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Abstract

This paper presents a development of the boundary contour method (BCM) for magneto-electro-elastic media.
First, the divergence-free of the integrand of the magneto-electro-elastic boundary element is proved. Second, the
boundary contour method formulations are obtained by introducing quadratic shape functions and Green’s functions
[Ding, H.J., Jiang, A.M., 2004. A boundary integral formulation and solution for 2D problems in magneto-electro-
elastic media. Computers and Structures, 82 (20–21), 1599–1607] for magneto-electro-elastic media and using the rigid
body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the
problem of magneto-electro-elastic media. Finally, numerical solutions for illustrative examples are compared with
exact ones. The numerical results of the BCM coincide very well with the exact solution, and the feasibility and effi-
ciency of the method are verified.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The conventional boundary element method (BEM) usually requires numerical evaluation of line integrals
for two-dimensional problems and surface integrals for three-dimensional ones. So, more and more attention
has been paid to those methods that do not require the use of internal cells. Atluri (2004) gave a detailed
account of problems relating to application of the Meshless Method (MLPG) for domain & BIE dicretiza-
tions. Yoshihiro and Vladimir (2004) gave a method using arbitrary internal points instead of internal
cells, based on a three-dimensional interpolation method by using a poly-harmonic function with volume dis-
tribution in a three-dimensional BIEM. Sladek et al. (2004) proposed Meshless Methods based on the local
Petrov–Galerkin approach for solution of steady and transient heat conduction problem in a continuously
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non-homogeneous anisotropic medium. Han and Atluri (2004) developed three different truly Meshless Local
Petrov–Galerkin (MLPG) methods for solving 3D elasto-static problems. Using the general MLPG concept,
those methods were derived through the local weak forms of the equilibrium equations, by using different test
functions, namely, the Heaviside function, the Dirac delta function, and the fundamental solutions. Reutskiy
(2005) reduced the solution of an eigenvalue problem to a sequence of inhomogeneous problems with the dif-
ferential operator studied using the method of fundamental solutions. Hokwon et al. (2004) presented a mesh-
free approach for numerically solving a class of second order time dependent partial differential equations
which include equations of parabolic, hyperbolic and parabolic-hyperbolic types. Two types of Trefftz bases
were considered, F-Trefftz bases based on the fundamental solution of the modified Helmholtz equation, and
T-Trefftz bases based on separation of variables solutions.

For magneto-electro-elastic media, the BEM have been devired [see, for example, Ding and Jiang, 2004;
Ding and Jiang, 2003]. But the boundary contour method (BCM) can achieve a further reduction in dimension
by using the divergence free property of the integrand of the conventional boundary element method. Using
this method, three-dimensional problems can be reduced to numerical evaluation of line integrals over closed
contours and two-dimensional problems to merely evaluation of functions at nodes on the boundary of the
plane. This is true even for boundary elements of arbitrary shape with curved boundary lines (for two-dimen-
sional problems) or curved surface (for three-dimensional problems).

Nagarajan et al. (1994) have proposed this novel approach, called the BCM for linear elasticity problems.
Nagarajan et al. (1996) used the Stokes’ theorem to transform surface integrals in the conventional boundary
elements into line integrals in the bounding contours of these elements. Phan et al. (1997) derived a BCM for-
mulation and implemented the method for two-dimensional problems of linear elasticity with quadratic
boundary elements. Zhou et al. (2000) developed the BCM based on equivalent boundary integral equations
and applied the traction BCM to crack problems and the bending problems of elastic thin plate. For piezo-
electric materials, Wang et al. (2003) presented a development of the BCM by introducing linear shape func-
tions and Green’s functions in Ding et al. (1998) for piezoelectric media.

However, to the authors’ knowledge, no attempts in the literature have been made to solve problems of
magneto-electro-elastic media by the BCM with quadratic boundary elements. This paper presents a develop-
ment of the BCM for magneto-electro-elastic problems. First, the divergence-free of the integrand of the mag-
neto-electro-elastic boundary element is proved, then, the BCM formulation is derived and potential functions
are obtained by introducing quadratic shape functions and Green’s functions (Ding and Jiang, 2004) for mag-
neto-electro-elastic media and using the rigid body motion solution to regularize the BCM and avoid compu-
tation of the corner tensor. The BCM is applied to the problem of magneto-electro-elastic media. Finally,
numerical solutions for illustrative examples are compared with exact ones. The numerical results of the
BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.

2. General integral formulation for magneto-electro-elastic plane

For two-dimensional transversely isotropic magneto-electro-elastic media, we define the general displace-
ment u, general surface traction t, general stress T and general strain S as follows (Ding and Jiang, 2004;
Pan, 2001)
u ¼
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where U and W are the electric potential and magnetic potential, respectively; Dx(z) and Bx(z) are the compo-
nents of electric displacement and magnetic induction, respectively; and ExðzÞ ¼ � oU

oxðzÞ, H xðzÞ ¼ � oW
oxðzÞ.
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So the relation between general stress and general strain can be written as
T ¼ DS ð2Þ
where
D ¼

c11 c13 0 0 e31 0 d31

c13 c33 0 0 e33 0 d33

0 0 c44 e15 0 d15 0

0 0 e15 �e11 0 �g11 0

e31 e33 0 0 �e33 0 �g33

0 0 d15 �g11 0 �l11 0

d31 d33 0 0 �g33 0 �l33

2
666666666664

3
777777777775
Moreover, we define
U� ¼

u�11 u�12 U�1 W�1
u�21 u�22 U�2 W�2
u�31 u�32 U�3 W�3
u�41 u�42 U�4 W�4

2
6664

3
7775; T� ¼

t�11 t�12 �x�1 �g�1
t�21 t�22 �x�2 �g�2
t�31 t�32 �x�3 �g�3
t�41 t�42 �x�4 �g�4

2
6664

3
7775 ð3Þ
where u�ij and t�ij ði; j ¼ 1; 2Þ are, respectively, displacements and surface tractions at a field point Q in the Xj

(X1 = x, X2 = z) coordinate directions due to a unit load acting in one of the Xi directions at a source point P

on the boundary, u�3j and t�3j ðj ¼ 1; 2Þ are, respectively, displacement components and surface tractions in the
Xj coordinate directions at Q due to a unit electric charge at P, u�4j and t�4j ðj ¼ 1; 2Þ are, respectively, displace-
ment components and surface tractions in the Xj coordinate directions at Q due to a unit current at P, U�i , W�i ,
x�i and g�i ði ¼ 1; 2Þ are, respectively, electric potential, magnetic potential, surface charge and surface mag-
netic induction at Q due to a unit load acting in one of the Xi directions at P, U�3, W�3, x�3 and g�3 are, respec-
tively, electric potential, magnetic potential, surface charge and surface magnetic induction at Q due to a unit
electric charge at P, U�4, W�4, x�4 and g�4 are, respectively, electric potential, magnetic potential, surface charge
and surface magnetic induction at Q due to a unit current at P. The full statement of U* and T* can be seen in
Appendix A. It is assumed that there is neither body force nor electric charge. Based on the extended Somig-
liana equation, the boundary integral formulation is obtained
CðPÞuðP Þ ¼
Z

S
U�ðP ;QÞtðQÞds�

Z
S

T�ðP ;QÞuðQÞds ð4Þ
The general surface t and the matrix T* can be written as
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It is more convenient to use the index notation rather than the matrix representation
ti ¼ T ijnj; T �ki ¼ Rkijnj ð7Þ
where T is the general stress tensor and R is the Green’s function stress tensor. Then, Eq. (4) can be rewritten
as
ckiðP ÞuiðP Þ ¼
Z

S
fu�kiðP ;QÞT ijðQÞ � RkijðP ;QÞuiðQÞgej ds ð8Þ
where ej are global Cartesian unit vectors.
Consider an arbitrary rigid body translation where ui(Q)=ui(P) = constant. Thus, Tij(Q) = 0. Use of this

rigid body motion solution in Eq. (8) gives
ckiðP ÞuiðP Þ ¼ �
Z

S
RkijðP ;QÞuiðP Þej ds ð9Þ
Substituting Eq. (9) into Eq. (8) yields a new BEM equation
Z
S
fu�kiðP ;QÞT ijðQÞ � RkijðP ;QÞ½uiðQÞ � uiðPÞ�gej ds ¼ 0 ð10Þ
Thus, the corner tensor cki is now eliminated from the BEM equation. Its evaluation is avoided and this is first
advantage of using the rigid body motion technique.

Now let
Fk ¼ fu�kiðP ;QÞT ijðQÞ � RkijðP ;QÞ½uiðQÞ � uiðP Þ�gej ð11Þ
It is easy to show that when we take the divergence of Fk at a field point Q, this vector is divergence free every-
where except at the source point P, i.e.
rQ � Fk ¼ fu�kiðP ;QÞT ijðQÞ � RkijðP ;QÞ½uiðQÞ � uiðPÞ�g;j
¼ ½S�kijðP ;QÞT ijðQÞ � RkijðP ;QÞSijðQÞ� þ u�kiðP ;QÞT ij;jðQÞ � Rkij;jðP ;QÞ½uiðQÞ � uiðPÞ� ¼ 0 ð12Þ
Where Sij ¼ 1
2
ðui;j þ uj;iÞ, for i = 1,2; Sij = ui,j, for i = 3,4, and similarly for S�kij.

Eq. (12) shows the existence of a function Uk such that
Fk ¼
oUk

oz
e1 �

oUk

ox
e2 ð13Þ
The boundary is now discretized into n elements, and Eq. (10) becomes
Z
S

Fkds ¼
Xn

e¼1

Z Ee2

Ee1

Fk ds ¼
Xn

e¼1

Z Ee2

Ee1

dUk ¼
Xn

e¼1

Ue
kðEe2Þ � Ue

kðEe1Þ
� �

ð14Þ
which means that there is no need for any numerical integration for two-dimensional magneto-electro-elastic
problems.

It is important to observe that the above integrand contains unknown functions u and t on ds which must
satisfy the basic equations of magneto-electro-elastic media. Thus, local shape functions for u must be chosen
such that they satisfy the general Navier–Cauchy equations and the shape functions for t must be derived from
those of u.
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3. Two-dimensional magneto-electro-elastic plane strain with quadratic shape functions

It is easy to know that there are a total of twenty linearly independent quadratic shape functions.
The displacement components are written as arbitrary linear combinations of the twenty functions as
follows
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where x and z are co-ordinate with respect to a global co-ordinate system, and
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In matrix form, Eq. (15a) becomes
fug ¼ ½Tuðx; zÞ�fdg ð16Þ

where d ¼ ½d1d2 � � � d20�T.

These twenty artificial variables require quadratic elements with 20 physical variables. The configuration of
a chosen quadratic boundary element is shown in Fig. 1. Each element is divided into 4 equal segments by 2
traction and 3 displacement nodes. Thus, it has 20 physical variables and the way they are numbered globally
Fig. 1. Quadratic boundary element (e).
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on the element (e) is also shown in the figure. It should be noted that the BCM equations are enforced at the
displacement nodes only.

By using the Eqs. (2), (5) and (15), the twenty physical variables on the element (e) can be described as
follows
fPðeÞg ¼ ½TðeÞðx; zÞ�fdðeÞg ð17Þ
where PðeÞ ¼½uð2e�1Þwð2e�1ÞUð2e�1ÞWð2e�1Þtð2e�1Þ
x tð2e�1Þ

z �xð2e�1Þ�gð2e�1Þuð2eÞwð2eÞUð2eÞWð2eÞtxð2eÞtð2eÞ
z �xð2eÞ�gð2eÞuð2eþ1Þ

wð2eþ1ÞUð2eþ1ÞWð2eþ1Þ�T: The variables in P(e) are chosen such that the matrix T(e) is invertible.
A new coordinate system (n,g) centered at the source point j is introduced. This is done in order to make the

shape function variables conform to those of u�ki and Rkij (which are functions of n and g only). The n and g
axes are parallel to the global x and z axes, thus
n ¼ xðQÞ � xðP Þ; g ¼ zðQÞ � zðP Þ ð18Þ
By instituting Eq. (18) into Eq. (15), the displacements shape functions can be written as
fug ¼ ½Tuðn; gÞ�½Bj�fdg ¼ ½Tuðn; gÞ�fd̂g ð19Þ
in which [Bj] is a transformation matrix that depends only on the coordinates of the source point j.
If (h) is the element containing the source point at its first node, with this new coordinate system

u1ðP Þ ¼ d̂ðhÞ1 , u2ðP Þ ¼ d̂ðhÞ4 , u3ðP Þ ¼ d̂ðhÞ7 and u4ðP Þ ¼ d̂ðhÞ10 . So, for the element (e), we have
fuðQÞ � uðP Þg ¼ ½Tuðn; gÞ�f~dðeÞg ð20Þ
where the columns of [Tu(n,g)] are the twenty shape functions
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ð21Þ
and
f~dðeÞg¼ ½ðd̂ðeÞ1 � d̂ðhÞ1 Þd̂
ðeÞ
2 d̂ðeÞ3 ðd̂

ðeÞ
4 � d̂ðhÞ4 Þd̂

ðeÞ
5 d̂ðeÞ6 ðd̂

ðeÞ
7 � d̂ðhÞ7 Þd̂

ðeÞ
8 d̂ðeÞ9 ðd̂ðeÞ10 � d̂ðhÞ10 Þd̂

ðeÞ
11 d̂ðeÞ12 d̂ðeÞ13 d̂ðeÞ14 d̂ðeÞ15 d̂ðeÞ16 d̂ðeÞ17 d̂ðeÞ18 d̂ðeÞ19 d̂ðeÞ20 �

T

Potential functions must be obtained for each of twenty states, for each of the directions, electric potentials
and magnetic potentials corresponding to k = 1–4 in Eq. (14). Let u1,l (l = 1–20) denote potentials for the
above twenty states for k = 1, corresponding to the unit force in the x direction. The function in Eq. (14)
is a linear combination of u1,l (l = 1–20). u1,l can be calculated individually by using Eq. (13), with u1,l replac-
ing U1, n and g replacing x and z, respectively.

Similarly, let u2,l, u3,l and u4,l (l = 1–20) denote potentials for the twenty states, for k = 2,3,4 correspond-
ing to the unit force in the z direction, the unit electric charge and the unit current, respectively. The potentials
uk,l (k = 1–4, l = 1–20) are given in Appendix B. It should be noted that Uk in Eq. (14) is composed of uk,l

(l = 1–20), respectively.
Now, with the potential functions already derived, the BCM discretized equations are developed as follows.
For the source point j (source points are only placed at the ends and mid-point, i.e. displacement nodes, of

each boundary element, see Fig. 1.)
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Xn
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X20
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½uj
k;lðEe2Þ � uj

k;lðEe1Þ�~dðeÞl ¼ 0 ð23Þ
It should be noted that the potential functions uk,1(n,g), uk,4(n,g), uk,7(n,g) and uk,10(n,g) (k = 1–4) corre-
sponding to constant shape functions, are singular when a field point Q! the source point P, i.e. when
(n,g)! (0,0). But in this case uk(Q) � uk(P) = 0(r), and Eq. (20) lead to
~dðeÞ1 ¼ ðd̂
ðeÞ
1 � d̂ðhÞ1 Þ ¼ 0

~dðeÞ4 ¼ ðd̂
ðeÞ
4 � d̂ðhÞ4 Þ ¼ 0

~dðeÞ7 ¼ ðd̂
ðeÞ
7 � d̂ðhÞ7 Þ ¼ 0

~dðeÞ10 ¼ ðd̂
ðeÞ
10 � d̂ðhÞ10 Þ ¼ 0

8>>>><
>>>>:

ð24Þ
so the evaluation of these potential functions can be avoided, i.e. expression (23) is now completely regular.
This is the second advantage of the approach using the rigid body motion technique.

With 2n source pints corresponding to 2n displacement nodes on the boundary ds, one can get the final
BCM linear system of equations
½K�fPg ¼ f0g ð25Þ
where {P} are degrees of freedom on the whole boundary ds. The global system of equations is condensed in
accordance with continuity of displacements across element in the usual way.

Finally, the system of Eq. (25) needs to be reordered in accordance with the boundary conditions to form
½A�fXg ¼ fZg ð26Þ
where {X} contains the unknown boundary quantities and {Z} is known in terms of prescribed boundary
quantities and geometrical and material data of the problem.

After the solution of the global equation system (26) is obtained, one can easily derive the artificial variables
{d(e)} from Eq. (17). At this stage, the remaining physical variables at any node on the boundary can be easily
calculated from Eq. (15a) and the corresponding relations for stresses and tractions in terms of their shape
functions.

Evaluation of strain components at points inside a body requires transformation of equations of the strain
BEM at an internal point to an integrated form analogous to Eq. (14). This can be done since the integrand is
again divergence free. Stress calculations would then follow from the magneto-electro-elastic fundamental
equations.

4. Numerical example

4.1. Example 1

Consider a magneto-electro-elastic column of size a · b under three load cases, i.e. uniform axial tension,
electric displacement or magnetic induction. The problem is treated as a plane-strain one.

For numerical calculation, we consider the column with the same geometrical and material constants as
Example 1 in Ding and Jiang (2004) for which totally twelve quadratic elements are used.

Because of the linearity property, the corresponding results are compared with the exact ones (*) only at the
corner point (a/2,b/2) for example, which is shown in Table 1.

4.2. Example 2

Consider a simply supported rectangular beam of length L, height h and width b subjected to uniformly
distributed loads on the upper and bottom surfaces. For numerical calculation, we consider the beam the same
geometrical and material constants as Example 2 in Ding and Jiang (2004) for which totally twelve quadratic
elements are used.



Table 1
Comparison of BCM results with the exact ones (*)

Load u w U W

1 �0.9500E�11
�0.9501E�11(*)

+0.5680E�12
+0.5680E�12(*)

+0.9495E�3
+0.9495E�3(*)

+0.2138-4E�4
+0.2138E�4(*)

2 �0.2108E�12
�0.2107E�12(*)

+0.9493E�14
+0.9492E�14(*)

�0.6289E�4
�0.6289E�4(*)

+0.2566E�6
+0.2566E�6(*)

3 +0.5077E�12
+0.5077E�12(*)

+0.2140E�13
+0.2140E�13(*)

+0.2565E�4
+0.2564E�4(*)

�0.7520E�5
�0.7520E�5(*)

Table 2
Simply supported rectangular beam under uniformly distributed load

Point w U W rz Dz Bz rx

A �0.1987E�8
(�0.2000E�8)

�0.2310E�1
(�0.2314E�1)

�0.1798E�2
(�0.1808E�2)

�4.9979
(�5.0000)

�0.1110E�10
(�0.1114E�10)

�0.2264E�9
(�0.2282E�9)

+0.2798E�1
(+0.2818E�1)

B �0.1796E�8
(�0.1847E�8)

�0.2123E�1
(�0.2138E�1)

�0.1588E�2
(�0.1671�2)

�4.6168
(�4.6190)

�0.1032E�10
(�0.1029E�10)

�0.2114E�9
(�0.2109E�9)

+0.2583E�1
(+0.2604E�1)

C �0.1378E�8
(�0.1414E�8)

�0.1625E�1
(�0.1637E�1)

�0.1258E�2
(�0.1279E�2)

�3.5336
(�3.5351)

�0.7896E�11
(�0.7875E�11)

�0.1619E�9
(�0.1614E�9)

+0.1976E�1
(+0.1993E�1)

D �0.7692E�9
(�0.7652E�9)

�0.8798E�2
(�0.8857E�2)

�0.6820E�3
(�0.6921E�3)

�1.9124
(�1.9130)

�0.4275E�11
(�0.4262E�11)

�0.8789E�10
(�0.8734E�10)

+0.1062E�1
(+0.1078E�1)

E �0.1972E�8
(�0.1993E�8)

�0.8807E�2
(�0.8728E�2)

�0.2165E�2
(�0.2184E�2)

�10.000
(�10.000)

0.0000
(0.0000)

0.0000
(0.0000)

�0.6055E+3
(�0.6104E+3)

F �0.1864E�8
(�0.1842E�8)

�0.8132E�2
(�0.8063E�2)

�0.2003E�2
(�0.2018E�2)

�9.2388
(�9.2388)

0.0000
(0.0000)

0.0000
(0.0000)

�0.5585E+3
(�0.5640E+3)

G �0.1374E�8
(�0.1409E�8)

�0.6097E�2
(�0.6172E�2)

�0.1559E�2
(�0.1544E�2)

�7.0711
(�7.0711)

0.0000
(0.0000)

0.0000
(0.0000)

�0.4389E+3
(�0.4316E+3)

H �0.7698E�9
(�0.7628E�9)

�0.3281E�2
(�0.3340E�2)

�0.8333E�3
(�0.8357E�3)

�3.8268
(�3.8268)

0.0000
(0.0000)

0.0000
(0.0000)

�0.2323E+3
(�0.2336E+3)
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The problem is treated as a plane-stress one and the boundary conditions are
z ¼ þh=2 : rzðxÞ ¼ q1ðxÞ; sxz ¼ 0; Dz ¼ 0; Bz ¼ 0; ð27Þ
z ¼ �h=2 : rzðxÞ ¼ q2ðxÞ; sxz ¼ 0; Dz ¼ 0; Bz ¼ 0; ð28Þ
x ¼ 0; L : rx ¼ 0; w ¼ 0; U ¼ 0; W ¼ 0; ð29Þ
where q1(x) = q0 sinkx, k = p/L and q2 (x) = 0. The beam of L = 0.20 m, h = 0.02 m and b = 0.001 m is sub-
jected to a pressure q0 = �10 Pa. Table 2 compares the exact and numerical results at eight reference points,
i.e. A(0.100, 0.000), B(0.125,0.000), C(0.150,0.000), D(0.175,0.000), E(0.100,+0.010), F(0.125,+0.010),
G(0.150, +0.010) and H(0.175,+0.010). The exact results are given in parentheses.
5. Conclusions

In this paper, the BCM is presented for 2D magneto-electro-elasticity based on the fundamental solution of
an infinite magneto-electro-elastic plane. This approach does not require any numerical integration at all for
2D problem, even with curved boundary elements, and it requires only numerical evaluation of contour inte-
grals for 3D problems. Numerical results for 2D problem show that the BCM performs very well.
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Appendix A. Fundamental solutions

4 4
u�11 ¼
X
j¼1

kj ln Rj; u�12 ¼
X
j¼1

sjk1jkj arctan
x
zj

U�1 ¼
X4

j¼1

sjk2jkj arctan
x
zj
; W�1 ¼

X4

j¼1

sjk3jkj arctan
x
zj

u�k1 ¼ �
X4

j¼1

Aj arctan
x
zj
; u�k2 ¼

X4

j¼1

sjk1jAj ln Rj

U�k ¼
X4

j¼1

sjk2jAj ln Rj; W�k ¼
X4

j¼1

sjk3jAj ln Rj

t�11 ¼
X4

j¼1

x1js2
j

kj

R2
j

ðxnx þ znzÞ; t�12 ¼
X4

j¼1

x1j
kj

R2
j

ðs2
j znx � xnzÞ

x�1 ¼ �
X4

j¼1

x2j
kj

R2
j

ðs2
j znx � xnzÞ; g�1 ¼ �

X4

j¼1

x3j
kj

R2
j

ðs2
j znx � xnzÞ

t�k1 ¼
X4

j¼1

x1jsj
Aj

R2
j

ð�s2
j znx þ xnzÞ; t�k2 ¼

X4

j¼1

x1jsj
Aj

R2
j

ðxnx þ znzÞ

x�k ¼ �
X4

j¼1

x2jsj
Aj

R2
j

ðxnx þ znzÞ; g�k ¼ �
X4

j¼1

x3jsj
Aj

R2
j

ðxnx þ znzÞ
where zj = sjz, Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

j

q
, and Aj = aj,bj,cj for k = 2,3,4, respectively, sj, kij, xij, kj, aj, bj, cj are listed as in

Atluri (2004).
Appendix B. Potential functions

4

u1;1¼
X
j¼1

x1jsjkj arctan
n
gj

u1;2¼
X4

j¼1

c11kjðg lnRj�gÞ�
c11�x1js2

j

sj
kjnarctan

n
gj

" #

u1;3¼
X4

j¼1

sjðx1j�c44Þkj garctan
n
gj
þ n

sj
lnRj

 !
�x1jkjn lnRjþc44kjn

" #

u1;4¼�
X4

j¼1

x1jkj lnRj

u1;5¼
X4

j¼1

sjðx1j�c44Þkj garctan
n
gj
þ n

sj
lnRj

 !
�x1jkjn lnRj�ðx1j�c44Þkjn

" #

u1;6¼
X4

j¼1

c13kj g lnRj�g� n
sj

arctan
n
gj

 !
�x1jkj

sj
narctan

n
gj
�x1jkjg

" #

u1;7¼
X4

j¼1

x2jkj lnRj

u1;8¼�
X4

j¼1

sjðx2j�e15Þkj garctan
n
gj
þ n

sj
lnRj

 !
�x2jkjn lnRj�ðx2j�e15Þkjn

" #
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u1;9¼�
X4

j¼1

e31kj g lnRj�g� n
sj

arctan
n
gj

 !
�x2jkj

sj
narctan

n
gj
�x2jkjg

" #

u1;10¼
X4

j¼1

x3jkj lnRj

u1;11¼�
X4

j¼1

sjðx3j�d15Þkj garctan
n
gj
þ n

sj
lnRj

 !
�x3jkjn lnRj�ðx3j�d15Þkjn

" #

u1;12¼�
X4

j¼1

d31kj g lnRj�g� n
sj

arctan
n
gj

 !
�x3jkj

sj
narctan

n
gj
�x3jkjg

" #

u1;13¼
X4

j¼1

�c44k1kjng lnRjþ
kjðc44k1þ2x1js2

j �k1x1jÞ
2sj

n2 arctan
n
gj
þk1sjkjðx1j�c44Þ

2
g2 arctan

n
gj
�k1kjðx1j�c44Þ

2
ng

" #

u1;14¼
X4

j¼1

�e15k2kjng lnRjþ
kjðe15k2þ2x1js2

j �k2x2jÞ
2sj

n2 arctan
n
gj
þk2sjkjðx2j�e15Þ

2
g2 arctan

n
gj
�k2kjðx2j�e15Þ

2
ng

" #

u1;15¼
X4

j¼1

�d15k3kjng lnRjþ
kjðd15k3þ2x1js2

j �k3x3jÞ
2sj

n2 arctan
n
gj
þk3sjkjðx3j�d15Þ

2
g2 arctan

n
gj
�k3kjðx3j�d15Þ

2
ng

" #

u1;16¼
X4

j¼1

c13kj

2
n2 lnRj�

1

2

� �
�

kjðc11�x1js2
j Þ

sj
ngarctan

n
gj
þc11kj

2
g2 lnRj�

1

2

� �
þ c13

4
þ c11

4s2
j

 !
kjn

2

" #

u1;17¼
X4

j¼1

�c44kj

2
n2 lnRj�

1

2

� �
þc11þ2c13k7þ2e31k8þ2d31k9

2
kjg

2 lnRj�
1

2

� �
þðx1j�c44Þkjsjngarctan

n
gj

"

þ
c11þ2c13k7þ2e31k8þ2d31k9�c44s2

j

4
kjg

2

#

u1;18¼
X4

j¼1

c13k10kjng lnRj�
k10kjðx1jþc13Þ

2sj
n2 arctan

n
gj
þð2þk10Þðx1j�c44Þ

2
kjsjg

2 arctan
n
gj
�k10kjðx1jþc13Þ

2
ng

" #

u1;19¼
X4

j¼1

e31k11kjng lnRj�
k11kjðx2jþe31Þ

2sj
n2 arctan

n
gj
þ2x1jþk11ðx2jþe31Þ

2
kjsjg

2 arctan
n
gj
�k11kjðx2jþe31Þ

2
ng

" #

u1;20¼
X4

j¼1

d31k12kjnglnRj�
k12kjðx3jþd31Þ

2sj
n2 arctan

n
gj
þ2x1jþk12ðx3jþd31Þ

2
kjsjg

2 arctan
n
gj
�k12kjðx3jþd31Þ

2
ng

" #

uk;1¼
X4

j¼1

x1jsjAj lnRj

uk;2¼
X4

j¼1

�c11Aj garctan
n
gj
þ n

sj
lnRj

 !
þx1jsjAjn lnRjþ

c11Aj

sj
n

" #

uk;3¼
X4

j¼1

sjðx1j�c44ÞAjðg lnRj�gÞþc44Ajnarctan
n
gj
þx1jsjAjg

" #

uk;4¼
X4

j¼1

x1jAj arctan
n
gj

uk;5¼
X4

j¼1

sjðx1j�c44ÞAj g lnRj�g� n
sj

arctan
n
gj

 !
þx1jAjnarctan

n
gj

" #

uk;6¼
X4

j¼1

�c13Aj garctan
n
gj
þ n

sj
lnRj

 !
�x1jAj

sj
n lnRjþ

ðc13þx1jÞAj

sj
n

" #

uk;7¼�
X4

j¼1

x2jAj arctan
n
gj

uk;8¼�
X4

j¼1

sjðx2j�e15ÞAj g lnRj�g� n
sj

arctan
n
gj

 !
þx2jAjnarctan

n
gj

" #
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uk;9¼�
X4

j¼1

�e31Aj garctan
n
gj
þ n

sj
lnRj

 !
�x2jAj

sj
n lnRjþ

ðe31þx2jÞAj

sj
n

" #

uk;10¼�
X4

j¼1

x3jAj arctan
n
gj

uk;11¼�
X4

j¼1

sjðx3j�d15ÞAj g lnRj�g� n
sj

arctan
n
gj

 !
þx3jAjnarctan

n
gj

" #

uk;12¼�
X4

j¼1

�d31Aj garctan
n
gj
þ n

sj
lnRj

 !
�x3jAj

sj
n lnRjþ

ðd31þx3jÞAj

sj
n

" #

uk;13¼
X4

j¼1

c44k1Ajngarctan
n
gj
þ

k1c44þ2x1js2
j �k1x1j

2sj
Ajn

2 lnRj�
1

2

� �
þðx1j�c44ÞAjsjk1

2
g2 lnRj�

1

2

� �
þx1jsjAj

2
n2

" #

uk;14¼
X4

j¼1

e15k2Ajngarctan
n
gj
þ

k2e15þ2x1js2
j �k2x2j

2sj
Ajn

2 lnRj�
1

2

� �
þðx2j�e15ÞAjsjk2

2
g2 lnRj�

1

2

� �
þx1jsjAj

2
n2

" #

uk;15¼
X4

j¼1

d15k3Ajngarctan
n
gj
þ

k3d15þ2x1js2
j �k3x3j

2sj
Ajn

2 lnRj�
1

2

� �
þðx3j�d15ÞAjsjk3

2
g2 lnRj�

1

2

� �
þx1jsjAj

2
n2

" #

uk;16¼
X4

j¼1

�c13Aj

2
n2 arctan

n
gj
�c11Aj

2
g2 arctan

n
gj
�
ðc11�x1js2

j ÞAj

sj
ng lnRjþ

c11Aj

2sj
ng

" #

uk;17¼
X4

j¼1

c44Aj

2
n2 arctan

n
gj
�c11þ2c13k7þ2e31k8þ2d31k9

2
Ajg

2 arctan
n
gj
þðx1j�c44ÞsjAjnglnRjþ

c44sjAj

2
ng

" #

uk;18¼
X4

j¼1

�c13k10Ajngarctan
n
gj
�ðx1jþc13ÞAjk10

2sj
n2 lnRj�

1

2

� �
þð2þk10Þðx1j�c44ÞAjsj

2
g2 lnRj�

1

2

� �
þx1jsjAj

2
g2

" #

uk;19¼
X4

j¼1

�e31k11Ajngarctan
n
gj
�ðx2jþe31ÞAjk11

2sj
n2 lnRj�

1

2

� �
þ2x1jþk11ðx2jþe31Þ

2
Ajsjg

2 lnRj�
1

2

� �
þx1jsjAj

2
g2

" #

uk;20¼
X4

j¼1

�d31k12Ajngarctan
n
gj
�ðx3jþd31ÞAjk12

2sj
n2 lnRj�

1

2

� �
þ2x1jþk12ðx3jþd31Þ

2
Ajsjg

2 lnRj�
1

2

� �
þx1jsjAj

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where gj = sjg, Rj ¼ n2 þ g2
j , and Aj = aj,bj,cj for k = 2,3,4, respectively.
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