
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Scientia Iranica A (2013) 20 (2), 259–269

Sharif University of Technology

Scientia Iranica
Transactions A: Civil Engineering

www.sciencedirect.com

Rain gauge network design using coupled geostatistical and
multivariate techniques
M.R. Shaghaghian, M.J. Abedini ∗
Department of Civil and Environmental Engineering, Shiraz University, P.O. Box 71348-51156, Shiraz, Iran

Received 30 June 2012; revised 6 October 2012; accepted 12 November 2012

KEYWORDS
Point kriging;
Block kriging;
Factor analysis;
Cluster analysis;
Variance-based approach;
Network design.

Abstract A methodology for the design of a rain gauge network is developed in this study. To the best of
the authors’ knowledge, this is the first time a combination of geostatistical tools and factor analysis, along
with a clustering technique, has been used to prioritize rain gauge stations in terms of information content
over the study area. The whole study area is divided into homogeneous subregions and a conventional
variance-based approach is implemented in each subregion to rank rain gauge stations. For this purpose,
factor analysis coupled with ordinary block kriging is used to identify the number of homogeneous
subregions, and then, ordinary point kriging is used to assign rain gauge stations to each subregion. The
developed scheme is quite time-efficient as it is not sensitive to initial guesses on cluster centers, there
is no need to specify the number of clusters in advance and, above all, it is highly relevant to the overall
objective stipulated in rain gauge network design. The proposedmethodology is implemented on real data
set in the south west of Iran. The results show that the proposed approach compares well with existing
paradigms in rain gauge network design and only six rain gauge stations are required to provide the
necessary information. In particular, the measure of network accuracy lies somewhere in between the
so called time consuming and more simplified approaches used in rain gauge network design.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Hydrologists and water resources managers are frequently
confronted with problems that require estimating the spatial
variation of a rainfall field from sparse information distributed
in space and/or time. These estimates are often used at var-
ious spatial and temporal scales for a variety of applications,
including water budget studies, reservoir operation, and flood
forecasting and control. The background data required for such
estimations are often collected via either ground-based mea-
surements (i.e., rain gauge stations) or air-based instruments
(i.e., radar and satellite imagery). The accuracy of both point
and regional-wise rainfall estimation is highly coined with the
number and spatial distribution of rain gauges or radar stations.
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The rain gauge densities and distributions have to be sufficient
to allow valid information reflecting spatial and temporal varia-
tions of the rainfall field in a river basin. As a result, precipitation
monitoring and subsequent network design are considered an
inevitable part of any study aimed at providing the background
data required for planning andmanagement of water resources
projects. There are numerous inter-related factors affecting a
typical rain gauge network design. These factors include, but
are not limited to, the overall objective of designing a network
(e.g., water balance studies, reservoir operation and flood fore-
casting), the process considered (e.g., evaporation, rainfall, ra-
diation), the attribute under consideration (e.g., rainfall depth,
rainfall duration, rainfall hyetograph), the temporal scale or
sampling interval in time (e.g., hourly, daily, monthly, annually.
etc.), the spatial scale (e.g., catchment, regional, countrywide),
the topographic setting (flat, rolling and mountainous), types
of precipitation (e.g., orographic, convective and cyclonic), the
nature of the objective function used for optimization (e.g.,
variance-based, entropy-based, fractal-based and distance-
based techniques) and the optimization algorithmused formin-
imization or maximization purposes (e.g., exhaustive search
algorithm, genetic algorithm, simulated annealing, Tabu search,
etc.). While the study area itself (of course, if the data are not
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synthetic) would dictate factors such as spatial scale, topo-
graphic setting, and types of precipitation, a number of other
important decisions have to bemade in order to narrow the dis-
cussion on rain gauge network design to a manageable size.

Practically speaking, there is a close connection between
such factors as the overall objective of designing a network,
processes and attributes under consideration, and the temporal
scale or sampling interval in time. As an example,while for flood
forecasting and warning, accurate representation of the depth
of the point rainfall and its time-wise variation is considered
an important task [1,2], in reservoir operation, monthly rainfall
is the correct time interval for inclusion in reservoir design
and operation [3]. Spatial variability and sampling interval are
highly related to each other. As the sampling interval increases,
the attribute under consideration becomes less variable and
subsequently lower rain gauge density is required to monitor
the rainfall. In our case, as the sole objective of designing
a network is to synthesize and assess the long-term water
balance studies, accurate representation ofmean areal rainfall is
considered amajor task. For this purpose, evaluating the spatial
variation of annual rainfall depth and selecting the number and
spatial locations of rain gauge stations is the sole objective of
network design.

Having established all those pertinent factors, two key terms
remain, i.e., an objective function and a typical algorithm for
its optimization. Rain gauge network design assumes a variety
of approaches as pertains to the selection of these two key
terms. These approaches concerning the objective function are
generally known as variance-basedmethods [2,4–11], entropy-
based techniques [3,12–15], fractal-based methods [16,17],
and distance-based approaches [18,19]. After casting the
required objective function, an optimization algorithm has to
be employed to eitherminimize ormaximize the corresponding
objective function. Early studies were mostly based on random
searches and enumeration [20]. However, for the past three
decades or so, researchers have considered some other more
systematic approaches, including the simplex method [6],
the gradient method [8], simulated annealing [19,21], Tabu
search [22,23] genetic algorithm [24] and Ant Colony [25] as
common optimization techniques in multiple fields of network
design.

Interaction between the nature of the objective function, the
associated optimization algorithm and the subsequent simpli-
fication involved in rain gauge network design will be the focus
of the current paper. Itmight help to restate the problem in con-
ventional form and see where the issue to be addressed in this
paper, is. As a rule, when the mean areal rainfall over a river
basin is to be estimated, there is generally a network of rain
gauges in place. In light of the existing network, three differ-
ent types of problem could be delineated in rain gauge network
design.
1. Prioritizing the existing rain gauge network in terms of its

contribution to estimation accuracy;
2. Choosing the location of some additional potential rain

gauges to improve the estimation accuracy as much as
possible;

3. Selecting an optimal subset, n, of an existing dense rain
gauge network containing N stations.

In either case, the estimation accuracy can be expressed in
terms of information content or variance of residuals. These
features are, in turn, a function of the number n and the spa-
tial location of rain gauges. When the number N is small, all
possibilities [i.e.,


N
n


], with reference to computation of the

variance of residuals or quantification of information content,
can be examined thoroughly [7,14]. However, when N is large,
for intermediate values of n, this exhaustive analysis of each
combination is not generally possible, resulting in the problem
of dimensionality issue to be addressed in this paper. Different
investigators consider different simplifying assumptions to re-
duce the computational cost involved. Conventional paradigms
in rain gauge network design surmount this issue by resorting
to Bellman’s principle of optimality [26] aimed at thoroughly
searching the feature space for each combination with due at-
tention to results obtained in earlier combinations [7,10,14].
This simplificationwould not necessarily lead to the same result
considering all scenarios for


N
n


. Then, a logical query would

be to quantify the discrepancy involved between these two
scenarios.

Ironically, almost all entropy-based network design tried to
avoid this curse of the dimensionality problem bymaking some
further implicit or explicit simplifying assumptions [3,12–15].
While Krstanovic and Singh [13] and Yoo et al. [15] consid-
ered geographical/topographical boundaries to partition the
rain gauge stations, assuming each subregion represents the
area of similar climatological characteristics, A1-Zahrani and
Husain [14] addressed the combinational problem by assum-
ing the number of stations in each imaginary zone to be less
than 10. The plot of the measure of accuracy versus the num-
ber of stations pursued a totally different route in variance-
based methods [7,10]. While Bastin et al. [7] used block kriging
and forward addition to sequentially add and delineate various
combinations of optimum rain gauge stations, Kassim and Kot-
tegoda [10] considered point kriging and backward elimination
to sequentially eliminate and delineate appropriate rain gauge
combinations. Both studies suffer from the simplification cited
above.

The main contribution of the current paper is in using
a combination of factor and cluster analysis to objectively
subdivide the study area into zones of similar characteristics
and then using the variance-based approach to prioritize
stations in each cluster. Total number of rain gauge stations
within the study area are obtained by adding the optimum
number of stations in each cluster. The next section of the
paper is devoted to a discussion of the geostatistical framework
regarding both ordinary point and block krigings which have
been chosen for clustering and application of variance-based
techniques. Then, the following section describes a rationale
for using factor analysis to cluster stations into subregions.
Section 3 is devoted tomaterials andmethods summarizing the
study area, nature of data used, and the proposedmethodology.
In Section 4, the results of various paradigms on network design
are compared and contrasted with the proposed scheme. The
last section includes the conclusions which can be drawn from
this study.

2. Theoretical background

The network design pursued in this paper intends to use a
variance-based approach coupledwithmultivariate techniques
(e.g., factor and cluster analyses) to prioritize rain gauge
stations, and then compare the results with conventional
paradigms in network design. As a result, a brief account of
geostatistical analysis andmultivariate techniques are in order.

2.1. An overview on ordinary point and block kriging

At this stage, it might help to have an overview of various
types of kriging, in particular, ordinary point and block kriging.
A regionalized variable, such as annual rainfall depth, observed
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at known spatial locations, x1, x2, . . . , xn, can be considered a
realization of a random function given by:

P = [P(x1), P(x2), . . . , P(xn)]T . (1)

This function can be decomposed into a large-scale variation,
m(x), and a small-scale variation with zero expectation, W (x),
to be modeled as deterministic and stochastic processes,
respectively. The parent random function can be expressed as:

P(x) = m(x) + W (x). (2)

The upper case letter is used to denote the random function or
its corresponding random variable and the lower case letter for
its particular realization.

In both simple and ordinary kriging, the deterministic
component is considered to be independent of spatial location.
On the contrary, in universal kriging, m(x) will be a function of
spatial location, x. In simple kriging, m is constant and known.
In contrast, in ordinary kriging, m is constant and unknown. In
ordinary point kriging, the support size is a point as large as the
size of the rain gauge catch, while in ordinary block kriging, the
support size could be a block as large as the study area itself.
At every point in space, one has to differentiate between three
types of random variable:

P◦(xi) : The observed value of P at spatial location xi,
P(x0) : The true value of P at spatial location x0,
P̂(x0) : The estimated value of P at spatial location x0,

where P(x0) would not be accessible and P̂(x0) is given by the
following formula in the case of ordinary point kriging:

P̂(x0) =

N
i=1

λi(x0)P◦(xi), (3)

where λi is the weight associated with observed rainfall depth
at xi, i.e. P◦(xi) and N is the total number of rain gauge stations.
In this paper, a methodology will be proposed to effectively
utilize these weighting coefficients, i.e. λi to cluster the whole
study area into clusters of homogeneous characteristics. In the
same way, the mean areal rainfall over block V, centered at x0,
i.e. P̂V(x0), can be obtained through the following relationship:

P̂V(x0) =

N
i=1

λBK
i (x0)P◦(xi), (4)

where λBK
i is theweighting coefficient associatedwith observed

rainfall depth at xi, i.e. P◦(xi). Once again, in this paper, these
weighting coefficients will be effectively utilized to identify
the optimum number of clusters corresponding to accurate
representation of mean areal rainfall over the study area. It
might be helpful to differentiate between two types of residual
(i.e., estimation error), namely, point residual (i.e., R(x0)) and
block residual (i.e., RV(x0)), to be defined as:

R(x0) = P̂(x0) − P(x0),

RV(x0) = P̂V(x0) − PV(x0). (5)

Using Eq. (3), along with two criteria for point residual (i.e.,
zero mean and minimum variance), leads to an ordinary point
kriging system in terms of the variogram:

N
j=1

λj(x0)γ (xi, xj) − µ(x0) = γ (xi, x0) ∀ i = 1, 2, . . . ,N,

N
i=1

λi(x0) = 1, (6)
where µ(x0) is the Lagrange multiplier. After obtaining λ’s,
Eq. (3) can be used to find the estimated value at the prescribed
location. Subsequently, the variance of residual at spatial
location x0 is given by:
VAR[R(x0)] = σ 2

R (x0)

=

N
i=1

λi(x0)γ (xi, x0) − µ(x0). (7)

Using Eq. (4), along with two criteria for block residual (i.e.,
zero mean and minimum variance), leads to an ordinary block
kriging system in terms of the variogram:

N
j=1

λBK
j (x0)γ (xi, xj) − µ(x0) =

1
M

M
k=1

γ (xi, x′
k)

∀ i = 1, 2, . . . ,N,

N
i=1

λBK
i (x0) = 1, (8)

where M is the number of discretized points inside a typical
block. After obtaining λBK’s, Eq. (4) can be used to find themean
areal rainfall over the study area. Subsequently, the variance of
block residual over block V centered at x0 is given by:

VAR[RV(x0)] = −µ(x0) +
1
M

N
i=1

M
k=1

λBK
i (x0)γ (xi, x′

k)

−
1
M2

M
k=1

M
j=1

γ (x′
j, x′

k), (9)

where ‘‘′’’ corresponds to the discretized points inside a typical
block. The backbone of almost all variance-based techniques
considers the point variance of the residual (i.e., R(x0)) and the
block variance of the residual (i.e., RV(x0)) to be a function of
number and spatial location of rain gauge stations in place.

2.2. An overview on factor analysis

Factor analysis is considered an extremely useful multi-
variate statistical technique to rearrange and organize original
variables (i.e., mean annual rainfall at each station) into fewer
underlying factors, F1, F2, . . . , Fm (also called common factors),
to retain as much information contained in the original vari-
ables as possible [27]. Unlike the original variables,whichmight
have strong spatial correlation, factors with no spatial coordi-
nate associated whit them are completely uncorrelated with
each other. As a result, substituting these factors for the orig-
inal variables can effectively reduce the overall complexity of
a large data set. Assuming the original data are standardized
(each data is subtracted from spatial mean and then divided by
spatial standard deviation), the eigenvalue quantifies the con-
tribution of a factor to total variance for the attribute under
consideration. Factors are produced according to an eigenvalue
analysis of the correlation matrix, and factor loadings and fac-
tor scores are the main calculations of Factor Analysis (FA). The
key idea is to assume each variable as a linear combination of a
set of unobserved, underlying, and latent variables plus an error
component. The first step of FA is to standardize the raw data
and compute a correlationmatrix of the variables from the stan-
dardized variables [28, p. 413]. Due to the availability of only
one realization at each rain gauge station, data standardization
has to be performed in a slightly different context. For this pur-
pose, spatial data series are assumed to be stationary and er-
godic. As a result, data standardization implies subtraction from
the spatial mean and division by the global standard deviation.
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Expressing each standardized observation as a linear combina-
tion of common factors and N additional sources of variation,
ϵ1, ϵ2, . . . , ϵN , we have:

P◦(x1) = L11F1 + L12F2 + · · · + L1mFm + ϵ1
P◦(x2) = L21F1 + L22F2 + · · · + L2mFm + ϵ2
...

P◦(xN) = LN1F1 + LN2F2 + · · · + LNmFm + ϵN

(10)

where Lij is a factor loading which relates the ith observation
to the jth factor. The second step is to estimate the factor
loadings that express the degree of closeness between the factor
and variables. For this purpose, some assumptions have to be
considered in order to make the above formulation applicable.
At first, common factors and error terms are assumed to be
independent and normally distributed random variables whose
means are equal to zero and whose variances are equal to 1
and Ψi, respectively. Hence, regarding Eq. (10), variance of an
observation and correlation between two observations can be
determined as follows:
COV


P(xi), P(xj)


= COR


P(xi), P(xj)


= R(xi, xj)

=


m

k=1

LikLjk + Ψi if i ≠ j,

m
k=1

L2ik + Ψi if i = j.
(11)

There are four common methods for estimating the non-
unique matrix of factor loading, [Lij] [28,29]. One of the most
popular is the principle component method. In this method,
firstly,Ψi’s are neglected, then, the correlationmatrix is factored
into LLT with the aid of the spectral decomposition method:

RN×N = CN×mDm×mCT
m×N , (12)

where C is an orthogonal matrix, so called a truncated modal
matrix, constructed with m major normalized eigenvectors
(
N

i=1 C
2
ij = 1 and

N
i=1 CijCik = 0) of R, and D is a diag-

onal matrix, so called spectral matrix, constructed with the
m largesteigenvalues, θ1, θ2, . . . , θm, of the correlation matrix.
Since the eigenvalues, θi, of a positive semi-definite matrix, R,
are all positive or zero, we canwriteD asD1/2D1/2. So, substitut-
ing this in Eq. (12) and comparing it with relations in Eq. (11),
after incorporating the cited assumptions, components of the
loading factor matrix can be calculated as follows:

Lij = Cij


θj. (13)
Each component of the loading factormatrix (Lij) represents the
correlation between the ith variable and the jth factor. Factor
loadings range from −1 to +1, with a larger absolute value in-
dicating a stronger relationship between the respective factor
and variable. Considering Eq. (11), the variance of each obser-
vation may be calculated by summation of the square of com-
ponents in the corresponding row of the loading factor matrix.
Consequently, the proportion of the total sample variance due
to the jth factor is:

N
i=1

L2ij

N
i=1

R(xi, xi)
=

N
i=1

(Cij


θj)
2

N

=

θj
N
i=1

Cij2

N
=

θj

N
. (14)
In every application, a decision must be made on howmany
dominant factors (m) should be retained in order to effectively
summarize, cluster or interpret data. The scree graph, whose
plots describe sorted eigenvalues versus eigenvalue number, is
a good tool in selecting the number of dominant factors. Since
the eigenvalues serve as variances of the factors, if the graph
drops sharply, followed by a straight line with a much smaller
slope, m may be chosen equal to the number of eigenvalues
before the straight line begins. This corresponds to retaining
eigenvalues greater than one. Therefore, with regard to Eq. (14),
the high proportion of variations can be explained by retaining
the firstm dominant eigenvalues.

The last step linearly transforms factors associated with the
initial set of loadings by factor rotation to maximize variable
variances and to obtain a better interpretable loading pattern.
The factor loading matrix was rotated to obtain uncorrelated
factors by varimax rotation [30]. In subsequent paragraphs, the
entries of this new matrix will be denoted by [L′

ij]. This study
utilizes FA coupled with ordinary block kriging to identify the
number of clusters with similar characteristics, and then uses a
combination of FA and ordinary point kriging to assign objects
to various clusters.

2.3. Data clustering via coupled factor analysis and kriging

Cluster analysis is the organization of a collection of patterns
(usually represented as a vector of measurements, or a point in
amultidimensional space) into clusters based on similarity. The
clustering technique determines optimum partitions based on
a certain similarity and/or dissimilarity function that measures
the global error extent between data points and cluster centers
in a feature space. Here, FA may be employed for data
clustering [31]. The approach benefits from many advantages
including no requirement for any initial guess, self-detection of
number of clusters, and above all, objective-oriented clustering.
Therefore, coupling FA, as a characterization tool, and kriging,
as a spatial estimator, seems to be an efficient way for data
clustering in a spatial context. Let us see how a combination
of FA and ordinary block kriging can be utilized to identify the
number of clusters.

In the Appendix it is shown that the standardizedmean areal
rainfall can be written as a linear combination of standardized
observed point rainfall. However, standardized observed point
rainfall itself can be written as a linear combination of factors.
As a result, standardized mean areal rainfall can be expressed
as a linear combination of factors via

ˆPV(x0) =

m
j=1

βjFj,

where:

βj =

N
i=1

λ′

iL
′

ij, (15)

where βj can be interpreted as the sensitivity of factor j to the

standardizedmean areal rainfall. As VAR[
ˆPV(x0)] =

m
j=1 β2

j ≈

1, β2
j can also be interpreted as the contribution of factor j to

total variance of the standardized mean areal rainfall. Hence,
the number of factors can be further reduced by retaining
dominant contributing factors. This new reduced number can
be taken as the number of clusters associated with mean areal
rainfall.

Taking factors as representative of each cluster, we can
now switch to partitioning the whole study area into these
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Figure 1: Location of study area and rain gauge stations.

identified clusters. For this purpose, the whole study area has
to be discretized into a mesh, and ordinary point kriging has to
be used to compute weighting coefficients for each nodal point.
Based on similar reasoning, the standardized point estimation
of rainfall at x0 can be written as:

ˆP(x0) =

m
j=1

αjFj,

where:

αj =

N
i=1

λ′′

i L
′

ij, (16)

where αj can be interpreted as the sensitivity of factor j to

the standardized point rainfall estimate. As VAR[
ˆP(x0)] =m

j=1 α2
j ≈ 1, α2

j can also be interpreted as the contribution
of factor j to total variance of the standardized point rainfall
estimate. A threshold can be defined for αj and assignment can
bemade based on the numerical value of the selected threshold.
Needless to say, if x0 coincides with a rain gauge station, then,
due to the exact interpolant property of kriging [32],αj becomes
proportional to L′

ij and the assignment process becomes much
simpler. In this case, one can resort to entries of rotated loading
factors to allocate rain gauge stations to various clusters. Very
low values of threshold imply that every node belongs to all
clusters. As the threshold increases, the assignment becomes
more distinct.

3. Materials and methods

3.1. Description of the study area

The study area selected for this study is the plain region of
Kohkiloyeh-Bouyerahmad and Khouzestan provinces in South
west of Iran with a total area of about 25,000 km2, as illustrated
in Figure 1. It is located between longitude 49° 17′ and 51° 22′

east, and between latitude 30° 2′ and 31° 56′ north. The
physiography within the study area is the near-horizontal
depositional surfaces of the Gachsaran and Dehdasht regions.
Elevations in the study area range from 1000m on the slopes of
the Zagros Mountain Chain to 0 m on the coasts of the Persian
Gulf.

The overall rain pattern in the region is strongly affected by
Mediterranean lowpressure systemswhich enter from thewest
throughout the year. The precipitation mostly occurs in the
form of rain, which usually results from frontal storm systems
traveling eastward. However, summer precipitation, which has
usually no major contribution to total annual precipitation,
results from localized convective-type storms.

A total of 34 rainfall gauge stations providing monthly ob-
servations, for at least a 10-years period, are used for analysis
in this study. Figure 1 shows the location of each rain gauge
in the study area, and Table 1 summarizes the UTM coordi-
nates, elevation and average annual rainfall depths (mm) of
each rain gauge station. The mean annual rainfall ranges from
249.9 mm (Rain-gauge No. 19) to 901.4 mm (Rain-gauge No. 6).
This shows, roughly, the great spatial rainfall variability over
the region. Based on monthly rainfall records, summer precip-
itation includes, at most, thirteen percent of the total annual
precipitation. The observed values also indicate that average
annual precipitation becomesmore significant with an increase
in elevation.

3.2. Variogram modeling

Unlike the majority of conventional deterministic methods,
stochastic rainfall estimation, i.e., geostatistical approaches,
would take the spatial structure of rainfall observations into
account and use semi-variance (invariably called variograms)
as a measure of spatial variability. In brief, various types of
geostatistical method consist of the following three steps:

• Exploratory spatial data analysis;
• Variogram modeling;
• Estimation.

In exploratory spatial data analysis, a few tasks, including
delineation and removal of outliers, check for normality, and
the need for any possible data transformation is pursued. Vari-
ogram modeling amounts at computation of experimental var-
iograms and finding an admissible theoretical variogramwhich
will best fit the experimental variogram. The experimental var-
iogram, γ̂ (xi, xj), is computed as half the average squared dif-
ference between the components of data pairs:

γ̂ (xi, xj) =
1

2N(hij)


[P(xi) − P(xj)]2, (17)

where N(hij) is the number of data pairs, a separation vector,
hij = xi − xj, apart. After trying a number of permissible the-
oretical variograms, the analysis confirmed that an exponential
structure provided the best goodness of fit among other com-
peting models. Once the basic model was chosen, modeling the
sample experimental omnidirectional variogrambecame an ex-
ercise in nonlinear curve fitting. The selected model consisted
of an exponential structure with σ 2

= 37 511mm2 and a range
of 206991 m (206.991 km). Figure 2 shows the results of var-
iogram modeling. In this study, the variogram is used for two
purposes. First, stochastic estimation of point and mean areal
rainfall calls for variograms to be used in the kriging system.
Second, due to the particular nature of rainfall spatial series, a
correlation function is derived from the variogram function, as-
suming second-order stationarity is applicable. Then, the cor-
relation function is digitized to obtain the correlation matrix,
taking the rain gauge station topology into account.
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Table 1: Precipitation data used for characterizing rainfall spatial variability.

Station numbera Station name UTM coordinates Station elevation (m) Average annual precipitation AAPb (mm)
Easting (m) Easting (m)

1 Dehdasht 458392 3409273 829 540.9
2 Dail 476871 3378002 870 785.9
3 Dogonbadan 477738 3358946 776 385.5
4 Benpir 471312 3331042 670 682.4
5 Bibihakimeh 461972 3323468 380 402.2
6 Golbabakan 536009 3367171 920 901.4
7 Likak 414428 3417231 650 458.4
8 Seyedabad 472592 3392696 650 508.3
9 Nazmkan 477643 3390376 650 497.5

10 Tangebirim 522992 3354484 800 732.9
11 Hajghlandar 519081 3346351 640 594.1
12 Samghan 462473 3406087 800 514.2
13 Bibijanabad 477021 3348051 717 385.1
14 Abchirak 469288 3372480 793 539.1
15 Bouyeri 453508 3391838 820 574.5
16 Eidanak 442680 3422368 600 666.3
17 Khaibad 442247 3341099 38 342.2
18 Behbahan 436135 3392851 650 362.2
19 Dehmola 373646 3374928 32 232.1
20 Batoun 530475 3342837 735 645.1
21 Barez 444614 3478011 815 682.4
22 Baghmalek 392428 3491115 675 605.2
23 Mashin 377973 3472798 380 403.7
24 Ramhormoz 366738 3461849 155 289.6
25 Delibakhtiyari 383029 3498608 850 617.4
26 Jokonak 377909 3467256 330 368.3
27 Dehsadat 381925 3484151 429 441.9
28 Chamnezam 396307 3402398 190 344.7
29 Meydavoud 387483 3472691 480 395.5
30 Omidiyeh 370802 3404522 34.9 265.9
31 Izeh 392773 3524369 767 694.1
32 M. Soleyman 337724 3534332 321 467.9
33 Hendijan 378177 3350861 3 249.9
34 B. Deylam 434126 3324522 4 326.4

a Station numbers are the same as Figure 1.
b Average annual precipitation.
Figure 2: Experimental variogram along with best fit theoretical exponential
model.

3.3. Methodology

In this research, the key issue is to objectively challenge
a few variance-based rain gauge network design paradigms
in practical use and then propose a methodology whereby
prioritization of rain gauge stations can be made by a
combination of geostatistical tools andmultivariate techniques.
For this purpose, a more detailed analysis of two conventional
paradigms in rain gauge network design is offered first. Then, a
summary of the step by step procedure to prioritize rain gauge
stations, based on the proposedmethodology, will be provided.
In what follows, the two conventional paradigms in rain
gauge network design are invariably referred to as the ‘‘time
consuming approach’’ and ‘‘Bastin’s simplified approach’’. These
approaches are compared and contrasted with the proposed
approach. In either case, the network design problem consists
of prioritizing the rain gauge stations, which results in the best
estimate of themean areal rainfall, i.e. P̂V(x0), in a relative sense.
Furthermore, in all three approaches, the study area has to be
discretized into a mesh to be able to compute the variance of
the residual over the whole region (i.e., Eq. (9)) or some portion
of it [7,9,21].

3.3.1. Time consuming approach
This approach aims atmonitoring the numerical value of the

variance of the residual over the whole study area for various
combinations of rain gauge station, i.e.


N
n


, starting with a sin-

gle rain gauge station. For either small or large values of n, these
various combinations can be thoroughly searched. However, for
intermediate values of n and large values of N , the comprehen-
sive analysis of each combination would be impossible, result-
ing in the curse of dimensionality issue. Pardo-Igúzquiza [21]
proposed simulated annealing to surmount this issue. However,
he worked exclusively with synthetic data.
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3.3.2. Bastin’s simplified approach
Bastin et al. [7] tried to address the curse of dimensional-

ity issue by making simplifying assumptions. Their approach
aims atmonitoring numerical values of regional variances of the
residual, just like the time consuming approach. However, they
assumed that Bellman’s principle of optimality would be appli-
cable whilemoving from one combination to another. For a sin-
gle rain gauge station, both approaches lead to identical results.
For the two rain gauge combinations, while a time consum-
ing approach needs to search among N(N−1)

2 combinations for a
minimum variance of residual, Bastin’s approach requires only
N−1 combinations. The degree of difference between these two
approaches for rain gauge network designwill be highlighted in
the results and discussion section.

3.3.3. Proposed approach
In the proposed methodology, at first, the whole study area

is divided into subregions with reference to the objective of
rain gauge network design. Then, the so called ‘‘time consuming
approach’’ is implemented in each subregion to prioritize
the rain gauge stations. A step by step procedure can be
summarized as follows:

Step 1. Identify the variogram function for the attribute under
consideration and then, assuming a second-order
stationarity, find the correlation function. Keep in
mind that the correlation function for original data is
the same as the correlation function for standardized
data;

Step 2. In reference to network topology, digitize the correla-
tion function to obtain the correlation matrix;

Step 3. Compute eigenvalues of the correlation matrix and
plot the scree diagram. Using the scree diagram,
identify dominant eigenvalues greater than one.

Step 4. Identify the truncated modal matrix (CN×m) and the
truncated diagonal matrix (Dm×m);

Step 5. Compute the loading factor matrix via: L = [Lij] =

[Cij


θj];
Step 6. Use the varimax method to rotate the loading factor

matrix and obtain a better interpretable loading
pattern, i.e. L′;

Step 7. Discretize the study area into a generic mesh (5 ×

5 km). Compute the scaled block weighting coefficient
via appropriate equations and then compute βj from
βj =

N
i=1 λ′

iL
′

ij;
Step 8. In reference to numerical values of βj, decide on

dominant factors corresponding to the number of
clusters;

Step 9. Calculate scaled point weighting coefficients for each
generic point and then compute αj from αj =

N
i=1

λ′′

i L
′

ij and assign each generic node, as well as rain
gauge stations, to each cluster;

Step 10. Perform conventional network analysis in each cluster
and draw the variance of residual versus the number
of rain gauges for each cluster;

Step 11. Count the effective number of rain gauges in each
cluster;

Step 12. Combine the results.

4. Results and discussion

Precision of a rain gauge network depends on the number
and spatial location of the rain gauges within the study area.
Figure 3: Variance of residual (accuracy) versus the number of points (N)-Time
consuming approach.

In otherwords, due to climatological and topographical features
of the basin, each rain gauge has its own unique contribution
to the precision of the network. Thus, removing, adding or
reshuffling these rain gauges wil affect the precision of rain
gauge networks. An ideal rain gauge network would neither
be over-saturated with redundant rain gauges, nor suffer from
lack of rain gauges. Therefore, a typical procedure of rain
gauge network design has to look for a combination among the
existing rain gauges which maximizes the information content
orminimizes the variance of residual. In addition, the procedure
should be capable of offering spatial locations for further
addition of rain gauges to obtain more significant information.
Consequently, in an optimal rain gauge network design, the
purpose is to have a rain gauge configuration in order to achieve
maximum precision with a minimum number of rain gauges.

The main objective of rain gauge networks in this study is
to monitor the average annual precipitation of the aforemen-
tioned region. As a result, implementation of various rain gauge
networkparadigms requires discretization of the study area. For
this purpose, the area is superimposed by a 5 km× 5 km square
grid. Figure 3 shows the results for selecting the best combina-
tion of a certain number of rain gauges using a time consuming
viewpoint. As the graph clearly demonstrates, at early stage of
rain gauge addition, the degree of variance of residual reduc-
tion is remarkable. However, as the number of rain gauges in-
creases, the rate of variance reduction diminishes considerably.
Furthermore, for rather small or large values of n, various rain
gauge combinations can be thoroughly searched. However, due
to high computational effort, the procedure cannot be imple-
mented for intermediate values of n. The figure depicts that af-
ter the best combination of a certain number of rain gauges is
achieved, the variance of residuals cannot be further reduced
significantly. Therefore, if the figure is simulated with a bilin-
ear curve, the number of rain gauges corresponding to break
point in the slope can be considered the best number of rain
gauges within the study area. In this study, implementation
of a time consuming approach shows that only six rain gauge
stations (i.e., 13, 18, 21, 24, 28, and 31) are required to obtain
a variance of residual as low as 1622 mm2. Figure 4 intends
to compare and contrast Bastin’s simplified approach [7] with
that of a more time consuming one. The two approaches share
only two points, one at the beginning and another toward the
end. Our experience with various implementations shows that
the one rain gauge scenario corresponds to a rain gauge located
near the center of the study area. The six rain gauge scenario as-
sociated with Bastin’s simplified approach (i.e., 7, 25, 13, 19, 21,
and 24) provides a variance of residual as low as 3412mm2 and
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Figure 4: Variance of residual (accuracy) versus the number of points (n)-
Bastin’s simplified approach.

Figure 5: Variation of eigenvalue size versus eigenvalue number–Scree
diagram.

shares only three stations with that of the time consuming one.
The degree of departure between the two approaches seems to
be quite distinct.

As for the proposed methodology, following the step by
step procedure mentioned above, the correlation function for
standardized rainfall data was found to be R(h) = ρ(h) =

exp


−h
68 997


. In reference to network topology, the correlation

function can be digitized to obtain the correlation matrix.
Figure 5 demonstrates a scree diagram for the correlation
matrix. Using this graph, it seems the first six factors explained
more than 75% of the variance of observations, and can be
considered dominant factors (factors with eigenvalues equal to
or more than one). Tables 2 and 3 summarize the entries of
original and rotated factor loadingmatrices associated with the
first six dominant factors. After obtaining scaled ordinary block
kriging weighting coefficients (i.e., λ′

i ’s), Eq. (15) can be used
to find βj. Table 4 summarizes the numerical values of βj in
decreasing order. With regard to these weighting coefficients,
it is observed that while the six factors explain 98.9% of
the variance, the first three explain 97.9% variance of the
standardized mean areal annual precipitation over the study
area. Therefore, just the first three factors will be considered as
the number of clusters for the remainder of this study.

As for clustering the study area, while the content of Table 3
can be directly utilized to assign rain gauge stations to each
cluster, for other generic points, scaled ordinary point kriging
weighting coefficients have to be combined with rotated factor
Table 2: Factor loading or correlation between rain gauge observations and
dominant factors before rotation.

Rain gauge # Factors
1 2 3 4 5 6

1 0.75 0.10 −0.33 −0.37 −0.01 −0.07
2 0.77 0.34 0.00 −0.21 0.14 0.12
3 0.73 0.39 0.17 0.04 0.19 0.11
4 0.61 0.37 0.24 0.35 0.29 0.01
5 0.57 0.33 0.19 0.43 0.33 −0.03
6 0.47 0.32 0.47 −0.12 −0.42 −0.05
7 0.64 −0.22 −0.36 0.04 −0.23 −0.03
8 0.77 0.26 −0.16 −0.35 0.09 0.06
9 0.76 0.29 −0.10 −0.34 0.08 0.08

10 0.53 0.37 0.54 −0.07 −0.41 −0.04
11 0.53 0.38 0.54 −0.02 −0.37 −0.03
12 0.75 0.14 −0.30 −0.38 0.02 −0.04
13 0.69 0.40 0.23 0.17 0.23 0.08
14 0.77 0.34 −0.02 −0.12 0.19 0.11
15 0.78 0.18 −0.30 −0.24 0.06 −0.01
16 0.68 −0.08 −0.34 −0.25 −0.10 −0.11
17 0.63 0.27 −0.01 0.43 0.30 −0.06
18 0.74 0.06 −0.37 −0.06 −0.04 −0.06
19 0.47 −0.13 −0.34 0.50 −0.33 −0.09
20 0.47 0.35 0.55 −0.03 −0.43 −0.06
21 0.45 −0.33 −0.02 −0.20 0.00 −0.26
22 0.45 −0.71 0.24 −0.07 0.12 −0.12
23 0.49 −0.74 0.19 0.02 0.03 0.28
24 0.46 −0.65 0.11 0.08 −0.05 0.32
25 0.42 −0.70 0.26 −0.06 0.15 −0.21
26 0.50 −0.72 0.15 0.04 −0.01 0.33
27 0.47 −0.75 0.24 −0.03 0.10 0.07
28 0.59 −0.21 −0.38 0.28 −0.33 −0.01
29 0.50 −0.72 0.17 −0.01 0.03 0.21
30 0.49 −0.28 −0.30 0.38 −0.36 0.05
31 0.32 −0.54 0.23 −0.09 0.16 −0.49
32 0.21 −0.40 0.18 −0.02 0.12 −0.47
33 0.44 −0.03 −0.28 0.52 −0.20 −0.14
34 0.53 0.23 0.00 0.51 0.28 −0.10

loadings to obtain αj, via Eq. (16). In reference to numerical
values of αj, a threshold can be defined, and assignments can
be made based on the selected threshold. Generally speaking,
there is no distinct criterion for minimum correlation (loading)
to determine if a rain gauge (variable) is related to a certain
factor or not. However, a value of 0.5 is considered in many
studies [33,34]. Therefore, the values equal to, or more than, 0.5
are illustrated in bold in Table 3. Figure 6 shows the clustered
region, with regard to the elaboration made above. Careful
synthesis of Figure 6 shows that a few spots were assigned to
more than one cluster, while some others were not allocated
to any cluster at all. The rain gauge stations, along with generic
points in each cluster, can be effectively utilized to prioritize
rain gauge stations in each cluster. Figure 7 shows the variance
of residuals versus the number of rain gauges for the three
significant factors, with the number of rain gauges illustrated
in bold in Table 3. This information may be effectively utilized
to obtain the maximum number of rain gauges representing
each cluster. If a variation of the variance of residuals with the
number of rain gauges for each factor is simplified by bilinear
curves, the point atwhich the slope changes and variation of the
variance of residuals with the number of rain-gauges decreases
considerably can be considered as the optimal number of rain
gauges. Hence, for each subregion (cluster), two rain gauges are
enough. Subsequently, the six rain gauge scenario associated
with the proposed approach (i.e., 13, 18, 26, 28, 31 and 33)
provides a variance of residual as low as 1916 mm2 and shares
only four stations with that of the time consuming one. Based
on the proposed scheme, the selected rain gauge stations are
fairly uniformly distributed over the study area, while the ones
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Table 3: Factor loading or correlation between rain gauge observations and
dominant factors after rotation.

Rain gauge # Factors
1 2 3 4 5 6

1 0.70 −0.16 −0.17 −0.11 −0.45 0.24
2 0.84 −0.07 0.10 0.08 −0.12 0.22
3 0.83 −0.06 0.14 0.10 0.18 0.12
4 0.72 −0.03 0.06 0.01 0.51 0.06
5 0.67 −0.02 −0.02 −0.03 0.57 0.08
6 0.57 −0.12 0.38 0.02 −0.10 −0.49
7 0.46 −0.33 −0.51 −0.02 −0.26 −0.05
8 0.80 −0.09 0.01 0.02 −0.32 0.27
9 0.80 −0.09 0.06 0.04 −0.28 0.24

10 0.65 −0.13 0.42 0.04 −0.03 −0.53
11 0.65 −0.12 0.41 0.04 0.03 −0.50
12 0.73 −0.14 −0.13 −0.09 −0.44 0.26
13 0.80 −0.05 0.13 0.07 0.33 0.08
14 0.84 −0.06 0.04 0.08 −0.02 0.23
15 0.77 −0.11 −0.19 −0.05 −0.30 0.25
16 0.56 −0.26 −0.29 −0.13 −0.41 0.13
17 0.68 −0.03 −0.20 −0.07 0.46 0.12
18 0.67 −0.15 −0.37 −0.08 −0.24 0.13
19 0.35 −0.16 −0.68 −0.04 0.08 −0.32
20 0.59 −0.12 0.41 0.03 0.00 −0.56
21 0.23 −0.47 −0.09 −0.27 −0.21 0.09
22 0.06 −0.87 −0.04 −0.14 0.01 0.12
23 0.08 −0.89 −0.15 0.27 0.01 0.09
24 0.10 −0.77 −0.23 0.32 0.00 0.02
25 0.03 −0.86 −0.01 −0.23 0.04 0.11
26 0.10 −0.86 −0.19 0.32 −0.01 0.07
27 0.06 −0.91 −0.08 0.05 0.02 0.12
28 0.42 −0.28 −0.65 0.02 −0.12 −0.21
29 0.10 −0.88 −0.15 0.20 −0.02 0.10
30 0.29 −0.32 −0.64 0.09 −0.03 −0.28
31 0.03 −0.67 0.04 −0.51 0.03 0.09
32 0.00 −0.49 0.01 −0.48 0.07 0.03
33 0.37 −0.09 −0.59 −0.10 0.19 −0.26
34 0.58 −0.02 −0.23 −0.10 0.53 0.07

Table 4: Sensitivity coefficients of factors with respect to standardized
mean areal rainfall.

Factors
1 2 3 4 5 6

βi 0.6753 −0.6518 −0.3133 −0.0965 −0.0241 −0.0086

proposedbyChen et al. [3] are clustered toward the basin outlet.
In flat regions of temperate, Mediterranean and tropical zones,
the World Meteorological Organization (WMO) recommends
1 station for 900–3000 km2. In our case, cluster 3 meets this
criterion, but clusters, one and two do not, with 1 station for
5000 km2 [35].

5. Summary and conclusions

Spatio-temporal mapping of precipitation at various scales
in time and space is considered a prerequisite in almost all
studies concerning the operation andmanagement of water re-
sources systems. The accuracy of precipitation maps is directly
linked to the number and spatial distribution of rain gauge sta-
tions. Quantitative assessment of rainfall accuracy calls for a
systematic and objective procedure in rain gauge network de-
sign. Critical and concise review of existing literature on rain
gauge network design highlights the need for clarifying the
interaction and subsequent simplification involved between
development of the objective function and the optimization al-
gorithm used for its optimization.
Figure 6: Clustering of study area using coupled geostatistical andmultivariate
techniques.

Figure 7: Variance of residual (accuracy) versus the number of points (N)-
proposed approach.

In this paper, after identifying the gap in relevant literature,
a methodology has been developed and implemented to design
and analyze a rain gauge data collection network with the pur-
pose of obtaining the best estimate of long-term mean annual
areal rainfall over the study area. According to the proposed
approach, for the first time, multivariate statistical techniques
have been coupledwith geostatistical tools to identify the num-
ber of homogeneous zones, to assign objects (i.e., rain gauges
or generic nodal points) to various subregions and, finally, to
prioritize rain gauges in terms of information content in each
subregion. After implementing the proposed methodology on
an existing rain gauge network in south west of Iran, the re-
sults show that the proposed approach compares well with ex-
isting paradigms in rain gauge network design. In particular, the
measure of network accuracy lies somewhere in between the,
so called, time consuming andmore simplified approaches. The
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following more specific conclusions appear to be in order from
the current study:
1. Coupled factor analysis and ordinary block kriging seems

to be an appropriate and objective approach to identify the
number of homogeneous subregions. There is no need to
cluster data for various numbers of clusters and then to
identify the optimum number of clusters, as is routine in
k-mean clustering.

2. Coupled factor analysis and ordinary point kriging seems
to be an appropriate and objective approach to assign rain
gauge stations and generic nodal points to various clusters.
The assignment is not sensitive to initial guesses on cluster
centers, as is the case in k-mean clustering.

3. In the proposed approach, both the number of clusters
and the assignment process is objective dependent, while
in k-mean clustering, the overall objective has no role
to play in clustering. This objective dependency in the
proposed scheme is quite important, as, in network design,
the network density will be affected by numerous factors
mentioned in the introduction.

4. Contrary to popular belief, the simplified paradigm in rain
gauge network design does not necessarily lead to the same
results as that of more time consuming paradigms.

5. The usefulness of the proposed scheme becomes more
distinct if N , the number of rain gauge stations, becomes
enormously large.

6. The methodology can be submitted to rigorous physical
interpretationwith regard to the factors involved, e.g. degree
of variability.

An interesting exercisewould be to cluster the study area, based
on some other clustering procedures, such as k-mean or fuzzy
k-mean clustering, and see if it would give rise to the same
results as those proposed in this study. Furthermore, it is
suggested to implement simulated annealing on the real data
of this study, and see how the proposed methodology results
are compared with those of simulated annealing.

Appendix

This appendix intended to derive scaled weighting coeffi-
cients in terms of ordinary block kriging weighting coefficients.
To start with, estimated value of rainfall over block V indexed
at x0 is given by:

P̂V(x0) =

N
i=1

λBK
i (x0)P(xi),

subject to:

N
i=1

λBK
i (x0) = 1. (A.1)

Furthermore, variance of estimated value of rainfall over block
V indexed at x0 is given by:

VAR[P̂V(x0)] =

N
i=1

N
j=1

λBK
i λBK

j COV[P(xi), P(xj)]

=

N
i=1

N
j=1

λBK
i λBK

j R(xi, xj). (A.2)

On the other hand, standardized value of P̂V(x0) is given by:

ˆPV(x0) =
P̂V(x0) − m

VAR[P̂V(x0)]
1/2 , (A.3)
where:

m = E[P(x)].
However:

ˆPV(x0) =

P̂V(x0) − m
N
i=1

λBK
i (x0)

VAR[P̂V(x0)]
1/2

=

N
i=1

λBK
i [P(xi) − m]

VAR[P̂V(x0)]
1/2

=

N
i=1

λBK
i VAR[P(xi)]1/2P(xi)

VAR[P̂V(x0)]
1/2 . (A.4)

As a result:

ˆPV(x0) =

N
i=1

λ′

iP(xi),

where:

λ′

i =
VAR[P(xi)]1/2

VAR[P̂V(x0)]
1/2 λBK

i

=


VAR[P(xi)]
VAR[P̂V(x0)]

1/2

λBK
i . (A.5)

However:

ρ(xi, xj) =
R(xi, xj)

{VAR[P(xi)].VAR[P(xj)]}1/2

=
R(xi, xj)

σ 2
, (A.6)

where:

σ 2
= VAR[P(x)].

As a result:

λ′

i =


1

N
i=1

N
j=1

λBK
i λBK

j ρ(xi, xj)


1/2

λBK
i . (A.7)
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