society Press, Silver

Spring, MD, 1990) 230-241.

[I37 A.A. Stogny and T.A. Grinchenko, Mir series computers and ways of increasing the level of machine
intelligence, C$ernetics (rru~s~~t~~~ from Russinn), 23 (1987) 807-817.

[14] S. Wolfram, Mathematics ‘M A System &or Doing Mathematics by Computer (Addison-Wesley,
Reading, MA, 1988).

