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Abstract

This paper presents a development of the boundary contour method (BCM) for magneto-electro-elastic media.
First, the divergence-free of the integrand of the magneto-electro-elastic boundary element is proved. Second, the
boundary contour method formulations are obtained by introducing quadratic shape functions and Green’s functions
[Ding, H.J., Jiang, A.M., 2004. A boundary integral formulation and solution for 2D problems in magneto-electro-
elastic media. Computers and Structures, 82 (20-21), 1599-1607] for magneto-electro-elastic media and using the rigid
body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the
problem of magneto-electro-elastic media. Finally, numerical solutions for illustrative examples are compared with
exact ones. The numerical results of the BCM coincide very well with the exact solution, and the feasibility and effi-
ciency of the method are verified.
© 2007 Published by Elsevier Ltd.
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1. Introduction

The conventional boundary element method (BEM) usually requires numerical evaluation of line integrals
for two-dimensional problems and surface integrals for three-dimensional ones. So, more and more attention
has been paid to those methods that do not require the use of internal cells. Atluri (2004) gave a detailed
account of problems relating to application of the Meshless Method (MLPG) for domain & BIE dicretiza-
tions. Yoshihiro and Vladimir (2004) gave a method using arbitrary internal points instead of internal
cells, based on a three-dimensional interpolation method by using a poly-harmonic function with volume dis-
tribution in a three-dimensional BIEM. Sladek et al. (2004) proposed Meshless Methods based on the local
Petrov—Galerkin approach for solution of steady and transient heat conduction problem in a continuously
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non-homogeneous anisotropic medium. Han and Atluri (2004) developed three different truly Meshless Local
Petrov—Galerkin (MLPG) methods for solving 3D elasto-static problems. Using the general MLPG concept,
those methods were derived through the local weak forms of the equilibrium equations, by using different test
functions, namely, the Heaviside function, the Dirac delta function, and the fundamental solutions. Reutskiy
(2005) reduced the solution of an eigenvalue problem to a sequence of inhomogeneous problems with the dif-
ferential operator studied using the method of fundamental solutions. Hokwon et al. (2004) presented a mesh-
free approach for numerically solving a class of second order time dependent partial differential equations
which include equations of parabolic, hyperbolic and parabolic-hyperbolic types. Two types of Trefftz bases
were considered, F-Trefftz bases based on the fundamental solution of the modified Helmholtz equation, and
T-Trefftz bases based on separation of variables solutions.

For magneto-electro-elastic media, the BEM have been devired [see, for example, Ding and Jiang, 2004;
Ding and Jiang, 2003]. But the boundary contour method (BCM) can achieve a further reduction in dimension
by using the divergence free property of the integrand of the conventional boundary element method. Using
this method, three-dimensional problems can be reduced to numerical evaluation of line integrals over closed
contours and two-dimensional problems to merely evaluation of functions at nodes on the boundary of the
plane. This is true even for boundary elements of arbitrary shape with curved boundary lines (for two-dimen-
sional problems) or curved surface (for three-dimensional problems).

Nagarajan et al. (1994) have proposed this novel approach, called the BCM for linear elasticity problems.
Nagarajan et al. (1996) used the Stokes’ theorem to transform surface integrals in the conventional boundary
elements into line integrals in the bounding contours of these elements. Phan et al. (1997) derived a BCM for-
mulation and implemented the method for two-dimensional problems of linear elasticity with quadratic
boundary elements. Zhou et al. (2000) developed the BCM based on equivalent boundary integral equations
and applied the traction BCM to crack problems and the bending problems of elastic thin plate. For piezo-
electric materials, Wang et al. (2003) presented a development of the BCM by introducing linear shape func-
tions and Green’s functions in Ding et al. (1998) for piezoelectric media.

However, to the authors’ knowledge, no attempts in the literature have been made to solve problems of
magneto-electro-elastic media by the BCM with quadratic boundary elements. This paper presents a develop-
ment of the BCM for magneto-electro-elastic problems. First, the divergence-free of the integrand of the mag-
neto-electro-elastic boundary element is proved, then, the BCM formulation is derived and potential functions
are obtained by introducing quadratic shape functions and Green’s functions (Ding and Jiang, 2004) for mag-
neto-electro-elastic media and using the rigid body motion solution to regularize the BCM and avoid compu-
tation of the corner tensor. The BCM is applied to the problem of magneto-electro-elastic media. Finally,
numerical solutions for illustrative examples are compared with exact ones. The numerical results of the
BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.

2. General integral formulation for magneto-electro-elastic plane
For two-dimensional transversely isotropic magneto-electro-elastic media, we define the general displace-

ment u, general surface traction t, general stress T and general strain S as follows (Ding and Jiang, 2004;
Pan, 2001)
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where @ and ¥ are the electric potential and magnetic potential, respectively; D,.) and By, are the compo-

nents of electric displacement and magnetic induction, respectively; and E) = — Hy =— 62(92)

o
ox(z)?



6222 J. Aimin et al. | International Journal of Solids and Structures 44 (2007) 6220-6231

So the relation between general stress and general strain can be written as
T =DS (2)
where

cip ez 0 0 €3] 0 d3
cz ¢ 0 0 33 0 ds;
0 0 vcy e 0 dis 0
D=0 0 es5 —e 0 —g, O
e ez 0 0 —é&33 0 —&33
0 0 dis —gn 0 —Hi1 0
dy dy 0 0 —&33 0 —H33 |

Moreover, we define
* % * * * * *
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where u}; and ;; (i,j = 1,2) are, respectively, displacements and surface tractions at a field point Q in the X;
(X7 = x, X, = z) coordinate directions due to a unit load acting in one of the X; directions at a source point P
on the boundary, u3; and #;; (j = 1,2) are, respectively, displacement components and surface tractions in the
Xj coordinate directions at Q due to a unit electric charge at P, uy; and £, (j = 1,2) are, respectively, displace-
ment components and surface tractions in the X; coordinate directions at Q due to a unit current at P, @}, V7,
o? and y; (i = 1,2) are, respectively, electric potential, magnetic potential, surface charge and surface mag-
netic induction at Q due to a unit load acting in one of the X; directions at P, @3, V5, w; and yj; are, respec-
tively, electric potential, magnetic potential, surface charge and surface magnetic induction at Q due to a unit
electric charge at P, @,, ¥,, w; and n; are, respectively, electric potential, magnetic potential, surface charge
and surface magnetic induction at Q due to a unit current at P. The full statement of U* and T* can be seen in
Appendix A. It is assumed that there is neither body force nor electric charge. Based on the extended Somig-
liana equation, the boundary integral formulation is obtained

cEp) = [ U(P.0x(Q)ds~ [ T(P.0)u(0)ds @
The general surface t and the matrix T* can be written as
Iy Oy Ty
t, Txz Oz Ny
~o(  |D, D {n} (5)
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It is more convenient to use the index notation rather than the matrix representation
ti=Tyn;, Ty = Zun; (7)

where T is the general stress tensor and X is the Green’s function stress tensor. Then, Eq. (4) can be rewritten
as

ci(P)u;i(P) = /S{”Zi(ﬂ O)T(Q) — Zii;(P, Q)ui(Q) fe;ds (®)

where e; are global Cartesian unit vectors.
Consider an arbitrary rigid body translation where u(Q)=u(P) = constant. Thus, T;(Q) = 0. Use of this
rigid body motion solution in Eq. (8) gives

uPu(P) = = [ (P, Opu(Pe;s ®)
s
Substituting Eq. (9) into Eq. (8) yields a new BEM equation
[P OTH(O) 2P, Q)(Q) ~ (P ey ds =0 (10)

Thus, the corner tensor ¢y; is now eliminated from the BEM equation. Its evaluation is avoided and this is first
advantage of using the rigid body motion technique.
Now let

Fi = {u, (P, O)T;;(Q) — Z4;(P, Q)[u:(Q) — ui(P)]}e; (11)

It is easy to show that when we take the divergence of F,. at a field point Q, this vector is divergence free every-
where except at the source point P, i.e.

Vo - F, = {u};(P, Q)Tij(Q) - Zkij(Pa Q) [”i(Q) - “i(P)]}J
=[S (P, O)T5(0) — 2 (P, 0)Si(Q)] + u,(P, O)T1,(0) — 2wy (P, O)[u(Q) —us(P)] =0 (12)

*

Where S;; = § (ui; + ), for i =1,2; Sy =w;, for i = 3,4, and similarly for Sy

Eq. (12) shows the existence of a function &, such that

The boundary is now discretized into n elements, and Eq. (10) becomes

n Eey n Eep n
/des => / Fids=>" / Aoy =) (¥} (Ee,) — & (Eey)] (14)
N e=1 JEe e=1 YEe e=1

which means that there is no need for any numerical integration for two-dimensional magneto-electro-elastic
problems.

It is important to observe that the above integrand contains unknown functions u and t on ds which must
satisfy the basic equations of magneto-electro-elastic media. Thus, local shape functions for u must be chosen
such that they satisfy the general Navier—-Cauchy equations and the shape functions for t must be derived from
those of u.



6224 J. Aimin et al. | International Journal of Solids and Structures 44 (2007) 6220-6231

3. Two-dimensional magneto-electro-elastic plane strain with quadratic shape functions
It is easy to know that there are a total of twenty linearly independent quadratic shape functions.

The displacement components are written as arbitrary linear combinations of the twenty functions as
follows

u 1 X z 0 0 0 0 0
w _s, 0 Py 0 44, 0 L6, 1 6 X Iy z Iy 0 L6, 0
[0 0 0 0 0 0 0 1 X
I'4 0 0 0 0 0 0 0 0
0 0 0 0 x2 x? x?
+ do . + d1o g + 01 g + 01 8 + 013 kl(;cz}-l-ém kgcz +515{ 8
0 1 x z 0 0 k3xz
xz Xz z? z? z2
2 2
+ di6 IZ; +d17 Z; 018 kl(())xz 19 kl(l)xz + 02 8 (15a)
kex? koZ? 0 0 kioxz
where x and z are co-ordinate with respect to a global co-ordinate system, and
2¢n 2¢y 2cyy
kl:_6’13+c44’ kz:_€15+€31’ k3:_d15+d31’
kg [2c4s  2ess 2dys | B C13 + Cas
ks — | 2e1s 211 —2gy e;s+e3 o,
ke :2d15 —2g.; —2,u“: | dis + ds (15b)
kq 2c33 2e33 2ds; C13 + Caa
kg —| 2ess  —2e33  —2gy eis ez o,
ko | 2d33 =283 —2us; | dis + ds
ko = — 2c44 7 _ 2¢44 ’ b= — 2C44
C13+ Cay ers + e3 dis +ds
In matrix form, Eq. (15a) becomes
{u} = [Tu(x,2)]{5} (16)

where 0 = [5152 cee 520]T.

These twenty artificial variables require quadratic elements with 20 physical variables. The configuration of
a chosen quadratic boundary element is shown in Fig. 1. Each element is divided into 4 equal segments by 2
traction and 3 displacement nodes. Thus, it has 20 physical variables and the way they are numbered globally

2cH
ut

t[?c]

Fig.

N

=)

8 Traction node

¢ Displacement node

1. Quadratic boundary element (e).
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on the element (e) is also shown in the figure. It should be noted that the BCM equations are enforced at the
displacement nodes only.

By using the Egs. (2), (5) and (15), the twenty physical variables on the element (e¢) can be described as
follows

{P} = [T (x,2){5'} (17)
where P(e) _ [M(Zefl)w(Zefl) @(22—1) Y/(Zefl)t(Qe—l)[(Ze—l) _ w(Zefl) _ n(Zefl)u(Ze)W(Ze) @(26) qj(2€> tx(Ze)t(Ze) _ w(Ze) _ n(Ze)u(ZeJrl)
w2t D) @Rt pCe+ )T The variables in P) are chosen such that the matrix T is invertible.

A new coordinate system (&, #) centered at the source point j is introduced. This is done in order to make the

shape function variables conform to those of u;; and Xy, (which are functions of ¢ and 5 only). The ¢ and 5
axes are parallel to the global x and z axes, thus

¢=x(0) —x(P), n=2z(Q)—z(P) (18)
By instituting Eq. (18) into Eq. (15), the displacements shape functions can be written as
{u} = [Tu(&n)][B{8} = [Tu(& m]{5} (19)

in which [B;] is a transformation matrix that depends only on the coordinates of the source point ;.
If (h) is the element contalnlng the source pomt at its first node, with this new coordinate system
uy(P) =6 h), »(P) = 54 , u3(P) = 6 and uy(P) = 5,0. So, for the element (e), we have

{u(Q) —u(P)} = [T.(& o} (20)

where the columns of [T,(&,#)] are the twenty shape functions

1 4 n 0 0 0 0 0 0 0 0 0
0 0 0 1 & n 0 0 0 0 0 0
o Yo Yo Yo Yo Yo Y1 (Y \nl Yo Yo Yo
0 0 0 0 0 0 0 0 0 1 4 n
& & &n &n n s U8
k1f77 } 0 { ka8 kan? kioén 0 0 (21)
] keén o [ "Nk 7] 0 [T ) kuin [T ] O
k3én kon? 0 0 ki2én

and

(39 =17~ 31)35'3 85 338150 55 383155 (3 —3)3 35053505
Potential functions must be obtained for each of twenty states, for each of the directions, electric potentials
and magnetic potentials corresponding to k =1-4 in Eq. (14). Let ¢, (/= 1-20) denote potentials for the
above twenty states for k =1, corresponding to the unit force in the x direction. The function in Eq. (14)
is a linear combination of ¢, ; (/= 1-20). ¢, can be calculated individually by using Eq. (13), with ¢, ; replac-
ing @, £ and 5 replacing x and z, respectively.

Similarly, let @2, @3, and ¢4, (I = 1-20) denote potentials for the twenty states, for k = 2,3,4 correspond-
ing to the unit force in the z direction, the unit electric charge and the unit current, respectively. The potentials
@i (k=1-4, I =1-20) are given in Appendix B. It should be noted that @, in Eq. (14) is composed of ¢y,
(I =1-20), respectively.

Now, with the potential functions already derived, the BCM discretized equations are developed as follows.

For the source point j (source points are only placed at the ends and mid-point, i.e. displacement nodes, of
each boundary element, see Fig. 1.)
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n

S (0% (Fe) — @ (Eey)] iZm,Eez ol (e )} =0 (23)

e=1

It should be noted that the potential functions ¢, 1(&,1), @ra(é.n), or(E,n) and @k10(E, 1) (k= 1-4) corre-
sponding to constant shape functions, are singular when a field point Q— the source point P, i.e. when
(&,m1) — (0,0). But in this case ui(Q) — ug(P) = 0(r), and Eq. (20) lead to

o = (81 =51y =0
o0y = (8 - =0 24
oY) = (8 -8y =0
3l = (3] = o1) =0

so the evaluation of these potential functions can be avoided, i.e. expression (23) is now completely regular.
This is the second advantage of the approach using the rigid body motion technique.

With 2n source pints corresponding to 2n displacement nodes on the boundary ds, one can get the final
BCM linear system of equations

[K]{P} = {0} (25)

where {P} are degrees of freedom on the whole boundary ds. The global system of equations is condensed in
accordance with continuity of displacements across element in the usual way.
Finally, the system of Eq. (25) needs to be reordered in accordance with the boundary conditions to form

[A{X} ={Z} (26)

where {X} contains the unknown boundary quantities and {Z} is known in terms of prescribed boundary
quantities and geometrical and material data of the problem.

After the solution of the global equation system (26) is obtained, one can easily derive the artificial variables
{8')} from Eq. (17). At this stage, the remaining physical variables at any node on the boundary can be easily
calculated from Eq. (15a) and the corresponding relations for stresses and tractions in terms of their shape
functions.

Evaluation of strain components at points inside a body requires transformation of equations of the strain
BEM at an internal point to an integrated form analogous to Eq. (14). This can be done since the integrand is
again divergence free. Stress calculations would then follow from the magneto-electro-elastic fundamental
equations.

4. Numerical example
4.1. Example 1

Consider a magneto-electro-elastic column of size a X b under three load cases, i.e. uniform axial tension,
electric displacement or magnetic induction. The problem is treated as a plane-strain one.

For numerical calculation, we consider the column with the same geometrical and material constants as
Example 1 in Ding and Jiang (2004) for which totally twelve quadratic elements are used.

Because of the linearity property, the corresponding results are compared with the exact ones (*) only at the
corner point (a/2,b/2) for example, which is shown in Table 1.

4.2. Example 2

Consider a simply supported rectangular beam of length L, height # and width b subjected to uniformly
distributed loads on the upper and bottom surfaces. For numerical calculation, we consider the beam the same
geometrical and material constants as Example 2 in Ding and Jiang (2004) for which totally twelve quadratic
elements are used.
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Table 1
Comparison of BCM results with the exact ones (*)
Load u w [/ b4
1 —0.9500E—11 +0.5680E—12 +0.9495E—-3 +0.2138-4E—4
—0.9501E—11(*) +0.5680E—12(*) +0.9495E—3(*) +0.2138E—4(*)
2 —0.2108E—12 +0.9493E—14 —0.6289E—4 +0.2566E—6
—0.2107E—12(*) +0.9492E—14(*) —0.6289E—4(*) +0.2566E—6(*)
3 +0.5077E—12 +0.2140E—13 +0.2565E—4 —0.7520E—-5
+0.5077E—12(*) +0.2140E—13(*) +0.2564E—4(*) —0.7520E—5(*)
Table 2
Simply supported rectangular beam under uniformly distributed load
Point w [ L4 0. D. B. Oy
A —0.1987E—-8 —0.2310E—1 —0.1798E-2 —4.9979 —0.1110E—10 —0.2264E—9 +0.2798E—1
(—0.2000E—8) (—0.2314E-1) (—0.1808E—2) (—5.0000) (—0.1114E-10) (—0.2282E-9) (+0.2818E—1)
B —0.1796E-8 —0.2123E-1 —0.1588E—2 —4.6168 —0.1032E-10 —0.2114E-9 +0.2583E—1
(—0.1847E-8) (—0.2138E-1) (—0.1671-2) (—4.6190) (—0.1029E—10) (—0.2109E-9) (+0.2604E—1)
C —0.1378E-8 —0.1625E—1 —0.1258E-2 —3.5336 —0.7896E—11 —0.1619E-9 +0.1976E—1
(—0.1414E-8) (—0.1637E—1) (—0.1279E-2) (—3.5351) (—0.7875E—11) (—0.1614E-9) (+0.1993E—1)
D —0.7692E—-9 —0.8798E—-2 —0.6820E—-3 —1.9124 —0.4275E-11 —0.8789E—-10 +0.1062E—1
(—0.7652E-9) (—0.8857E-2) (—0.6921E-3) (—1.9130) (—0.4262E—11) (—0.8734E-10) (+0.1078E—1)
E —0.1972E-8 —0.8807E—-2 —0.2165E-2 —10.000 0.0000 0.0000 —0.6055E+3
(—0.1993E-8) (—0.8728E-2) (—0.2184E-2) (—10.000) (0.0000) (0.0000) (—0.6104E+3)
F —0.1864E—8 —0.8132E-2 —0.2003E-2 —9.2388 0.0000 0.0000 —0.5585E+3
(—0.1842E-8) (—0.8063E-2) (—0.2018E-2) (—9.2388) (0.0000) (0.0000) (—0.5640E+3)
G —0.1374E—-8 —0.6097E—-2 —0.1559E-2 —7.0711 0.0000 0.0000 —0.4389E+3
(—0.1409E-8) (—0.6172E-2) (—0.1544E-2) (=7.0711) (0.0000) (0.0000) (—0.4316E+3)
H —0.7698E—9 —0.3281E-2 —0.8333E-3 —3.8268 0.0000 0.0000 —0.2323E+3
(—0.7628E—9) (—0.3340E-2) (—0.8357E-3) (—3.8268) (0.0000) (0.0000) (—0.2336E+3)

The problem is treated as a plane-stress one and the boundary conditions are

z=+h/2:0,(x)=¢,(x), 1.=0, D.=0, B, =0, (27)
z=—-h/2:0,(x) =¢q,(x), 1.=0, D.=0, B, =0, (28)
x=0,L:6,=0, w=0, &=0, ¥=0, (29)
where g(x) = g sinix, A =n/L and ¢, (x) = 0. The beam of L =0.20 m, #=0.02 m and 5 = 0.001 m is sub-
jected to a pressure go = —10 Pa. Table 2 compares the exact and numerical results at eight reference points,

ie. A(0.100, 0.000), B(0.125,0.000), C(0.150,0.000), D(0.175,0.000), E(0.100,+0.010), F(0.125,+0.010),
G(0.150,+0.010) and H(0.175,+0.010). The exact results are given in parentheses.

5. Conclusions

In this paper, the BCM is presented for 2D magneto-electro-elasticity based on the fundamental solution of
an infinite magneto-electro-elastic plane. This approach does not require any numerical integration at all for
2D problem, even with curved boundary elements, and it requires only numerical evaluation of contour inte-
grals for 3D problems. Numerical results for 2D problem show that the BCM performs very well.
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Appendix A. Fundamental solutions

4 4
* p—
uy, = E AInR;,  uj, = E sikyjA; arctan—

J=1 Zi

P = Zs ey arctan— Y= Zsjk3j) arctan—
Zj

Zj

x
Uy = E AjarctanZA, Uy, = E sik1;4;InR;
i J

=1
4 4
* * _
(Dk = E S]k2]AjlnRj, qjk = E Sjk3jAjlnRj
j=1 j=1
. 5 A
= wl,s R —Z(xn, +zn.), ), = wl, s Zn, — Xn;)
0] =— E wzj (s? 2y — xny), nj= E a)3j s Zn, — Xn,)

4
=) o »s‘Aj( szn +xn,), =Y ;= (xn,+zn,)
k1 1j JR x z k2= 1/1 x z

= :

w; = — E wz,s, xnY +zn,), g w3,s, xnx + zn,)

where z; = 5,2, R; = /x? + z}, and 4; = oy, f,7; for k = 2,3,4, respectively, s;, k;;, @y, 4, o, B, y; are listed as in
Atluri (2004).

Appendix B. Potential functions
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4 . ;
¢ $\ ok, ¢
Qo= —Z [e;llj (nlnRj—n—garctann—> M ’garctann——wzj)jn]

= i Sj j

4
Q110= g w34 InR;
=1

4
o= —Z {s,(ng —dis)A; (11arctann£+§lnR,-) — w3, ;EInR; — (w3; —dls)/l,-g“}

kili(wy; —

Cas) Vll arctané — Méﬂ
n 2

ers) ’12 arctan-—- ¢ Méﬂ
N 2

d k3 —d

15),7 arctani_ww

n 2

=1 VY
4 =
2
(01‘122*2 31, ﬂlnR;*ﬂ*Earctané ] ’éarctané w31
=1 Sj ; Sj n;
4 T Aj(casks 2187 kla)]]) & ysidg(oy,—
= J7A)
‘91.13*; _C44k1}'jénlnRj+ %, Ctann/—‘rf
L Xi(erska+2wysT —kyany) & kasiii(o
J / 2% 2 2j
P 14—; —eysky2;EnInR; + %, J Ear tann +%
J=1 L J i
4 [ 2i(dysks + 20152 — ks i _
?1, 15:2 —dysk3/;EnInR; + J(disks Cal B 3])5 rctanf—f— 39,45(©y
J=1 | 2S/- n; 2
il
C”} 1\ _ Ailen —oys) ¢ cndy 1 ci3 | cn
P16 :Z s (lnRj—z) _%f”arctann_j_*_Tfnz lnRj_z yes en )f

a T
(01,17:2

64446 (lnRj,%)+Cll+2an7+§euks+2dnk9 (

C11 +2013k7+2€31k3+2d31k9 —C44S/2- R 7:|
+ An”
4
Al
kol (w1, 24k .
(/’1,18:2 ciskioi;énlnR; — 10 ./((;)1,/+513)5Zarctan£+( + 10)(2w11 C44)
= Sj N
-
ki A (@y; 2 k
ff’mgzz ek Ayénln Ry — L2 T ’(22’+e31)£2arctané+w
J=1 | Sj n;
-
kiodi(ws;+d 2 k d
0= dﬂkuijénln&_wc arctanf +W
J J

=T

Q1= ZwljsjAjlnR,

J=1

4 ¢
& ¢ cnd;
(pm:Z |:011Aj (qarctanerslnRj) +wy;s;4,EInR; + 1 §:|

J

y ¢
Ops= Z |:Sj(wl/' —ca)d;(nInR; —1n) +C44A,-garctann—+wll,s,-A,n
=1 J
! ¢
Pra= Zwl,Aj arctan—
= i
4

Prs= Z |:Sj(wlj —cu)d; (nlnRj —

j=1 ©J J J

¢ A VA,
Z{ cl3A,-<11arctang+5lnRj>w1’ ”flnR,Jr(C”erl’) ’é}
: N, s s; / 5

n— é arctané + wlejéarctani
Sj n n

=1 Jov J
¢
Qr7=— E ;A arctan—
j=1 n;

4

Prg= *Z {S,-(wz/els)A,- (nlnR,

J=1

n— < arctan—é +wyAd;E arctamé
s, n ' n

J J J

1 ;. ¢
InR; —5 +(w1,-fc44)ﬁ,~s,-cnarctannf

Js;1* arctan—

A8 Zarctan—

4 49

J

¢ klo/1 (o +013)§n:|
; 2
¢ kllft,(wzz/-ﬁ-ez])én}
J
&
sjr, arctan—
mj

k 2/1]'(&)23/ +d31)f}1:|

6229



6230 J. Aimin et al. | International Journal of Solids and Structures 44 (2007) 6220-6231

4
Qro=— z —e314; narctané élnR “l R; +M5
= n; sj s;

! ¢

Pr10= Z 374 arctan—

Jj=1 J
2 ¢ ¢ ¢
(p,\.‘“——z sj(ws;—dis)4; | nlnR; —17——arctan— +ws;A;Earctan—
' Jj=1 Sj n; n;

4 P
d A,
(Pk_lz=*z |:d31A/- (narctan’erClnR,) @34 ’él R; +( 1+ 03)) ’5}

S Sj

& klc44+2w15 —kiwy; | 1 w1 —can)d sk 1 w84
(ﬂk_13:Z c44k1Ajfnarctan—+ 2S/ JA 2<1 R _E) +% 2(1 R, _5) I/ J jé

j=1 J J

4
f k7615 +2(D] S *k2(’)2/ . 1 (a)z 615)/‘1 iS k2 1 (1)1~S'A' .
(p/\':l“:Z 615k2A fnarctann + 25‘, A,‘Qz IDRJ'—E “r% 2 In R —5 +#C2

=1 i J

4 kdys+ 20,52 — kyws; —dys)A;sk 1
rpk_IS:Z d15k;A,qnarctan’1£+ S Y ’ 3]Aj (1 nR; ——> +4(w3’ 15)4;5; 312<lnR/—§)+wlm 152

J=1 j 2s; 2 B
@ *i_—%fzarctané—c”/lj 2 QMMHR +611Ajén
k.16 2| 5 ¢ n, ) 0, 5; G AR
i
A; 2¢13k7 +2e31ks + 2d31k
on 17=Z %ézarctanéfcllJr Cisly +2esi Ky + 251 9A in arctan€+(w1,7c44)sjA,£nlnR + Cassd o ey
= 2 n; 2 1 2
4 [ ¢
N 4 (w]j+cl3)A/-k]0 > 1 (2+k10)((,()]j 644)1‘1 S‘j 2 1 wlijAj 5
fﬂk.lx*; —ClskloA/fUarCtann—j—Tf lnRj—E + > InR; =3 +Tn
4 T ¢
; Ak 1 2m;+k i 1 §iA
P19 :Z _e31k11Ajg“narctann£_%§2 <lnR]—§) +W‘4f‘yjﬂz (IHR/—E) +w1]%’,’2:|
Jj=1 J J

2s; 2 2

4 [ .
i+d3)Ak 1 2m1;,+k i+d 1 iSiA;
O Z fdglkle,-fnarctannif(wg'/Jr 31)4; 1252(1111{[75)Jr w1+ 12§(D3_,+ 31)AjS/112<1nR,-77)+w1’9’ _/’12:|

J=1 L J

where ;= sy, R; = \/62 + 17%, and A4;= o, B;,y; for k = 2,3,4, respectively.
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