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a b s t r a c t

Packing density is a permutation occurrence statistic which
describes the maximal number of permutations of a given type
that can occur in another permutation. In this article we focus
on containment of sets of permutations. Although this question
has been tangentially considered previously, this is the first article
focusing exclusively on it. We find the packing density for various
special sets of permutations and study permutation and pattern co-
occurrence.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The string 413223 contains two subsequences, 133 and 122, each of which is order-isomorphic (or
simply isomorphic) to the string 122, i.e. ordered in the same way as 122. In this situation we call the
string 122 a pattern. HerbWilf first proposed the systematic study of pattern containment in his 1992
address to the SIAM meeting on Discrete Mathematics. However, several earlier results on pattern
containment exist, for example, those by Knuth [8] and Tarjan [11].
Most results on pattern containment actually deal with pattern avoidance, in other words,

enumerate or consider properties of strings over a totally ordered alphabet which avoid a given
pattern or set of patterns. There is considerably less research on other aspects of pattern containment,
specifically, on packing patterns into strings over a totally ordered alphabet, but see [1,6,7,9,10] for
the permutation case and [3–5,12–14] for the more general pattern case.
Although several of the above cited papers have defined packing density for sets of patterns,

virtually all of them have subsequently restricted the attention to the case when the set contains
only one pattern. In this paper we take the next step in studying the set packing question. In Section 2
we study the packing density of so-called layered permutations which have been the focus of much
research also in the single permutation case. In Section 3 we calculate the packing density of various
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sets of three-letter patterns. In Section 4we study the average co-occurrence of patterns and calculate
the leading term of the covariance of any two permutation patterns of the same length n (as a
polynomial in n) and, in general, of any two patterns of the same length over the same alphabet.

1.1. Notation

Let [k] = {1, 2, . . . , k} be our canonical totally ordered alphabet on k letters, and consider the set
[k]n of n-letter words over [k]. We say that a pattern π ∈ [l]m occurs in σ ∈ [k]n, or π hits σ , or that σ
contains the pattern π , if there is a subsequence of σ order-isomorphic to π .
Given a word σ ∈ [k]n and a set of patterns Π ⊆ [l]m, let ν(Π, σ ) be the total number of

occurrences of patterns in Π (Π-patterns, for short) in σ . Obviously, the largest possible number of
Π-occurrences in σ is

( n
m

)
, when each subsequence of lengthm of σ is an occurrence of aΠ-pattern.

Define

µ(Π, k, n) = max{ ν(Π, σ ) | σ ∈ [k]n},

d(Π, σ ) =
ν(Π, σ )( n

m

) and

δ(Π, k, n) =
µ(Π, k, n)( n

m

) = max{ d(Π, σ ) | σ ∈ [k]n},

the maximum number of Π-patterns in a word in [k]n, the probability that a subsequence of σ of
length m is an occurrence of a Π-pattern, and the maximum such probability over words in [k]n,
respectively. A permutation σ ∈ [k]n such that ν(Π, σ ) = µ(Π, k, n) is said to beΠ-maximal.
We want to consider the asymptotic behavior of δ(Π, k, n) as n → ∞ and k → ∞. Barton [3]

proved that

lim
n→∞

δ(Π, n, n) = lim
n→∞

lim
k→∞

δ(Π, n, k) = lim
k→∞

lim
n→∞

δ(Π, n, k),

so we can amend the definition from [5] and define the common limit δ(Π) to be the packing density
of the set of patternsΠ . IfΠ = {π}, then we use also δ(π) for δ(Π).

2. Sets of layered permutations

In this section we deal with sets of layered permutations. Recall that a permutation is said to be
layered if it is a strictly increasing sequence of strictly decreasing substrings. These substrings are
called the layers of the permutation. For instance, 2̂15̂43 is layered with layers 21 of length 2 and 543
of length 3. Obviously, a layered permutation is determined by the sequence of lengths of its layers,
so we can denote 2̂15̂43 simply by [2, 3].
It has been shown that if Π consists of layered permutations, then there is a Π-maximal

permutation which is layered [1, Theorem 2.2]. For the case of a single layered permutation π =
[m1, . . . ,mr ] (i.e. π has r layers of lengthsm1, . . . ,mr ) Price [9] showed that

δ(π) = lim
s→∞

max
λ1,...,λs≥0

λ1+···+λs=1

ps(λ1, . . . , λs), (2.1)

where

ps(λ1, . . . , λs) =
(

m
m1, . . . ,mr

) ∑
1≤i1<···<ir≤s

λ
m1
i1
· · · λ

mr
ir . (2.2)

The sequences λ = (λ1, . . . , λs) in (2.1) are called partitions of unity, and we write λ ` 1. For each s,
the π-maximal permutation is approximately [bnλ∗1c, . . . , bnλ

∗
s c] for a maximizing partition of unity

λ∗ ` 1. If for every n, there is a permutation σn ∈ Sn with r layers (recall that r is the number of layers
of π ) such that

δ(π) = lim
n→∞

d(π, σn),
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then the permutation π is said to be simple [6]. For example, [2, 2, 2, 2, 2] is simple, but
[2, 2, 2, 2, 2, 2] is not simple (by Examples 6.4 and 6.5 of [9]). A partition λ = (λ1, . . . , λs) ` 1 is
optimal if ps(λ1, . . . , λs) = δ(π) and s is the least integer such that there exists λ ` 1 with this
property.
The next result shows that [6, Theorem3.3] partially generalizes to the case of sets of permutations.

Proposition 2.3. Let Π be a set of layered permutations of length m and r layers such that the optimal
partition of unity λ = (λ1, . . . , λs) ` 1 is increasing (i.e. λ1 ≤ · · · ≤ λs). Let m− be the length of the
shortest layer of all permutations inΠ . If m− ≥ max{log2(r + 1), 2}, thenΠ is simple, and the packing
density of Π equals

δ(Π) = sup
(λ1,...,λr )`1

∑
π∈Π

(
m

mπ1 , . . . ,mπr

)
λ
mπ1
1 · · · λ

mπr
r ,

where mπi is the length of the ith layer of π and the supremum is taken over all partitions of unity with r
parts.

Proof. As in the proof of [6, Theorem 3.3], we conclude that the maximizing partition of unity of any
π ∈ Π has r layers. HenceΠ is simple. The last formula follows directly from this. �

Onemight think that it is always the case that a set of simple permutations is simple. However, we
have not been able to prove it.
In some cases it is easy to show that the condition of the previous proposition holds. A layered

permutation is said to be increasing, if its layer sizes are increasing. IfΠ is a set of increasing layered
permutations, then the maximizing sequence (λi) is also increasing. The proof of this fact is the same
as in the case of only a single permutation, see [6, Lemma 3.2]. Another obvious case is when the set
Π is symmetric, in the sense that it contains all the permutations with certain layer sizes, like the set
{[2, 1, 1], [1, 2, 1], [1, 1, 2]}.
Let us next consider some special sets of layered permutations. The prototypical case for the next

theorem is permutations [m, 2] and [m, 1, 1]. In this case the permutations differ only in that the
last two letters are interchanged, but as can be seen below, this is not the reason that we are able to
calculate the packing density.

Theorem 2.4. Let m, n ≥ 2 and let Π(m, n) be the set of all permutations whose first layer has length m
and whose subsequent layers have total length n. Then we have

δ(Π(m, n)) =
(
m+ n− 1

n

)
(m− 1)m−1nn

(m+ n− 1)m+n−1
.

Note that δ(Π(m, n)) = δ([m− 1, n]) if m ≥ 3.

Proof. Let PK be the set of sequences (λi)∞i=1 of non-negative real numbers with
∑
λi = 1 and λi = 0

for i > K . Using (2.1) and (2.2) we obtain

δ(Π(m, n)) = lim
K→∞

sup
(λi)∈PK

F
(
(λi)

)
,

where

F
(
(λi)

)
=

(
m+ n
n

)∑
i<j

λmi λ
n
j +

n−1∑
p=1

(
m+ n

m, n− p, p

) ∑
i<j<k

λmi λ
n−p
j λ

p
k + · · ·

=

(
m+ n
n

)(∑
i<j

λmi λ
n
j +

n−1∑
p=1

(
n
p

) ∑
i<j<k

λmi λ
n−p
j λ

p
k + · · ·

)

=

(
m+ n
n

)∑
i

λmi

(∑
j>i

λj

)n
.
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Fix K ≥ 2 and choose (λi) ∈ PK such that sup(λ̄i)∈PK F
(
(λ̄i)

)
= F

(
(λi)

)
. (This is possible by continuity

of F and compactness.) By discarding leading zeros if necessary we may assume that λ1 > 0;
also F

(
(λi)

)
= 0 if λ1 = 1, so the maximizing property implies that this is not the case; hence

λ1 ∈ (0, 1). Denote Λi =
∑
i<j λj. We define λ

′

1 = cλ1 and λ
′

i = dλi for i > 1. Moreover, we
choose d(c) = (1 − cλ1)/(1 − λ1), in order to have

∑
λ′i = 1 so that (λ

′

i) ∈ Pk. Since the original
sequence (λi)∞i=1 was maximal in PK , we have∑

i

λmi Λ
n
i ≥

∑
i

λ′mi

(∑
j>i

λ′j

)n
= cmdnλm1Λ

n
1 + d

m+n
∑
i>1

λmi Λ
n
i .

Let us denote

α = λm1Λ
n
1 = λ

m
1 (1− λ1)

n

and β =
∑
i>1 λ

m
i Λ

n
i . Then our previous conclusion implies that the function

G(c) = cmd(c)nα + d(c)m+nβ

has a maximum at c = 1. Differentiating this function and evaluating at c = d = 1 give

G′(1) =
(
m−

nλ1
1− λ1

)
α − (m+ n)

λ1

1− λ1
β.

Since 1 is a maximum, the derivative equals zero, so

β =
m(1− λ1)− nλ1
(m+ n)λ1

α.

Therefore∑
i

λmi Λ
n
i = α + β =

m
(m+ n)λ1

α =
m
m+ n

λm−11 (1− λ1)n.

Clearly, the last expression is maximized by λ1 = (m− 1)/(m+ n− 1). Therefore we have

sup
(λk)∈PK

F
(
(λi)

)
=

(
m+ n
n

)
m
m+ n

sup
0<λ1<1

λm−11 (1− λ1)n

=

(
m+ n
n

)
m
m+ n

(m− 1)m−1nn

(m+ n− 1)m+n−1
.

Since this expression does not depend on K , we see that it is also the limit as K → ∞ of
sup(λk)∈PK F

(
(λi)

)
, from which we obtain δ(Π(m, n)). Taking also into account [6, Theorem 1.2] we

see that it equals δ([m− 1, n])whenm ≥ 3. �

Remark 2.5. We can make the previous theorem slightly more general by allowing different first
terms. Let M ≥ 3 and let M > m1 > · · · > mr ≥ 2. Then we can find the packing density of
the set

Π(m1,M −m1) ∪ · · · ∪Π(mr ,M −mr)

by finding the maximum over λ1 of the real valued function

1
M

r∑
i=1

miλ
mi−1
1 (1− λ1)M−mi .

The proof of this fact is very similar to the proof of Theorem 2.4, and is thus omitted.

Using the method of the previous proof, we get an upper bound for the packing density of much
more general types of permutations. In the general case however, the upper bound is not attained.
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Corollary 2.6. Let m1 ≥ 3 and m = m1 + · · · +mr ≥ 5. Then

δ([m1, . . . ,mr ]) ≤ δ([m1 − 1,m−m1])δ([m2, . . . ,mr ]).

Proof. With the notation of the previous proof:

δ([m1, . . . ,mr ]) = lim
K→∞

sup
(λk)∈PK

(
m

m1, . . . ,mr

) ∑
i1<···<ir

λ
m1
i1
· · · λ

mr
ir .

We split the sum into two parts,

α = λ
m1
1

∑
1<i2<···<ir

λ
m2
i2
· · · λ

mr
ir ,

and the rest, denoted by β . As in the previous proof, we set λ′1 = cλ1 and λ
′

i = dλi for i > 1, construct
the function F(c), calculate the derivative, and set it equal to zero. As before, we calculate

α + β =
m1
mλ1

α.

Using a rescaling and the definition of packing density we find

α

λ
m1
1
=

∑
1<i2<···<ir

λ
m2
i2
· · · λ

mr
ir ≤

(
m−m1
m2, . . . ,mr

)−1
(1− λ1)m−m1δ([m2, . . . ,mr ]).

We note that
(

m
m1,...,mr

) (
m−m1
m2,...,mr

)−1
=

(
m
m1

)
. Thus we find that

δ([m1, . . . ,mr ]) =
(

m
m1, . . . ,mr

)
m1
mλ1

α

≤

(
m
m1

)
m1
m
δ([m2, . . . ,mr ]) sup

0<λ1<1
λ
m1−1
1 (1− λ1)m−m1 .

Clearly the last supremum is reached for λ1 = (m1 − 1)/(m − 1), from which the claim follows by
noting that

δ([m1 − 1,m−m1]) =
(
m
m1

)
m1
m
(m1 − 1)m1−1(m−m1)m−m1

(m− 1)m−1

by [6, Theorem 1.2]. �

3. Three-letter patterns

In this section we calculate the packing density for sets of patterns of length three, except the
set {121, 212}, which we did not manage to deal with. For permutations this was done in [1]. In the
interest of clarity we first prove some lemmas.

Lemma 3.1. We have δ([1, 2], [2, 1]) = 3/4.
Proof. As in the proof of Theorem 2.4 we have

δ([1, 2], [2, 1]) =
(
3
2

)
lim
k→∞

sup
(λi)∈Pk

F
(
(λi)

)
,

where now Pk is the set of sequences (λi)∞i=−∞ of positive real numbers with
∑
i λi = 1 and λi = 0

for |i| > k; and

F
(
(λi)

)
=

∑
i1<i2

λi1λ
2
i2 + λi2λ

2
i1 =

∞∑
j=−∞

∑
i6=j

λiλ
2
j =

∞∑
j=−∞

λ2j (1− λj).
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Here we used that
∑
i λi = 1 in the last step. We conclude by a simple algebraic identity and the fact

that a square is a non-negative number:

F
(
(λi)

)
=

∞∑
j=−∞

λ2j (1− λj) =
∞∑

j=−∞

λj

(1
4
−

(
λj −

1
2

)2)
≤
1
4
.

Hence δ([1, 2], [2, 1]) ≤ 3/4. For every k > 0 we have

d({[1, 2], [2, 1]}, [k, k]) =
(
2k
3

)−1
k2(k− 1) =

6k2(k+ 1)
2k(2k− 1)(2k− 2)

→
3
4
as k→∞,

which implies that δ([1, 2], [2, 1]) ≥ 3/4 and completes the proof. �

Lemma 3.2. We have δ(112, 122) = δ([2, 1], [1, 2]) = 3
4 .

Proof. Since both 112 and 122 are non-decreasing, it is clear that the maximizing pattern must be
non-decreasing. We may assume that the maximizing pattern is of the form

σ = 1s1 2s2 . . . nsn .

Consider then the permutation of type σ ′ = [s1, . . . , sn]. It is clear that every occurrence of 112 in
σ corresponds to an occurrence of [2, 1] in σ ′, similarly for 122 and [1, 2]. Thus the claim follows by
Lemma 3.1. �

Lemma 3.3. We have δ(112) = δ(112, 121) = δ(112, 121, 211) = 2
√
3− 3.

Proof. The numerical value δ(112) = 2
√
3 − 3 is from [5, Example 2.12]. We next complete the

proof by showing that δ(112) = δ(112, 121, 211). The remaining equality follows from this, since
the density certainly grows if we add more patterns to a set.
Let σ be a word and consider adjacent distinct letters at σi and σi+1 and let σ ′ be the pattern with

these letters interchanged. Then

d(112, 121, 211; σ) = d(112, 121, 211; σ ′);

to see this notice that the number of occurrences of 112 which hit at most one of the two letters at
positions i and i+ 1 is the same in σ and σ ′. The same holds for the other two patterns. So it remains
to consider occurrences involving both of these positions. Assume σi < σi+1. Then if 112 hits σ at
positions j < i < i + 1 it is clear that 121 hits σ ′ at the same positions. Similarly a hit of 121 at
i < i + 1 < j is turned into a hit of 211 at the same positions. If σi > σi+1, then the situation is
reversed. Hence in each case the total number of occurrences is preserved.
We have now shown that we may exchange adjacent letters in σ . Doing this a sufficient number

of times we may assume that σ is non-decreasing. But then all the hits are of type 112, hence

d(112, 121, 211; σ) = d(112; σ).

Since σ was arbitrary, the claim follows. �

Theorem 3.4. Let S be a set of three-letter patterns on [2]3.

1. If S includes either of the patterns 111 and 222, then δ(S) = 1.
2. Otherwise, if S includes either of the sets {112, 122} or {211, 221}, then δ(S) = 3/4.
3. Otherwise, if S = {112, 121, 211, 212} or S = {121, 122, 221, 212}, then δ(S) = 5

4 (2
√
3− 3).

4. Otherwise, if S includes any of the patterns 112, 122, 211 or 221, then δ(S) = 2
√
3− 3.

5. Otherwise, if S equals {121} or {212}, then δ(S) = 1
4 (2
√
3− 3).

6. Otherwise, if S = {121, 212}, then δ(S) ≥ 1/4.
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Proof. The claim in case 1 is clear. Thus we assume that 111, 222 6∈ S.
For Case 2 we may assume, by taking the complement if necessary, that {112, 122} ⊂ S ⊂

{112, 122, 121, 211, 212, 221}. As in the proof of Lemma 3.3 it follows that

δ(112, 122, 121, 211, 212, 221) = δ(112, 122).

Then it follows from Lemma 3.2 that δ(S) = 3/4.
For Case 3 we may assume that S = {112, 121, 211, 212}. We argue as in Lemma 3.3: let σ be a

word and consider adjacent distinct letters at σi and σi+1 and let σ ′ be the pattern with these letters
interchanged. As we saw before, the set {112, 121, 211} hits σ and σ ′ the same number of times. So to
calculate the hits of {112, 121, 211}wemay assume that σ is increasing and count the hits of 112. Let
σ = 1µ12µ2 · · · sµs where the µi are non-negative integers with

∑
µi = |σ |. Thus the contribution

of these hits can be expressed as (a factor times)

µ21

s∑
i=2

µi + µ
2
2

s∑
i=3

µi + · · · + µ
2
s−1µs.

Then we shuffle around the letters to make optimal hits for 212, namely,(
1
2
µ1, . . . ,

1
2
µs−1, µs,

1
2
µs−1, . . . ,

1
2
µ1

)
,

which corresponds to (the same factor times)(µ1
2

)2 s∑
i=2

µi +
(µ2
2

)2 s∑
i=3

µi + · · · +
(µs−1
2

)2
µs.

But this is just 1/4 of the previous sum. Thus, by a ‘‘lucky’’ coincidence, both sums are maximized by
the same relative frequencies of letters, so we find that

δ(S) = δ({112, 121, 211})+ δ(212) =
5
4
δ({112, 121, 211}).

Case 4 follows from Lemma 3.3, and combined with the previous equation this implies also Case 3.
For Case 5, we found above that δ(121) = δ(212) = 1

4 (2
√
3− 3).

So it remains to investigate the case S = {121, 212}. Consider the permutation σ = 121212 . . . of
length 2n. The number of hits of 121 with the 2matching the kth 2 in σ equals k(n− k). Thus the total
number of hits of 121 is

n−1∑
k=1

k(n− k) =
(
n+ 1
3

)
.

The number of hits of S is twice this, hence δ(S) ≥ d(S, σ ) = 2 limn→∞
(
n+1
3

)
/
(
2n
3

)
= 1/4. �

4. Average pattern co-occurrence

In this section we deal with average, rather than maximal, pattern co-occurrence.
Consider Sn as a sample space with uniform distribution. Let π ∈ Sm, and let Xπ be a random

variable such that Xπ (τ ) is the number of occurrences of pattern π in a given permutation τ ∈ Sn.
It is an easy exercise to show that, even though the maximal number of times a pattern can occur

in a permutation (or a word, in general) differs with the pattern, the average number of occurrences
of any pattern over all permutations of a given length is the same.

Lemma 4.1. E(Xπ ) = 1
m!

( n
m

)
∼

1
(m!)2

nm for any pattern π ∈ Sm.
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Proof. Pick an m-letter subset S of [n] = {1, 2, . . . , n} in
( n
m

)
ways. There is a unique permutation

π(S) of S order-isomorphic to π , out ofm! equally likely permutations in which the elements of S can
occur in τ ∈ Sn. Let Yπ(S) be a random variable such that Yπ(S)(τ ) is the number of occurrences of π(S)
in τ . Then

P
(
Yπ(S)(τ ) = 1

)
=
1
m!

and P
(
Yπ(S)(τ ) = 0

)
= 1−

1
m!
,

so E(Yπ(S)) = 1/m!. This is true for any S ⊆ [n] such that |S| = m, and we have Xπ =∑
S⊆[n], |S|=m Yπ(S), hence,

E(Xπ ) =
∑

S⊆[n],|S|=m

E(Yπ(S)) =
1
m!

( n
m

)
. �

Therefore, the average pattern occurrence is the same for all π ∈ Sn. However, the average pattern
co-occurrence, measured by the covariance Cov(Xπ1 , Xπ2), does depend on the pattern. We will start
by considering the average pattern co-occurrence with itself, i.e. Var(Xπ ). That, via the standard
deviation σ(Xπ ), will also tell us how tightly the distribution of Xπ is grouped around the mean of
Lemma 4.1.
Let Pπ be the permutation matrix of π , in other words, Pπ = [δ(π(i), j)]m×m, where δ is the

Kronecker symbol. Note that Pπ is orthogonal, so Pπ−1 = P
−1
π = PTπ . Also, for an integer m > 0,

and integers 1 ≤ i, j ≤ m, define

[i, j]m =
(
i− 1+ j− 1
i− 1

)(
m− i+m− j
m− i

)
.

Let Am be them×mmatrix with (Am)ij = [i, j]m, which have been studied e.g. in [2].

Theorem 4.2. Var(Xπ ) = c(π)n2m−1 + O(n2m−2) for any pattern π ∈ Sm, m > 1, where

c(π) =
1

((2m− 1)!)2

(
Tr(AmPπAmP−1π )−

(
2m− 1
m− 1

)2)
> 0.

The trace in the above formula can be expressed as

Tr(AmPπAmP−1π ) =

m∑
i,j=1

[i, j]m[π(i), π(j)]m.

For the standard deviation this gives σ(Xπ ) =
√
c(π) nm−

1
2 + O(nm−1) for any pattern π ∈ Sm.

Proof. Since Var(Xπ ) = E(X2π ) − E(Xπ )
2, and the value of E(Xπ ) was determined in Lemma 4.1, it

remains only to consider E(X2π ). We have

E(X2π ) = E

(( ∑
S⊆[n], |S|=m

Yπ(S)

)2)
=

∑
S1,S2⊆[n]
|S1 |=|S2 |=m

E
(
Yπ(S1)Yπ(S2)

)
.

Of course, Yπ(S1)Yπ(S2) = 1 if and only if both π(S1) and π(S2) are subsequences of τ , otherwise,
Yπ(S1)Yπ(S2) = 0.
Let S = S1 ∪ S2, and |S1 ∩ S2| = `, so |S| = 2m− `. We can pick a subset S ⊆ [n] in

( n
2m−`

)
ways.

Note that any such S is order-isomorphic to [2m − `] = {1, 2, . . . , 2m − `}. Hence, the number of
permutations ρ(S) of S such that ρ �S1

∼= π and ρ �S2
∼= π is the same for any S of cardinality 2m− `

and depends only onm and `.
Therefore, E(X2π ) is a linear combination of

{( n
2m−`

)
| 0 ≤ ` ≤ m

}
with coefficients that are rational

functions in m and `. The degrees in n of both E(X2π ) and E(Xπ )
2 are 2m, and the coefficient of n2m in
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E(Xπ )2 is 1/(m!)4. On the other hand, S = S1∪S2, |S| = 2m and |S1| = |S2| = m imply that S1∩S2 = ∅,
so Yπ(S1) and Yπ(S2) are independent, and hence

P
(
Yπ(S1)Yπ(S2) = 1

)
= P

(
Yπ(S1) = 1

)
P
(
Yπ(S2) = 1

)
=

(
1
m!

)2
.

Let [xd]P(x) denote the coefficient of xd in a given polynomial P(x). Since there are
(
2m
m

)
ways to

partition a set S of size 2m into two subsets of sizem, the coefficient of
( n
2m

)
in E(X2π ) is

(
2m
m

)
/(m!)2.

Hence,

[n2m]E(X2π ) =
1

(2m)!
1

(m!)2

(
2m
m

)
=

1
(m!)4

.

Thus [n2m]E(X2π ) = [n
2m
]E(Xπ )2, so degn(Var(Xτ )) ≤ 2m− 1, and hence, [n2m−1]Var(Xτ ) ≥ 0.

We have

[n2m−1]E(Xπ )2 = [n2m−1]
(
1
m!

( n
m

))2
=

2
(m!)2

· [nm]
( n
m

)
· [nm−1]

( n
m

)
=

2
(m!)2

·
1
m!
·

(
−

(m
2

)
m!

)
= −

m(m− 1)
(m!)4

.

Similarly, the coefficient of n2m−1 in the
( n
2m

)
-term of E(X2π ) is

−

(
2m
2

)
(2m)!

1
(m!)2

(
2m
m

)
= −

m(2m− 1)
(m!)4

,

so we only need to find the coefficient of n2m−1 in the
( n
2m−1

)
-term of E(X2π ).

As we noted before, all subsets S ⊆ [n] of the same size (in our case, of size 2m−1) are equivalent,
so we may assume S = [2m− 1] = {1, 2, . . . , 2m− 1}. We want to find the number of permutations
ρ of S such that there exist subsets S1, S2 ⊆ S of sizem for whichwe have |S1∩S2| = 1 (so S1∪S2 = S)
and ρ �S1

∼= π and ρ �S2
∼= π .

Suppose that we want to choose S1 and S2 as above, together with their positions in S, in such a
way that the unique intersection element e is in the ith position in π(S1) and the jth position in π(S2)
(of course, 1 ≤ i, j ≤ m). Then e occupies position π−1(e) = (i − 1) + (j − 1) + 1 = i + j − 1
in S. Hence, there are

(
i−1+j−1
i−1

)
ways to choose the positions for elements of π(S1) and π(S2) to the

left of e, and
(
m−i+m−j
m−j

)
ways to choose the positions for elements of π(S1) and π(S2) to the right

of e. On the other hand, both π(S1) and π(S2) are naturally order-isomorphic to π , hence, under that
isomorphism e maps to π(i) as an element of S1 and to π(j) as an element of S2. Similarly, since e is
the unique intersection element, exactly π(i)− 1 elements in S1 and exactly π(j)− 1 elements in S2,
all distinct, must be less than e, and the rest of the elements of S must be greater than e, so we must
have e = (π(i) − 1) + (π(j) − 1) + 1 = π(i) + π(j) − 1. There are

(
π(i)−1+π(j)−1

π(i)−1

)
ways to choose

the elements of S1 and S2 which are less than e, and
(
m−π(i)+m−π(j)

m−π(j)

)
ways to choose the elements of

S1 and S2 which are greater than e.
Thus, the positions of e in π(S1) and π(S2) uniquely determine the position π−1(e) and value e of

the intersection element; there are [i, j]m ways to choose which other positions are occupied by π(S1)
and which ones, by π(S2); and there are [π(i), π(j)]m ways to choose which other values are in π(S1)
and which ones are in π(S2).
Now that we have chosen both positions and values of elements of S1 and S2, we can produce a

unique permutation ρ(S) of S which satisfies our conditions above. Simply fill the positions for S1 and
S2 by elements of π(S1) and π(S2), respectively, in the order in which they occur.
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Since the total number of permutations of S is (2m−1)!, the coefficient of n2m−1 in the
( n
2m−1

)
-term

of E(X2π ) is

1
(2m− 1)!

·

m∑
i,j=1

(
i−1+j−1
i−1

) (
m−i+m−j
m−j

) (
π(i)−1+π(j)−1

π(i)−1

) (
m−π(i)+m−π(j)

m−π(j)

)
(2m− 1)!

=

m∑
i,j=1
[i, j]m[π(i), π(j)]m

((2m− 1)!)2
.

The coefficient of n2m−1 in Var(Xπ ) is, by the previous equations,

[n2m−1]Var(Xπ ) =

m∑
i,j=1
[i, j]m[π(i), π(j)]m

((2m− 1)!)2
−
m(2m− 1)
(m!)4

+
m(m− 1)
(m!)4

=

m∑
i,j=1
[i, j]m[π(i), π(j)]m

((2m− 1)!)2
−

1
(m!(m− 1)!)2

=
1

((2m− 1)!)2

(
m∑
i,j=1

[i, j]m[π(i), π(j)]m −
(
2m− 1
m− 1

)2)
.

Since c(π) is the leading coefficient of Var(Xπ ) (a polynomial in n), we have c(π) ≥ 0. The following
lemma implies that c(π) > 0, which finishes the proof of Theorem 4.2. �

In the next theorem we use the notation a!! := 0!1! · · · a!.

Lemma 4.3. For any π ∈ Sm,
∑m
i,j=1[i, j]m[π(i), π(j)]m >

(
2m−1
m−1

)2
.

Proof. The matrix Am is symmetric and hence diagonalizable. Moreover, the identity (Rabbit) of [2],

det
[(
i+ j+ a+ b
i+ a

)(
2n− i− j− a− b

n− i− a

)]
0≤i,j≤m

=
(a+ b)!(2n+ 1)!m+1

a!b!

×
(2n−m)!!m!!(m+ a+ b)!!(2n−m− a− b)!!a!!b!!(n−m− a− 1)!!(n−m− b− 1)!!

(2n+ 1)!!(n− a)!!(n− b)!!(m+ a)!!(m+ b)!!(a+ b)!!(2n− 2m− a− b− 1)!!
,

implies that all leading principal minors of Am are positive, so Am is positive definite, and hence all
eigenvalues of Am are positive. Each row and column of Am sums to 12

(
2m
m

)
=

(
2m−1
m−1

)
, so [1, 1, . . . , 1]

is an eigenvector for the eigenvalue
(
2m−1
m−1

)
. The same is true of the similar matrix PπAmP−1π . Let

Dm = [dij]m×m be them×m diagonalmatrix so that dii’s are the eigenvalues of Am and d11 =
(
2m−1
m−1

)
.1

Then Am = BDmB−1 for some orthogonal matrix B, so recalling that Tr(MN) = Tr(NM) for any M,N
whereMN and NM exist, we have

Tr(AmPπAmP−1π ) = Tr(BDmB−1PπBDmB−1P−1π ) = Tr(DmB−1PπBDmB−1P−1π B)

= Tr(Dm(B−1PπB)Dm(B−1PπB)−1) = Tr(DmCDmC−1),

1 In fact, it is known that the eigenvalues of A are
(
2m−1
i−1

)
for i = 1, . . . ,m, although we are presently unable to find a

reference (or proof) for this claim. It follows that dii =
(
2m−1
m−i

)
. These stronger claims are not needed in the rest of the proof.
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and the matrix C = B−1PπB = [cij]m×m is orthogonal, i.e. C−1 = CT . Let bi be the ith column of
B = [bij]m×m. Then cij =

∑m
k=1 bkibπ(k)j. In particular, the columnb1 = [1, . . . , 1]

T remains unchanged
for any permutation π ∈ Sn, so c1j = b1 · bj = δ(1, j) and ci1 = bi · b1 = δ(i, 1). Now we know that

Tr(DmCDmCT ) =
m∑
i,k=1

diidkkc2ik,

dii > 0, c11 = 1, ci1 = c1i = 0 for i > 1, so cij are not all zero for i, j > 1 (otherwise C is not invertible,
let alone orthogonal), and hence

Tr(DmCDmCT ) >
(
2m− 1
m− 1

)2
.

This proves the lemma. �

Remark 4.4. Note that the sum
∑m
i,j=1[i, j]m[π(i), π(j)]m is invariant under the symmetry operations

on Sm: reversal r : i 7→ m − i + 1, complement c : π(i) 7→ m − π(i) + 1, and inverse i : π 7→ π−1.
Invariance under r and c also extends to permutations of multisets. Thus permutations π in the same
symmetry class π̄ have the same c(π). The values of

∆(π) = ((2m− 1)!)2c(π) =
m∑
i,j=1

[i, j]m[π(i), π(j)]m −
(
2m− 1
m− 1

)2
for symmetry classes in S4 (m = 4) are given in the table below:

π̄ 1234 1243 1432 1342 2413
∆(π) 491 359 327 239 91

Remark 4.5. It is easy to see that, for a givenm,∆(π) attains its maximumwhen π = idm = 12 · · ·m
since the sequences {[i, j]m} and {[π(i), π(j)]m} (with multiplicities) are arranged in the same order.
It would be interesting to characterize the permutations π∗ for which ∆(π∗) = minπ∈Sm ∆(π). For
small values ofm, these permutations π∗ are in the symmetry classes of:

m 1 2 3 4 5 6 7 8 9
π∗(m) 1 12 132 2413 25314 361452 3614725 37145826 629471583

Interestingly, the patterns π∗(m) are either involutions (e.g. for all 1 ≤ m ≤ 9 except m = 4) or
centrally symmetric, i.e. invariant under r ◦ c (e.g. form = 1, 2, 4, 5, 7, 8), or both. They are also less
avoided than most patterns of the same length, and in fact, are the least avoided patterns for m ≤ 5.
We believe (but cannot prove) that this is not a coincidence.

We can consider the co-occurrence of any two permutation patterns similarly. Since the proof is
similar to the variance case, it is omitted.

Theorem 4.6. For any patterns π1, π2 ∈ Sm, m > 1, the covariance Cov(Xπ1 , Xπ2) is given by

Cov(Xπ1 , Xπ2) = c(π1, π2)n
2m−1
+ O(n2m−2),

where

c(π1, π2) =
1

((2m− 1)!)2

(
Tr(AmPπ1AmP

−1
π2
)−

(
2m− 1
m− 1

)2)
.

The trace in the above formula is

Tr(AmPπ1AmP
−1
π2
) =

m∑
i,j=1

[i, j]m[π1(i), π2(j)]m.
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Considering symmetry classes of pairs of patterns (see Remark 4.4), we see that there are 7
classes of pairs of 3-letter permutations: {123, 123}, {132, 132}, {123, 132}, {132, 213}, {132, 231},
{123, 231}, {123, 321} (listed in the order of decreasing asymptotical covariance). The first two pairs
obviously have a positive covariance, but of the other five pairs, only {123, 132} has a positive
covariance.
It would be interesting to characterize the pairs {π1, π2} according to the sign ormagnitude of their

covariance.
We now consider patterns contained in words, where repeated letters are allowed both in the

pattern and the ambient string. The additional condition on a pattern π ∈ [l]m on words, i.e. on a
pattern of m letters over an alphabet [l] = {1, 2, . . . , l}, is that π must contain all letters in [l]. We
will also assume that the ambient strings are in the set [k]n.

Theorem 4.7. Let π be a map of [m] = {1, 2, . . . ,m} onto [l] = {1, 2, . . . , l}. Then for any positive
integers l ≤ m,

Var(Xπ ) = c(π)n2m−1k2l−1 + O(n2m−2k2l−1 + n2m−1k2l−2),

where

c(π) =
1

(2m− 1)!(2l− 1)!

(
Tr(AmPπAlP−1π )−

(2m− 1)!(2l− 1)!
((m− 1)!)2(l!)2

)
.

The trace in the above formula is

Tr(AmPπAlP−1π ) =

m∑
i,j=1

[i, j]m[π(i), π(j)]l.

Remark 4.8. Note also that, given 1 ≤ l ≤ m, Theorem 4.7 applies to l!S(m, l) patterns τ , where
S(m, l) is the Stirling number of the second kind.

The proof of Theorem 4.7 is an obvious extension of the proof of Theorem 4.2. Unfortunately, the
same extension to words does not work for Lemma 4.3, but only yields

m∑
i,j=1

[i, j]m[π(i), π(j)]l >
(
2m− 1
m

)(
2l− 1
l

)
=
l
m

(
(2m− 1)!(2l− 1)!
((m− 1)!)2(l!)2

)
,

which is a weaker result than the desired inequality
m∑
i,j=1

[i, j]m[π(i), π(j)]l >
(2m− 1)!(2l− 1)!
((m− 1)!)2(l!)2

.

There is a similar covariance result on words as well.

Theorem 4.9. For any patterns π1, π2 ∈ [l]m, 1 < l ≤ m, the covariance Cov(Xπ1 , Xπ2) is

Cov(Xπ1 , Xπ2) = c(π1, π2)n
2m−1k2l−1 + O(n2m−2k2l−1 + n2m−1k2l−2),

where

c(π1, π2) =
1

(2m− 1)!(2l− 1)!

(
Tr(AmPπ1AlP

−1
π2
)−

(2m− 1)!(2l− 1)!
((m− 1)!)2(l!)2

)
.

The trace in the above formula is

Tr(AmPπ1AmP
−1
π2
) =

m∑
i,j=1

[i, j]m[π1(i), π2(j)]l.
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