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Abstract--In this paper we investigate the problem of finding a labeling of the vertices of an 
undirected tree with distinct integers such that the sum of weights of all edges is minimized. (The 
weight of an edge is the absolute value of the difference between the labelings of its end points). 
We give an O(n’) algorithm where i is approximately log 3/log2 _ 1.6 for solving this problem. 

1. INTRODUCTION 

Let G be an undirected graph with vertex set V(G) and edge set E(G) (see [2] for undefined 
graph theory terminology). A linear arrangement n of G is a one-to-one mapping from 
V(G) to the set of positive integers. The weight of an edge e = {u, u} in a linear 
arrangement 7c is defined to be the absolute value of z(u) - n(v). The cost of the linear 
arrangement 7~ of G, denoted by J=(C), is defined to be: 

The cosf of G, denoted byf(G), is the minimum value off,(G) as K ranges over all 
possible linear arrangements of G. Finally, a linear arrangement 71 is said to be optimal 
if f,(G) =f(G). We will often abbreviate the term optimal linear arrangement by OLA. 

During the past 20 yr, a number of researchers have investigated properties of optimal 
linear arrangements for a variety of classes of graphs. The first work in this subject appears 
to originate in the 1964 paper of Harper[l2] who determined the OLA’s for the class of 
n-cubes (which came up in connection with a minimization problem in error-correcting 
codes). This was followed by the papers of Seidvasser[ 161, who dealt with the costs of trees 
wi.th bounded degrees, and of Iordanskii [ 131, who improved some of Seidvasser’s bounds. 
For complete k-level binary trees, T, the value of f(T,) was given by Chung[4], settling 
an earlier question of Cahit [3]. Other properties and applications of OLA’s (in the context 
of location and assignment problems) can be found in [l, 5, 11-13, 16, 171, for example. 

From the algorithmic point of view, it was shown by Garey et al.[6] that the 
computational problem of determining an optimal linear arrangement for a general G is 
NP-complete (see [7] for a complete discussion of this concept). However, in the special 
case that G is a tree T, Goldberg and Klipker[lO] gave an O(n3) algorithm for determining 
an OLA for T on n vertices. This was recently improved to O(n2.2) in an interesting paper 
of Shiloach [ 171. In this paper we improve the upper bound even further by presenting an 
O(n”) algorithm for finding an OLA of any tree T on n vertices, where J. can be chosen 
to be any real number satisfying 

j > log 3 - = 1.585 * . . . 
* log2 

An outline of the remainder of the paper is as follows. In Section 2 we list a number 
of useful known properties we will need for our analysis. In Section 3, we give a variety 
of preliminary lemmas. In Section 4, we give a detailed analysis of a simplified version of 
our algorithm (whose running time can be bounded by O(n2) elementary operations) which 
illustrates the basic structure of the more complex O(n’) algorithm described in Section 
5. Finally, in Section 6, we list possible extensions and related questions. 
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2. PROPERTIES OF OPTIMAL LINEAR ARRANGEMENTS 

We summarize here some known properties of OLA’s which will be needed later. 
Property 1 (see [16]). An OLA, of a tree T maps V(T) onto a set of consecutive 

integers. 
We may in fact assume that an OLA n of T maps V(T) onto { 1, . ., n ] where 

n = 1 V(T) I unless otherwise specified. 
Property 2 (see [16]). The vertices u and u with X(U) = 1 and x(v) = n both have 

degree 1. 
Property 3 (see [13]). Let P denote the path in T connecting the two vertices labeled 

by 1 and n in P. Suppose P has vertices u,,, v,, . . ., u,. Then the labelings of the vertices of 
P are monotone. i.e. 

or 
rr(v,)<~r(u,+,) for i=O ,..., t - 1 

n(z+) > K(u,+,) for i = 0,. . ., t - 1. 

P is said to be the basic path in rr. 
Property 4 (see [13]). Suppose we remove all edges of a basic path P in T. The 

remaining graph is a union of vertex disjoint subtrees. Let r, denote the subtree which 
contains the vertex vi, i = 0, . . ., t. Then for a fixed i, the vertices in r are labeled by 
consecutive integers. Moreover, the restricted linear arrangement ni = n/ V( TJ is optimal. 

Let T* be a rooted tree with root r. For a linear arrangement n of T*, we define 

g,( T*): =f,( T*) + n(r) - 1. 

We remark that the additional quantity x(r) - 1 will eventually contribute to the 
weight of the edge joining the root r and some other vertex in a tree containing T* as a 
subtree. The cost of T*, denoted by g(T*), is a minimum value of g,(T*) as IC ranges over 
all linear arrangements of T*. A linear arrangement 7~ with g,(T*) = g(T*) is said to be 
optimal. 

Property 5. An OLA of a rooted tree T* maps V(T*) into integers 1, . . ., 1 V( T*) ( , 
and furthermore 2n(r) I 1 Y(T) ( + 1 where r is the root of T*. 

Proof It is easy to see that the OLA 7c maps V(T*) onto integers 1, . . ., n where 
n = I V(T*)I. Consider X’ with Z’(U) = n - n(v) + 1 for all u E V(T*). Then we have 
g,(T*) =fJT*) + n - x(r) 2 gJT*). This implies n - n(r) 2 z(r) - 1 as required. n 

Property 6. Let rr be an OLA of T. Let {u, u) be an edge in the basic path. Suppose 
we remove the edge {u, v}. The remaining graph can be viewed as two rooted trees T:, 
T:, with roots U, a, respectively. Then f(T) = g(Ty) + g(TF) + 1. 

Proof. Suppose R, and n2 are OLA’s of T: and T:, respectively. We define 71’ as 
follows: 

n’(w) = I V(T:)I - n,(w) + 1 if w E V(T:), 

n’(w) = n*(w) + I UT:) I if w E V(Tf). 

Then 

LGT =L,(T:> +L,(T:) + n’(v) - n’(u) 

=.L,(T:> + n,(u) - I W:)l - 1 

+L,(T:> + 4~) + I VT:) I 

= g(V) + g(T:) + 1 

IL(T). 

From Properties 3 and 4 we may assume that IC maps V( T:) onto 1, . . ., I V( T:) I and 
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we have 

This proves that.f(T)=g(T:)+g(T,*)+ 1. n 
Let L’ be a vertex in T. A substree formed by removing u and its incident edges is called 

a branch of T - ~7. A rooted branch of T - v is a branch with the vertex adjacent to v as 
the root. A vertex is said to be a center of T if all branches T - u have no more than 
I V(T) j/2 vertices. 

Propert?, 7 (see [2]). In any tree there exist one or two centers. 
Properr?, 8 (see [I 0. 171). Any center of a tree is contained in the basic path of any OLA. 
For a rooted tree T:, we mean by T, the unrooted version of Tj+. 
Property 9 (see [17]). Let r be the root of a tree T*. Let T,,, T,, T2, . . . denote the 

branches in T - {r) with 1 V(Ti) 1 = t,, ordered so that to 2 t, 2 . . . . Let p =p (T*) be the 
largest integer satisfying 

where 

2p+l 

and 

y =y(T*): = n - c t, 
I=0 

n = IV(T)l. 

Then in this case an OLA rt is either of type (: To) or of type (T,, . . ., T, : T,, + ,, . . ., T,) 
where by type (T,,, . ., T,, : r, + ,, . . ., Tr) we mean the set of linear arrangements in which 

UT,,. . . . v(Ts), “(TB~$, T,,)>, v(T,+,), .. .T V(T,,) are labeled by consecutive integers 

in this order. If no such p exists, we set p = - 1 and the OLA’s are all of type (: To). 
Propergs 10 (see [I 51). Suppose u is a center of T. Let T,, T,, . . . denote the brarxhes 

in T- {u) with / V(T,)l = t, and to2 t, 2.. . . Let q = q(T) be the largest positive integer 
satisfying 

where 

z = z(T) = n - 5 t,. 
I=0 

Then there is an OLA rt either of type (To :) or of type (T,, . . ., T,, : Tzq_ ,, . . ., T,). 
If no such q exists we set q = - 1 and there is always an OLA of type (To :). 

Properg, 11 (see [15]). Suppose there is an OLA for T* or T of type (T,,, T,,, , . ., T,, : 
T,, _,. . . . T,,). Then a linear arrangement 7t of type (T,,, T,z, . . ., Ti, : Tis +,, . . ., 7’,,) is 
optimal if 7c satisfies the following conditions: 

(i) For j > s, the restrictions of rr to Tr, denoted by q, is optimal for TIT 
(ii) For nr I s. suppose the restriction of 7c to T$ is denoted by x,,. Then it:_, as defined 

in Prop. 5 is optimal for Tz, 

(iii) The restriction of n to T - 6 TQ is optimal for T - b T,,, 
,=I /=I 

We denote the preceding linear arrangements 7c by n(T,,. T,,, Tr, : T, _ ,, . . ., T,,). We note 
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that such a x is not necessarily unique. We also observe that for an unrooted tree T. 
n(T,,. T,,, . . ., T,, : Ti, _ ,, . . . TJ is optimal if and only if n(T,,, . . ., T,$ _, : T,,, ., T,?, T,,) is 
optimal: However. this is not true for rooted trees. 

By combining the preceding properties we have: 
Property 12. Define 

+ ~3 -,$, 0 -j + l)(t, + t,, _, _ ,I 

where 1 V(T?) { = &, and I Y(T) I = n. 

If n(T,, Ti,, . . ., II, : r,* *,, * . ‘3 
C( T,,, Tzy . . ‘3 f’is : Ts + ,> . . .t Tiz)* 

T,,) is optimal for T, then the cost of T is 

Property 13. We define 

- ,$,(S -j + l)(ti, + lib _, _,I - (’ + l)E% * 1 

where 1 V(TJ 1 = t5 and ) V(T) I = n. 
If z(T,,, T,, . . ., T, +, : Tis +,, , . ., Tth +,) is optimal for T*, then the cost of T* is 

C(T,,, T.z, . . ., T,$ : T,, + ,, . . ., T> + ,h 
We next establish a series of facts which are used in Section IV to prove optimality 

of the generated linear arrangements. 

For a rooted tree T*, g(T*) = min (C(: To), C(: T,)]. 
ProoS. It follows from Property 9 that the OLA is either of type (: To) or of type 

(T,, . . ., T,, : T,, ,, . . ., TJ. Since type ( T2, . . ., Tzp : T,, I, . . ., T,) is a subset of (: T,), 
Lemma 1 is proved. 

Lemmas 2 and 3 are immediate consequences of Property 13. 

LEMMA 2 
If p(T*)= - 1, then g(T*) = C(: To). 

LEMMA 3 
If p =p(T*) 2 0, then we have 

g(T*) = min (C(: To), C(T,, . ., T, : Tzp+,, . ., T,)). 

LEMMA 4 
For a tree T as defined in Property 10, we have 

f(T) = minfC(T,: T,), C(T,: T,), C(TI : T,)). 

Proof. It follows from Property 10 that there is an OLA n of type (r, :) or of type 
(?; : T,). If z is of type (To :), then by Property 6 the induced map x’ of x on T* - To is 
optimal where Z’(Y) = z(v) - 1 If(T It follows from Property 9 that n’ is of type (: T,) 
or (: 7’?). Thus x on T is of type (T, : T,), (To : T2) or (T2 : T,). 

LEMMA 5 
If 9 = y(T) > 0, then we have 

J’(T) = minf C( T,, . ., Tzy : Tzq_ ,, . . . . T,>>. 

Proof. This follows immediately for Property 10. n 
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If q = - 1, thenS(T)=min {C(7’,: r,), C(T,: T,)). 
Proof. It follows from Property 10 that there exists an OLA n of type (T,:). From 

Property 6, we have f(r) = g(T,*) + g(T* - r,,) + 1 where T* - T, has a center u as the 
root. It follows from Lemma 3 that the OLA of T* - T, is of type (: r,) or (: Tz). Thus 
the OLA n(T) of T is of type (To : T,) or (T, : 7’J. l 

LEMMA 7 
Supposeq21.WedefineQi=(0,1,...,2q}-{’} d I an we define i, to be thejth smallest 

integer in Qi. Then 

f(T) = min {C(T+ Ti4,. . ., T,& : Ti, _,, . . ., T,,): i = 0, 1, . . ., 2~). 

Proof. It sufficies to show that there exists an OLA of type W, = 

(Tz, 7),, . . .) Tz, : Ta _ ,T If,,) for some i. We will prove this by induction on q. From 
Lemma 4, it holds for q = 1. Suppose it is true for all trees T’ with q( T’) < q and q 2 2. 
From Lemmas 5 and 6 we know that there exists an OLA of type (T,, : T,), (T, : T2) 
or W,. Suppose 7~ = n(T, : T,) is optimal. Consider T’ = T - T, - T,. Then 
q(T’) L q(T) - 1 = q - 1. By the induction hypothesis there exists an OLA for T’ of type 
(ri,, . . ., T,% : T,2, _ ,, . . ., Ti,) where { i3, . . ., u%)= (3, . . ., 2q ) - {i j for some i. This implies 
there exists 71 = n(T) of hype W,. Suppose n(T, : T,) is optimal. Then the rooted tree 
T* - T, has p(T* - T,) 2 q(T) - 1 since the branch Th in T* - T, has at least 
L1,/2 + l_J + Ly’/2 + 1Jvertices wherey’ = y(T* - T,,. Thus there exists an OLA of T* - T, 
of type (T3,. . ., T,_, : T&, . . ., T,) or of type (: T,). Since we assumed x is of type (T, : T,), 
we conclude that there exists an OLA for T of type W,. This completes the proof. 

LEMMA 8 
Suppose p = p(T*) 2 0. For i 5 2p + 1, we define Pi = {O, . . ., 2p + l> - {i} and 4 to 

be the jth smallest integer in Pi. Then g(T*) = min{C(T,,, T,,, . . ., 1;+ : Tzp +,, . . ., T,,): 
i=O,l,..., 2p+Ij. 

Proof. It suffices to show that there exists an OLA of type u, = 
(T,,? T.d, . . ‘> T2, : q, + ,, . . -2 TJ for some i. From Lemma 1, we know that it is true for T* 
with p( T*) = 0. Suppose it is true for all trees T* with p( T*) < p( T*) = p for a fixed p > 0. 
From Lemma 3, there exists an OLA of type (: T,,) or of type U,,. Suppose there exists a 
linear arrangement n of type (: T,). Then the induced map of II on T - T, is optimal. 
Moreover, q(T - T,) 2 p(T*). From Lemma 7 there exists an OLA of type 
(Tiz, * . -3 Tto : T+ + I, . . .T Ti3) for T - T, where {i,, i,, . . ., i2p+lj = (1,2,. . ., 2p + I} - (i} 
for some i. This implies that there exists an OLA for T* of type U,. 

The following two lemmas follow immediately from Lemmas 7 and 8. 

LEMMA 9 
Suppose q = q(T) > q’ 2 1. We define Q: = {O, 1,. . ., 2q’) - {i> and we define i/ to be 

the jth smallest integer in Q,. Then f(T) = min {C(7;,, 1;,, . . ., T4, : T,%,_,, . . ., T,,): 
i = 0, 1, . .) 2q’). 

LEMMA 10 
Suppose p = p(T*) > p’ 2 1. We define PI = (0, 1, . . ., 2p’ -t l} - (i>, for i 5 2p’ + 1 

and we define 4 to be the jth smallest integer in PJ. Then g(T*) = 
min { C(T,,, T,,, . . ., Tie, : TiB.+ ,, . . ., Ti,): i = 0, 1, . . ., 2~’ + 1). 

3. AN 0(n2) ALGORITHM 

Here we will give a simplified recursion algorithm to find OLA for a tree or a rooted 
tree. Our analysis will show that the running time can be bounded by O(n’) elementary 
operations. We want to point out that this algorithm is quite similar to the O(n’.‘) 
algorithm of Shiloach[l7], though the complexity analysis is done more carefully. Some 
of the arguments given here will be used in the next section to improve the running time 
from 0 (n ‘) to O(n”) where i, B log 3/lag 2. 

CAMS’4 Vo, I”. No I-_D 



48 

Algorithm 1 

F. R. K. CHUNG 

Goal. For a given tree T or a rooted tree T*, we want to determine the cost off(T) 
or g(T*) and the OLA x(T) or x(T*). 

Step 0. If the tree has a root r, go to step 5. 
Step 1. Find a center u of T. 
Step 2. Determine branches T,, T’, . ., of T - {u> where / V(T,)) = t,and t,,~ t, 2.. 

Find the greatest positive integer q satisfying rzq 2 /_r,/2 + 1 J + Lz/2 + 1 J where 

z=n- !? ti.Setq=-1,ifnosuchqexists. 
i=O 

Sfep 3. If q # - 1, go the Step 4. Find g(T,*), g(T* - T,) and the corresponding 
OLA’s x(T,*) and 7c(T* - T,). Then set g(T*) = C(T, :) = g( T,*) + g(T* - To) + 1 and 
combine 7z(T$) and x(T* - T,) to form n(T) = n(T, :) (see Property 11). Stop. 

Step 4. Find the costs and the OLA’s of T,* and T, u 2 where Z = T - $ r for 
r=O 

i =O, 1,. . ., 2q. Define Q, = (0, 1, . . ., 2q] - {i> and define i/ to be the jth smallest integer 
in Q,. DetermineS( T) = min { C( Til, Ti4, . . ., Tfz, : Ttz, _ ,, . . ., T,,): i = 0, 1, ., 2q ] and form 
rt (T) accordingly. Stop. 

Step 5. Determine branches To, T,, . . ., of T* - r where / V(T,) / = t, and to 2 t, L . . . . 

Find the greatest integer p satisfying 
?p+ I 

t Zp+,2Lf0/2+1]+~/2+l_jwherey=n- X t,. 
I=0 

Set p = - 1 if no such p exists. 
Step 6. If p # - 1, go to Step 7. Find g(T,*), f( T - T,), n(T,*) and n( T - T,). 

Determine C(: To). Set g(T*) = C(: To) and rr(T*) = n(: To). Stop. 

Step 7. Find g(TF) andf(T, u Y), for i = 0, . ., 2p + 1, where Y = T - ‘“6’ T,. Define 
i=O 

Pi = (0, 1, . . .) 2p + 1) - (i> and d e fi ne 4 to be the jth smallest integer in P,. Determine 
g(T*) = min {C(T,z, T,4,. . ., T,4 : T,2p+,, . . ., To): i = 0, 1,. . .,2p + l> and set n(T*) 
accordingly. Stop. 

We note that the optimality of the linear arrangement generated by algorithm 1 follows 
immediately from Lemmas 7 and 8. We let F(T) and G(T*) denote the number of 
elementary computational operations required to findf( T) and g( T*) and the correspond- 
ing OLA’s in algorithm 1. Let F(n) and G(n) denote the maximum value of F(T) and 
G(T*), respectively, over all trees T on n vertices and rooted trees T* on n vertices. We 
will prove the following: 

THEOREM 1 

F(n) < 0.8 cn2 and G(n) < cn2 for a suitable absolute constant c > 0. 

Proof. We will prove by induction the following stronger statements: 

6) F(T) < 0.8 cn2 

(ii) G(T*)<cn’ifp =p(T*)= - 1 

(2P + 2) G(T*) < 4.3~ (2p + 3)2 nz if P 2 0 

Note that 

43 (2P +2) <8.6< 1, 
. (2p + 3)2 - 32 

Suppose (i), (ii) and (iii) hold for trees with fewer than n vertices. 
Proof of(i). For a tree T with n vertices we consider the following possibilities: 

Case 1: q = q(T) = - 1. 
F(T) I G(T$) + G( T* - To) + c’n where c’n steps are required to perform Steps 1, 2 

and 6 of the algorithms. 
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Ifp(T*- To)= - 1, we have 
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G(T*- To)sG(T:)+F(T- To- T,)+c’n. 

Thus 

F(T) I c(t,’ + r,* + 0.8(n - to - 1,)‘) + 2c’n < 0.8 cn’. 

Since the function b(x) = x’ + a(n - x2) has (db(x)/dx*) > 0 for a fixed a, the maximum 
of h is achieved at the boundary. Note that 1 < f, I I, I (n/2). It can be easily verified that 
the maximum is at I,, = t, = 1. If p’ = p( T* - T,) # 1, we have, by induction hypothesis (iii) 
that 

G(T* - T,) < 4.3~ (2P, + 3)? 2p’ + 2 (fl _ &J?. 

Thus 

2p’+2 
t: + 4.3 (2p, + 3)2 (n - t,)’ < 0.8 cn* 

since 
n L-l&- 

2- 2f+4 
and 

p’20 

Case 2: q 2 1. 
We have 

F(T) 5 ; (G(T:) + F(T, u Z)) + c’n 
I=0 

where 

Z= T, Y I< 4 

and 
to + z 

f*q 2 -. 
2 

We then have 

F(T) < ? (t: + 0.8(t, + z)‘) + c’n 
i=o > 

Here we will use the following fact which will be verified in the Appendix. 

LEMMA 11 
The following function 

m-1 

H(cf.0, 4, . . ., a,,,) = 1 (a: + O.S(ai + a,>*) 
I=0 

with 2 X, = 1, (l/2) 2 a, 2.. . 2 a,_, 2 (a0 + a,)/2 L a, r 0, m 2 2 has a maximum at the 
, = 0 

point with q, = 2, = . = a, = l/(m + 1). 
Note we use Lemma 11 and consider H(to/n, . . ., t&z, z/n). We then obtain 
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Proof of (ii). For a rooted tree T* with p =p(T*) = - 1 we have 

G(T*)sG(T,*)+F(T-T,)+c’n 

< c(to2 + 0.8(n - to)’ + c’n 

< cn”. 

Proof of (iii). For p 2 0 we have 

zpi- I 

G(T”)s 1 (G(T,*)+F(T, U Y))+c'n 
r=O 

where 

and 

t >to 
?p+l- 2 

By Lemma 11, we have 

( 2p+ I 

W-*1 < c 1 (ti2 + 0.8(ti + y)2) + c’n ‘I 

<42 (2p+2)cnz+c’n 
. (2p + 3>2 

< 4 3 (2p + 2) cn2 

. (2p + 3)2 . 

We remark that the bound O(n’) can be improved to O(n’.99) by a more careful analysis 
of the above proof. 

4. AN ni ALGORITHM WHERE 1 >LOG 3/LOG 2 

The O(n”) algorithm that we will give is a refined version of algorithm 1. The main 
idea here is to make use of the OLA’s of subtrees more efficiently in the recursive process. 
The algorithm consists of three parts: Algorithm 2a for determining the cost and the OLA’s 
for a tree T: Algorithm 2b for determining the cost and the OLA for a rooted tree T*; 
and Algorithm 2c which, for two trees T* and T* with ( V(T) I 1 Y(T) / , determines the 
cost and the OLA’s of T*, and T u T, which is the tree formed by combining T and T 
with an edge joining the roots of T* and T *. The computational complexity of finding 
a pair (g( T*), f (T u T)), denoted by h( T*, F*), is in general much less that that of finding 
g(T*) and f (T u T) separately. 

Algorithm 2 

Algorithm 2a 

Step 1. Find a center u of T. 
Step 2. Determine branches To, T,, . . . . ofT-uwhere [V(T,)I =t,,t,Lt,r . . . . Find 

the greatest positive integer q = q(T) satisfying 
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where 

If no such q exists, set q = - 1. 
Step 3. If q # - 1, go to Step 4. Find g(T,*), g(T* - 7’,) and the corresponding OLA’s 

TT(T,*), z(T*- To). Determine C(T,:)=g(T,*)+g(T*-To)+ 1. Setf(T)=C(T,:) and 
z(T) = 7r(To :). stop. 

Step 4. Find h(T,*, Z*) for i = 0, 1,. . .,2q, where Z* = T* - 8 T,. Define 
I=0 

Q,= (0, 1,. . ., 2q) - {ij and define 4 to be the jth smallest integer in Q,. Determine 
f( Tj = min (C(T,?, Tjd, . ., Tgz, : T,*, _ ,, . . ., T,,): i = 0, 1, . ., 2q} and the corresponding 
n(T). Stop. 

Algorithm 2h 

Step 1. Determine branches To, T,, T,, . . . of T* - r, where 1 V(TJ ( = t, and 
to 2 t, 2 . . . Find the greatest integer p =p(T*) satisfying 

If no such P exists, set p = - 1. 
Step 2. If p # - 1, go to Step 3. 
Find g(T,*),f(T - To), n(T,*) and n(T - To). Determine C(: To). Set g(T*) = C(: T,) 

and n(T*) = x(: To). Stop. 

Step 3. Find h(T:, Y*) for i = 0, 1, . . ., 2p + 1, where Y* = T* - ‘“u’ ’ T,. Define 
,=O 

P, = {O, 1,. . . . 2p + 1) - {i>, and i, to be the jth smallest integer in Pi. Determine 
g(T*) = min (C(T,?, T,,, . ., TIP : T4 +,, . . ., I;:J: i = 0, 1,. . .,2p + 1) and n(T*) accord- 
ingly. 

Algorithm 2c 

Step 1. Find a center u of the tree T U T in T. 
Step 2. Determine branches X, T,, T,, . . . of T u ?= - u where I V(TJ) = ti, 

t, r r, 2 . . . I V(X) I = x, I V(T) I = n, j V( T’) 1 = n ’ I n and X is the branch which 
contains T’. 

Step 3. Let P denote the path joining u and the root I of T*. Suppose Pcontains u = uo, 
r,. . . ., L’,~ = Y. Let X, denote the branch of T u T - Vi which contains i? Consider the tree 
R,* = (T LJ T - Xi)* with zji as the root. 
p’ =p((T u r - T,)*). 

Determine q = q(T u T), pi =p(R,+), 

Step4. Ifn’>(n/3).gotoStep8.1fpj=-1 forallOIi<s,gotoStep5.Ifq=1, 
go ro Step 8. If s < t,, q = - 1, p’ = 0, go to Step 8. Go to Step 7. 

Step 5. If s < t?. q = - 1, p’ = - 1 go to Step 6. Go to Step 8. 

Step 6. If p. 2 0, go to Step 7. If p. = - 1 and tz 2 C t,, go to Step 9. Go to Step 10. 
i>2 

Step 7. Determine g(T*), x( T*) and remember the cost and OLA’s of the following 
trees. if available. (1) R,*; (2) SF, the second largest branch of R,*; (3) TT; (4) T - T,. 

Determine .f(T u T) using the above data. 
Step 8. Determine f(T u T), n(T u T) and remember the cost and OLA’s of the 

following trees, if available: (1) T:; (2) I; u W where W is a subtree of T u i= not 
containing vertices in any of the 2q + 1 largest branch of T u i= - u; (3) R,*; (4) R, - T,; 
(5) S,. R, - R, _ , Determine g( T*) using the above data. 

Stpp 9. Determine g(T:), h(TT, (R, - T, - T,)*),f(T u T - T, - T,),f(X - R, - P). 
Set g(T*) = C(: T,); .f‘(T u T) = C(T, : T,). 

Step 10. Determine g(T:), g(TT), h(T,* - T, - Tz,X*), f(X -R,- P) if 
q(R,, - T,) = - 1. Otherwise determine g(T:), h(R$ - T, - T2, X*), h(TT, (W”)*), 
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f (X - R,, - P) where W” = R, - ‘y’i’ r and p” =p(R,* - T, - T,). Set g(T*) = C(: T,); 

f (T u T) = C(T, : T,). Stop. 
To see that Algorithm 2 gives the OLA’s and cost for trees, the case-by-case analysis 

is included in the proof of Theorem 2. 
We remark that in our algorithm, when the cost of a rooted tree Q* is determined. 

the cost and the OLA’s of the largest branch Q$ and Q - Q0 are always found. Thus in 
Step 8 of Algorithm 2c, the cost and the OLA’s of R,*, RF, T: and T - T, are found in 
determining g(T*). This is not true in general for ST. 

Let F(T) and G(T*) denote the number of elementary computational operations 
required in Algorithm 2 to find the cost and the OLA’s for T and T*. respectively. Let 
F(n) and G(n) denote the maximum values of F(T) and G(T*) over all trees Tand rooted 
trees T* on n vertices. Let H( T*, I=*) denote the number of operations required for finding 
the cost and the OLA’s of T* and T u T and let H(n, n’), n > n’, denote the maximum 
value of H(T*, T*) over all trees T* on n vertices and in* on n’ vertices. 

We will prove the following 

THEOREM 2 
F(n) < 0.7& 

G(n) < cn” 

where I = log3/log 2 + L for any 6 > 0 and some constant c > 0. 
Proof. We will establish by induction on n and n’ the following stronger statements 

for a tree T* on n vertices and a tree F* on n’ vertices, n’ < n. (1) F(T) < 0.7 cn’ if 
q = q(T) = - 1; (2) F(T)s0.58cni if p((T- To)*)20 and q = - 1; (3) 
F(T) I 2.lc((2q + 1)/(2q + 2)“)n” if q = q(T) 2 1; (4) G(T*) I cn’ ifp =p(T*) = - 1; (5) 
G(T*) I 2.1~ ((2~ + 2)/(2p + 3)“)n” if p 2 0; (6) H(T*, T*) 20.7~ ((n + n’)” + 
((n - n’)/2)‘) if n’ > (n/3); (7) H(T*, T*) 5 c(n” + 0.7((n + n’)/2>“) if n’ < (n/3). 

Note that 2.1 ((2q + 1)/(2q f 2)“) 5 0.7 for q 2 1 and 2.1 ((2~ + 2)/(2p + 3)“) < 1 for 
p L 0. Thus Theorem 2 will be proved after we establish these seven inequalities by 
induction on n and n’. 

We need the following auxiliary lemma whose proof will be given in the appendix. 

LEMMA 12 
Consider the function 

The maximum of Kk over all points, satisfying 

and m 2 2, is no more than 

2.lm 

(m + 1)“’ 

Proof of (1) and (2). Since q(T) = - 1, we have 

F(T) 5 G(T$) + G(T* - To) + c/n.. 

lfp(T* - T,,) = - 1, we have 

G(T* - T,J I G(T:) + F(T - T, - T,) + c’n. 
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F(T) < c(t,” + 1,” + 0.7(n - IO - 2,)“) + c’n. 

Note that for the function b(x) = xi + a(n -x)“, where a is a constant, we have 
(A’h/dx’) > 0. The maximum of b is at a boundary point. Since 1 s t, s t, I n/2, it can 
be easily checked that 

F(T) < c(2 + 0.7(n - 2)9 + c’n < 0.07n’ 

Note that c’n is in fact much smaller than n” and can often be neglected. In the 
remaining part of the proof the term c’n will sometimes be omitted to simplify the proof. 

If ~(7” - r,J = p’ 2 0, by induction hypothesis (5), we have 

Therefore 

PP’f2) 
G(T* - r,,) < 2.1~(~~, + 3)“(n - t,)L. 

where 

foi+2.1(2p,+3)” C2p’ + 2) (n _ q;. 

n 
n/22t,2-. 

2p’+4 

The maximum of the above expression is achieved at lo = (n/2) or t,, = n/(2p’ + 4) and 
we have 

Proof of (3). In this case q(T) = q 2 1, and we have 

F(T) I 2 H(T,*, z*) = K,(t,, . . .' r2p z> 
i=O 

where k satisfies 

n/22t,>.. 
t, + z 

.2tk_,23z2fk2...2t2q2- 
2 

>ZlO. 

By Lemma 12, we have 

2q + 1 
F(T) I2.lC (2q + 2)” n’. 

Proqf of (4). In this case p(T*) = - 1. Therefore 

G(T*)sG(T,*)+F(T*-To) 

< c(toi + 0.7(t - to)L) 

< cn’. 

Proof qf (5). Since p = p( T*) # - 1, we have, by Lemma 12, 

?p+ I 
G(T*) I C H(T,*, Y*) 

1=0 

5 2 lc (2p + 2, 
. (2p + 3)’ n”. 
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Proofof(6). We use the definition in algorithm 2c. Ifp, = p(R:) # - 1 for some i > 0, 
then we have x = 1 V(X) 2 n’ + I V(SJ ( where S, is the second largest branch of R,. 

If pi = 0, we have 

s = 1 V(S,)l > 
I V(K) I - s 

2 

Therefore 

This contradicts the fact that u is a center. If pi > 0, then j 

1 Y(R,_ ,)( I e < 1 V(Ri) ( /2 5 ;. 
I 

This again contradicts the fact that u is a center and IV(&)/ > (n + n/)/2. Thus, 
pi = - 1 for all i > 0 and we determinef(T u ?‘) first (except for one case) while the cost 
and the OLA’s of T,*, 7; u W, R,*, R, - T, are saved if available. Since x 2 n’ > (n/3), we 
have x > t,. 

We consider the following possibilities: 

Case 1: x2& 
Since pi = - 1 for all i > 0, g(T*) can be determined by finding g(R,*) andf(T - Z&P). 
Ifq=- 1 and x 2 t,, then g(R,*) are found in determiningf(T u T). Thus we have 

H(T*,T)<F(TuF)+F(T-R,-P)<0.7c (n+n’)“+ ( (!);) 

since 

IV(T-R,-P)I <n- IV(R,,)I d+f$ 

and T - R, - P denote the forest formed by removing the edges of P’ and vertices and 
edges of &. 

If q = - 1 and t, > x 2 t,, then it follows from the definition that p0 = q - 1. Thus 
g(R,*) can be determined by combining g(TF) and f(& - T,) which are found in 
determining f(T u F). Therefore we have 

H(T*, F*) 5 F(T u T) + F(T - R, - P) 50.7~ ( (V);). (n + n’>” + 

If q 2 1, then it follows from the definition that p0 2 q - 1 and g(R,*) can be 
determined by using g(T,*), f(TL u W) (see Lemma 10). This again implies 

H(T*, l=*)<F(u F)+F(T-R,,-P)I0.7c (n +n’)“+ ( (yy). 

Case 2: t, < x < t, 
If q 2 1, then p,, 2 0. The proof is similar to that in Case 1. It remains to consider the 

case that q = - I. By definition we have 

t,+4 n-t,-tt,-x 
x<7;--+ 

n+4-t,-x 
= 

i.e. 
3x + t, I n + 2. 
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Since r2 > x 2 (n + 1)/3, we have a contradiction. This completes the proof of (6). 
The proof of (7) is basically similar to that of (6) though more cases have to be 

considered. A detailed proof will be included in the Appendix. 
Theorem 2 can be rewritten as follows: 

THEOREM 3 

F(n) < 0.7n” 

G(n) < ,’ 

for any i, > log 3/lag 2 and n sufficiently large. 

5. CONCLUDING REMARKS 

The worse-case complexity for the optimal linear arrangement problem has a lower 
bound O(n log n ) since the values of OLA’s for subtrees have to be sorted. In this paper 
we obtain an upper bound O(nq where i. > log 3/lag 2. It is natural to ask the problem 
of further narrowing the gap between the upper bound and the lower bound. Here we will 
mention a few other related problems. 

(1) A linear arrangement rr for a directed graph is required to satisfy the additional 
condition that n(u) < n(a) if there is an edge from u to t’. The optimal linear arrangement 
problem for directed graph can then be viewed as a job sequencing problem[ 1 J. Even and 
Shiloach[5] proved that the optimal linear arrangement problem for a cyclic directed 
graphs is also NP-complete. Adolphson and Hu[l] solved the problem for sorted directed 
trees (in which all edges are directed toward the root) with an O(n logn) algorithm. We 
can consider another type of trees, namely, directed trees in which each edge has certain 
assigned orientation. What is the algorithmic complexity for determining the optimal linear 
arrangements for directed trees? 

(2) Meir [3] suggested the corresponding problem for the case that the weight function 
for an edge {u, U} is (n(u) - x(u))~. In general we may consider the problem of determining 
the linear arrangement to minimize the generalized cost of the graph. For example, for 
fixed value m, what is 

min 1 IX(U)-7c(0)Jm? 
’ {u. U) E E(G) 

We note that when m approaches infinity that is equivalent to the bandwidth problem 
of determining the linear arrangement which minimizes 

{U,$~;G:;c, In(u) - n(u)1 

Papadimitriou[lS] proved that the bandwidth problem for graphs is NP-complete. It 
remains NP-complete for trees with no vertex degree exceeding 3 (see 181). However, for 
general m the problem is far from being answered. 
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APPENDIX 
Proof of Lemma 11. Suppose H has a maximum at (&,, p,, . ., 8,) with 

~fB~=Bm~then,then~,=(l/m+1),i=O,...,m.Suppose~,>~,.Since(a+t)2+(b-t)~>a~+b~for~~h 
and c small, we have 

where 

H(B,. . .> 8,) = H 
> 

I?(&,, /I,,,) = H /I,,, ., /?,,,) = H &,, /$, . ., x, v, ., e, 8, =i&‘+.xZ+(m-i-1) 

where 

z 
+ O.Si& + j&J2 +0.8(x + &,)* + 0.8(m - i - 1) 

PO + Pfn 
i~o+x+(m-i-l)---- 

Bo + pnl 
2 

+/I,= 1, &>x t-----. 
2 

By straightforward calculations, it can be shown that 

a ‘fh, 4 
darn2 

> 0. 

Thus the maximum of A is attained at a boundary point. This implies that 

or B,,, = 0. Note that for 8, = 0 we have, for tn 2 3, 

WB,, ., &,_ ,, 0) I H 
2 I I I 1 4.2m 

~ __ ~ __- __ =- m + I’ m + 1’ ” m + I’ 
o = I.@ +3)< H 

> 
@+1)? m+l’m+l”“‘m+l > (m + 1): 

and for m = 2 we have 

Thus we have 

Therefore 

where 

Since 

H(,,.,,.,).H(~,~,O)=O.22,<,(~.~,~). 

Bo + 8, 
x =-. 

2 

Ba + 8, 
i&+(m -i) 2 

i > 
-eP,= 1, &2/L. 

the maximum of A is achieved on the boundary. Note that 

I 
__ I /I0 5 min 
mfl 
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If & # 8,. then PO # l/(m + 1). We may assume the maximum of i is achieved at &, = min((li2). 2/(m + 1)). 
For m 2 3. we have 

For M = 2. we have &, = (l/2), 8, 2 (1 + 2&)/2, and fi(l/2) = H((l/2), (l/3), (l/6)) < fi(l/3), which is a 
contradiction. Therefore we have PO = b,,,. Lemma 9 is proved. 

The proof of Lemma 12. We will first consider K&a,,, a,, ., a,) with a0 2 a, 2 > (a0 + a,,,)/2 2 a, 2 0. We 
will show that &(a,, a,. _. ., a,) ~K,(l/(m + l), l/(m + 1), ., l/(m + 1)). Suppose E(, has a maximum at 
(,$,. 8,. ., b,,,). and &, > 8,. Since (a + c)” + (b -6)’ > a* + b’ for a > b and t small we can assume 

Kl(B”, B,, ‘> 8,) = IL 
> 

= mm 8,) 

where i& + s + (m - i - I)(/$ + &,/2) + /?,,, = 1, PO z x 2 (& + &J/2. Similar to the proof 
we note that (??R/c?~,~) > 0; Thus we have x = (PO + p,)/2 or /l, = 0. If 
&(/I,, 0) I K,(2/(m + 1), 0) < K,,( l/(m + I), l/(m + 1)). We then have x = (/I0 + &J/2 and 

&(B,. B,. . .> Pm) = 
Bo+Bm Bo+8, 

Po. Pm . ‘1 Bo, 2’ 2 , .1 

of Lemma 11, 
&,,= 0, then 

where i& + (m - 1 )((I$, + 8,,,)/2) + &, = 1. Again (d2fi/~j?,*) > 0, and the maximum of &, is attained on the 
boundary. Since l/(m + 1) I PO 5 2/(m + 1) and we assume /I0 #(l/m + l), we have /I0 = 2/(m + 1). However, 

which is a contradiction. Thus we prove that K,, attains its maximum at (l/(m + l), ., l/(m + 1)). 
Now we consider K,(a,. Y,, ., a,) with a, > a, 2 2 a,,, _ , t 3a,(a,, + a,/2) 2 a,,, 2 0. It can be proved in 

a similar manner that 

3 3 3 1 8.4m 

&,,(a,, a,, a,,,) I K,,, - - . . . 3m + 1’ 3m + 1’ . ” GTi’ GTTi > 
=p 

(3m + 1)” 

For m 2 4 and 2 I k I 2, we consider 

&.(a,. . . a,_) = KJao. ., ali _ ,, a,) + K&a,, ., a, _ ,, a,,,) I $$@~al+am);+~(~k4)i 

1 
and a,s-----. 

m+l 

Therefore Kk is bounded above by the maximum of the following function 

wherea+b=l.(m-k+l)/(m+l)>b23(m-k)/(3m+2k). 

Note (a0 + a,) that we choose a, b so that a& 2 a,3(m - k)a, 2 b 2 (m - k) 2 
> 

. 

Smce (d2wdb’) > 0. the maximum of H’ is attained at a boundary point. If 

m-k+1 
b=----- 

m+l ’ 

then 

w(b) I 
1 1 1 - -- 

m + 1’ m + I’ ” m-tl > 

It suffices to consider the case that b = 3(m - k)/(3m + 2k). Then 

“4k(~~&~+2’1(nl -‘)((m -11”1,(2 +2k)) ’ 

s 
19k + (2.1)3”(m -k - 0.9) I (2.1)3” + 7.lk - 10 

(3m + 2k)” (3m + 4)” 

I (2.1)3”m + 4.2 2.lm 

(3m + 4)’ 
I-----Y for 2sksm-2. 

(m + 1)’ 

(Note that x’*’ <(s + l)“(s -0.9) for s 22.) 
The case for 2 I m 5 3 can be proved in a similar manner by going through the cases that 

/i,, 2 2 8: 2 3fl,,, 2 8, _ , 2 (PO + a,,,)/2 2 8, > 0 and show that the maximum is achieved at a boundary point, 
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in fact, at 

( 1 1 1 
-- 
m + 1’ m + 1’ ” m+l > . 

Proof of (7). In this case we have n’ 5 (n/3). We consider the following two cases: Case 1: P, = - 1 for 
0 < i 5s. If x > f,, similar to the proof of Case 1 in (6) we have H(T*, T*) (F(7 v r) + F(E) + r’n where 
E = T - R, - I? If q(T u T) 2 I, then it follows from the definitions that p(R,1) 2 q(T u T) - 1. Thus g(T,*) 
can be determined by using the data available and we have 

H(Tf, r’) I F(T UT) + F(E) c 0.7c (n + n’)* + ( (qJ<c(,,.+(qq 

since n’ 5: n/3. 
We may assume that q(T v T) = - 1 and x < r,. 
Subcase u. p’ =p((T u I!‘- T,)*) 2 0. Where (T u T - T,)* has u as the root. 
We then have 

HP*, T*) s G(T:) + G((T u T - T,)*) + F(E) + F(R, - T,) + c’n. 

Note that in this case we can find g(T*) by using g(T:), f(E) and f (R, - T,). 
SinceP’kOand IV(E)I+IV(R,-T,)I=n-r,,wehave 

wT**~*)<c r,“+2.1~(n+“‘-f,)i+0.7(n-I,)” 
( > 

fc’n, 

Since the function b(x) = xi + o(n - x)” has maximum on the boundary and (n + n’)/(2p’+ 4) 5 t, s 
(n + n’)/2, it suffices to check the following: 

(i) ((f)i+O.74(~)J(n +n’)i.O.7((!!-+91 < 0.58(n + n’)” + 0.24(n - n’)” < n” + 0.7 
n+n’ i 

!( >) 
- 

2 

+2 1 (2P’f2) 
___ . 
(2p’+4)” > 

(n +n.)“+0.7(n -=J<($+!+ +n.)“+0.7~q~ 

Subcase b. p’ =p((T u T - T,)*) = - 1 

(i) p. = AR;) 2 0. 
If s 2 Izfl+z, tnen it follows from the definitions that p’ t p. which contradicts p’ = - 1. We have 

.Y < fzpo+ *I and n’ IX I (n + n’)/(2po + 3). Note that in this case we determine g(T*) first. Then f(r v T) can 
be determined by finding f(T u ?’ - r, - T,) since p’ = - 1 and g(7’:) is already found. 

Thus we have 

H(T*, T*) I G(T*) + F(T u ?’ - T,, - T,) 5 
c2.1(2p, + 2) 

(2p,+3)” (n-xx’)“+0.7c(n+n’-I,-r,)*+x’” 

2.1(2P, + 2)c n” + o,7c 2p, + 1 i 

I (2p0+ 3”) (-_) 
(n + n’) 5 cn” + co.7 y 

( > 
I. 

2P0 + 3 

Since n’ + x’ Ix I n/(2p, + 2). 

(ii) p. = - 1. 

Suppose f2 2 ,$, I, = w’. Let E = X - R,, - P, W’ = T - T, - T, - A’, g(T*) can be determined by finding 

g( T;)J(T, u W’) and f(E). f( u T) can be determined by finding g( TJ, g(T> and f(X v H”). Therefore we 
have 

ff(T*. 7’) I G(T:) + H(T;,( W’)*) + F(x u w’) + F(E) 

< c(nA + 0_7r$)j. 

We may assume 1? < I: I,. Thus the center of R, - T, is at U. If 4” = q(R, - T,) = - 1. then f (R, - T,) can be 
I>? 

determined by finding g(T:) and g(R,* - T, - Tz). Thus h(T*, T*) can be determined by finding g( T:), g( Tf), 
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g(R,* - T, - Tz). f(T u T - T, - T,) and f(E). We then have 

H(T*. T*) I G(T:) + G(T:) + H(R,’ - T, - T,, A’*) + F(E) 

If x 2 (l/3)( Z I,), we have 
r>2 

H(T*, r*) I c tli + 1; + 0.7(n + n’ - f, - I$ + 0.7 

for 

It can be shown that 

H(T*, T*) 5 c 0.7(n + n’)” + 0.7(? ‘)^)++0.7(3) 

If x <(l/3) X t,, we have 
z>z 

< ,(,i +0.7(3) 

since (n + n’)/2 2 I, 2 r2 2 0. 
If 4” 2 1, then p” =p(R$ - T, - T,)> q” - 1. f(R,- T,) can be determined by finding g(T,*) and 

J(T, u W”), where w” = R, - “‘?’ T,, after g(R,’ - T, - T2) is determined. Thus h(T*, T*) can be determined 
z= I 

by findingg(T:), h(R,’ - T, - T,, A’*), h(Tt, (W”)*) andf(E). By completing calculation similar to above, Case 
1 is proved. 

Case 2. p, # - 1 for some i, 0 < i i s. Since the largest branch of R: contains &, the second largest branch 
of R:, denoted by S,, has at least (I V(R,_ ,)I/2 2 (n + n’)/4 vertices. If there are i and j, i > j > 0, with pi # - 1 
and pi # - 1, then we have x > 1 V(S,) 1 + ) V(Sj) 1 2 (n + PI’)/& which contradicts the fact that IA is the center. 
Thus there is exactly one i with p, # - 1, 0 < i 5 s. If pi 2 1, then the third and fourth largest branches of RF 
contain at least (( V(R,) j/2) vertices. This again implies x > (n + n’)/2, a contradiction. Thus we have pi = 0. 
Moreover we have x > t, since x > I V(S,) 1 2 (I V(R,) I /2). If q = q(T u f) 2 2, we have I, 2 r4 > (I V(&) 114) 
which is impossible. Thus we have q = - 1 or q = 1. 

We consider the following subcases: 
Subcase a. q = - 1. Since, for all j # i, s, I (n + n ‘)/2 - Si < R, _ , - S, < (Si/2), g(X*) can be determined by 

finding f(X - S,) when f(.Y:) is found in determining g(T*). If x 2 I,, f(T v T) can be determined by finding 
g(X*) and g(R,*). Thus 

H(T*, T*) I G(T*) + F(X - SJ < c 

If x < 1, andp((T u T - T,)*) =p’ = - l,f(T u T) can be determined by findingg(T:), g(X*) andf(&, - T,)). 
Thus again we have 

If x < f, and p’ 2 0, then p’ = 0 (since p’ 2 1 will imply r, > (x/2) > (1 V(R,) I /4)). We note that in this case 
,f( T u T) is determined first as well as g(Ty), f(R, - T,) and g(Sf). g(RQ) can be determined using g(Tf) and 
,f(R, - T,) since it follows from q(T u T) = - 1 that p(Rt) = - 1. Thus g(T*) can be determined by finding 
,f(T - R,) and f(T - S,). We have 

H(T*, T*) s F(T v T) + F(T -R,) + F(T -S,). 

Note that t: r (x + w)/2 and r,=-x~IV(Si)I+w’+n’ where w= IV&,-T,--TJI, 
)1.‘= Ii’(T-R,-&)I. Thus x - ~1” - n’ 2 I WS,) I 2 I V(R,) I /2 r (r, + t, + w)/2 2 (3(x + w)/4) and 
~r~‘+n’~(.~-3~r~)~4<(n+n’)/10since(5/2)x~x+f,+r2~n+~‘. Sets=(V(sJI. 

Since p’ > 0 by (2) we have 

F(T U r) <0.58c(n + n’)” 

H( T’. T*) I c(0.58(n + n’)” + 0.7(s + w’)~ + 0.7(n -s)“) 



60 F. R. K. CHUNG 

Subcase b: q = I. In this case, f(T v t) is first determined when g(T:), g(T;), f(T, v W). f(T, v W). 
g(X*),f(X u W) are found. Thus g(R:_ ,) can be determined by using g(Ty), g(T*),J(T, u W),,f( T? v W) a,nd 

f(R, - R,_ ,), j 5 i - 1. Since q = 1, we have p’ =p(T u T - T,)*) 2 0. g(T*) can be determined by findmg 
f(T - SJ andf(T - R,). The proof is then just the same as in Subcase a and will be omitted. 


