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Abstract

We show that the reflexive algebra given by the lattice generated by a maximal nest and a rank one
projection is maximal with respect to its diagonal.
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1. Introduction

The study of non-selfadjoint operator algebras on a Hilbert space is closely related to
the invariant subspace problem which asks whether every operator acting on a separable
Hilbert space admits a non-trivial invariant subspace. The well known classes of non-
selfadjoint operator algebras include transitive algebras, triangular algebras, nest algebras,
reflexive algebras, etc.

Let H be a Hilbert space (over the field of complex numbers) and B(H ) the algebra
of all bounded linear operators on H . Similar to upper triangular matrix algebras,
Kadison and Singer [9] introduced and studied triangular (operator) algebras on an infinite-
dimensional Hilbert space. Recall that a subalgebra A of B(H ) is triangular if its
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diagonal subalgebra A ∩ A ∗ is a maximal abelian selfadjoint subalgebra (MASA) of
B(H ). It follows easily from Zorn’s lemma that every triangular algebra is contained in a
maximal triangular algebra. A special class of maximal triangular algebras is nest algebras
introduced by Ringrose [12]. Considerable effort has gone into the study of nest algebras
(see [1] and references therein). Reflexive (operator) algebras (see [5]) are more general
than nest algebras.

Recently, motivated by the notion of maximal triangular algebras, Ge and Yuan [3,4]
introduced a new class of non-selfadjoint algebras which they call Kadison–Singer algebras
or KS-algebras for simplicity, by combining triangularity, reflexivity and the von Neumann
algebra property into one consideration. These algebras are reflexive and maximal with
respect to the reflexivity and their “diagonal subalgebras”. More importantly, KS-algebras
are closely related to the von Neumann algebras generated by their lattices of invariant
projections. The lattice of invariant projections of a KS-algebra is reflexive and “minimally
generating” in the sense that it generates the commutant of the diagonal as a von Neumann
algebra. Nest algebras are KS-algebras with “abelian cores” and whose lattices of invariant
projections are commutative. Many examples of Kadison–Singer algebras are given in [3,
4,6,7,13,2]. Surprisingly, Kadison–Singer lattices often carry nice geometrical structures.

Note that a triangular subalgebra of B(H ) does not have to be reflexive or closed.
Even a maximal triangular algebra may not be norm closed (see [11]). While in the
definition of KS-algebras, we require that the algebras be maximal in the class of all
reflexive operator algebras with the same diagonal subalgebras. In the article [8], Kadison
and Singer suggested that one can study the subalgebras of B(H ) with the maximality
with respect to the property of having a given selfadjoint operator algebra as its diagonal.
Nest algebras are KS-algebras. KS-algebras can be viewed as maximal triangular algebras
with a non-commutative core. In [4], Ge and Yuan gave some examples of weakly closed
algebras which are maximal in the class of all weakly closed subalgebras with the same
diagonal subalgebra. Motivated by these ideas and results, we give the following definition
of algebraic maximality.

Definition. A subalgebra A of B(H ) is called to be maximal with respect to its diagonal
subalgebra (or diagonally maximal), if B is an arbitrary subalgebra of B(H ) such that
A ⊆ B and B ∩ B∗

= A ∩ A ∗, then B = A .

Remark. In the definition, we do not require that the diagonal be norm closed. This
definition fails to rule out the possibility that there may exist a dense selfadjoint subalgebra
of B(H ) so that it is diagonally maximal. So we do not know whether a proper selfadjoint
subalgebra of B(H ) may be maximal with respect to its diagonal.

Clearly, maximal triangular algebras in B(H ) have the algebraic maximality with
respect to its diagonal. Thus our above definition is a generalization of maximal
triangular algebras with a non-commutative diagonal subalgebra. From Zorn’s lemma,
every subalgebra of B(H ) is contained in a subalgebra which is maximal with respect
to its diagonal subalgebra. It is easy to verify that each nest algebra Alg N , for a given
nest N , also has the algebraic maximality by noting that PT P⊥ belongs to Alg N for
each T ∈ B(H ) and each P ∈ N . The reflexive operator algebra determined by two
free projections with trace half, given in [2] by the first author of this paper, is maximal
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with respect to its diagonal. This is an example of maximal non-selfadjoint algebra with a
non-commutative diagonal and a non-commutative core.

In this paper, we show that the reflexive algebra given by the lattice generated by a
nest and a rank one projection (introduced in [6]) is maximal with respect to its diagonal.
In [6], we show that such an algebra is a KS-algebra and our proof depends heavily
on the reflexivity and on properties of the KS-lattice. Our proof of maximality in this
paper is purely algebraic. Some examples of non-selfadjoint algebras which are diagonally
maximal are also given.

2. Main results

Before we state our main result, we recall some notation and preliminary results. Let H
be a separable complex Hilbert space, B(H ) the algebra of all bounded linear operators
acting on H . For a set L of orthogonal projections in B(H ), we denote by Alg L the set
of all bounded linear operators on H leaving each element in L invariant, i.e., Alg L =

{T ∈ B(H ) : PT P = T P for all P ∈ L }. Then Alg L is a unital weak-operator closed
subalgebra of B(H ). A nest N is a totally ordered family of projections on H which
contains zero and the identity operator I on H and is closed in strong-operator topology
and Alg N is called a nest algebra.

For convenience, we shall not distinguish an orthogonal projection P from its range
P(H ). Hence we write γ ∈ P for γ ∈ P(H ). Let P⊥ denote the orthogonal complement
I − P of P .

Throughout the paper, we use N to denote a nontrivial nest of projections on H ,

Alg N the nest algebra given by N . Since N ′′ (the von Neumann algebra generated
by N , or the double commutant of N ) is abelian, it has a separating vector, say ξ . Then
the mapping: T → T ξ , from N ′′ into H , is injective [8]. We assume that ∥ξ∥ = 1. Let Pξ

be the orthogonal projection from H onto the one dimensional subspace of H generated
by ξ . Then for each projection P ∈ N with P ≠ 0, I , we have ξ ∉ P and ξ ∉ P⊥. Hence
P ∧ Pξ = 0. Obviously, P ∨ Pξ is the orthogonal projection from H onto the closed
subspace P(H ) + Cξ .

The lattice L generated by N and Pξ is called a one point extension of N by Pξ in [6].
It is not difficult to show that L = {0, I, P, Pξ , P ∨ Pξ : P ∈ N , P ≠ 0, I }, and
Alg L = {T ∈ Alg N : T ξ = λξ for some λ ∈ C}.

Theorem 2.1 ([6]). A one point extension L of N by Pξ is a KS-lattice, and the reflexive
algebra Alg L is a KS-algebra. Moreover, if N ′′ is a MASA in B(H ), then Alg L is a
KS-algebra with the trivial diagonal CI .

For P ∈ N , we let P− = ∨


Q ∈ N : Q < P


for P ≠ 0 and define 0− = 0. We call
P− the immediate predecessor of P in N . Similarly, for P ∈ N , we define P+ = ∧{Q ∈

N : P < Q} for P ≠ I and I+ = I . We call P+ the immediate successor of P in N .
For nonzero vectors γ and η in H , denote by γ ⊗ η the rank one operator given by

(γ ⊗η)(z) = ⟨z, η⟩γ for all z ∈ H . Clearly, for any A, B in B(H ), we have A(γ ⊗η)B =

(Aγ ) ⊗ (B∗η), where B∗ is the adjoint of B. It is well-known that a rank one operator
γ ⊗ η ∈ Alg N if and only if there exists P ∈ N such that γ ∈ P and η ∈ P⊥

− [12]. The
following properties are not difficult to show, some of which are also listed in [6].
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Lemma 2.2. Let L be a one-point extension of a nest N by Pξ given as above.

(i) If P, Q ∈ N with 0 < P < Q < I , then (P ∨ Pξ ) < (Q ∨ Pξ ) and (P ∨ Pξ ) ≱ Q.
(ii) If ξ is also a separating vector for N ′, then I− ∨ Pξ = I .

(iii) If {Pn}n is a strictly decreasing sequence of projections in N such that ∧n Pn = P,
then ∧n(Pn ∨ Pξ ) = P ∨ Pξ .

Using Longstaff’s characterization of rank one operators in reflexive operator algebras
(see [10]), we have the following lemma.

Lemma 2.3 ([6]). For nonzero vectors x and y in H , the rank one operator x ⊗ y is in
Alg L if one of the following statements holds:

(i) there exists a P ∈ N with P ≠ 0 and P− ∨ Pξ ≠ I , such that x ∈ P and y ∈ (P−

∨ Pξ )
⊥.

(ii) I− < I, x ∈ Cξ and y ∈ (I−)⊥.
(iii) (I− ∨ Pξ ) < I , and x ∈ H , y ∈ (I− ∨ Pξ )

⊥.

Before we state our main theorem, we prove some preliminary results.

Lemma 2.4. For P and Q in N with P < Q, if dim(Q−P) ≥ 2, then Q∧(P∨Pξ )
⊥

≠ 0,
where dim(A) is the dimension of the range of a linear operator A.

Proof. Clearly, (Q − P)ξ is a nonzero vector in Q − P . From our assumption that dim
(Q − P) ≥ 2, we choose a nonzero vector η in Q − P such that η and (Q − P)ξ are
orthogonal. Then η is a nonzero vector in Q ∧ (P ∨ Pξ )

⊥. This completes our proof.
In order to show that Alg L is maximal non-selfadjoint with respect to its diagonal

subalgebra, we shall consider a bigger algebra B generated by T and Alg L for some T
in B(H ). We assume that T ≠ 0. �

Lemma 2.5. With the above notation, assume that B ∩ B∗
= L ′. Then T P(H ) ⊆ (P

∨ Pξ ) for each P in N .

Proof. Suppose P ∈ N such that 0 < P < I . We consider two cases.
Case 1: P+ = P . In this case, there exists a strictly decreasing sequence {Pn}n of pro-

jections in N such that dim(Pn − Pn+1) ≥ 2 for each n ≥ 1 and ∧n≥1 Pn = P . For any
given n ≥ 1, by Lemma 2.4, we can choose nonzero vectors σ1 ∈ Pn ∧ (Pn+1 ∨ Pξ )

⊥ and
σ2 ∈ Pn+1 ∧ (Pn+2 ∨ Pξ )

⊥.
Let σ = σ1 + σ2. Then σ is a nonzero vector in Pn ∧ (P ∨ Pξ )

⊥. Hence, by Lemma 2.3,
for each nonzero vector η in P and x in (Pn ∨ Pξ )

⊥, we have σ ⊗x and η⊗σ are in Alg L ,
and therefore (σ ⊗x)T (η⊗σ) is in B. Thus ⟨T η, x⟩σ ⊗σ ∈ B. Assume that there are η in
P and x in (Pn ∨ Pξ )

⊥ such that ⟨T η, x⟩ ≠ 0. Then σ ⊗σ is a selfadjoint operator in B and
thus in the diagonal of B. By the choice of σ1 and σ2, we note that Pn+1(σ ⊗σ) = σ2 ⊗σ

and (σ ⊗ σ)Pn+1 = σ ⊗ σ2. Hence Pn+1(σ ⊗ σ) ≠ (σ ⊗ σ)Pn+1, so that σ ⊗ σ ∉ L ′,
which is a contradiction. Thus we have ⟨T η, x⟩ = 0 for each η in P and x in (Pn ∨ Pξ )

⊥.
This follows that T η ∈ (Pn ∨ Pξ ) for each n ≥ 1. Since ∧n≥1(Pn ∨ Pξ ) = P ∨ Pξ , we
have T η ∈ P ∨ Pξ for each η in P . This completes the proof of our lemma in this case.

Case 2: P+ > P . Clearly, T P(H ) ⊆ (P ∨ Pξ ) if P ∨ Pξ = I . Hence we may assume
that P ∨ Pξ < I . We shall consider P− for the following two cases.
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First, when P− < P , let e1 = (P+ − P)ξ and e2 = (P − P−)ξ . Then ei ≠ 0 and ⟨ei , ξ⟩

≠ 0 for i = 1, 2. Let η = e2 −
⟨e2,ξ⟩

⟨e1,ξ⟩
e1. A simple computation shows that η is a nonzero

vector in (P− ∨ Pξ )
⊥. For each nonzero vectors x in P and y in (P ∨ Pξ )

⊥, e1 ⊗ y and
x ⊗ η are in Alg L , which yield that (e1 ⊗ y)T (x ⊗ η) and hence ⟨T x, y⟩e1 ⊗ η are in
B. Assume that there are x0 in P and y0 in (P ∨ Pξ )

⊥ such that ⟨T x0, y0⟩ ≠ 0. Then
e1 ⊗ η ∈ B. We remark that e2 ⊗ η is in Alg L . Then e2 ⊗ η −

⟨e2,ξ⟩

⟨e1,ξ⟩
e1 ⊗ η and, hence,

η ⊗ η are in B. It is easy to check that P(η ⊗ η) ≠ (η ⊗ η)P . Thus the operator η ⊗ η

belongs to the diagonal of B, but not in L ′. This contradiction shows that ⟨T x, y⟩ = 0 for
each x in P and y in (P ∨ Pξ )

⊥. This proves that T P(H ) ⊆ (P ∨ Pξ ).
Now we assume P− = P . In this case, our argument is similar to Case 1. Choose a

strictly increasing sequence {Pn} of projections in N such that P1 > 0, dim(Pn+1 − Pn) ≥

2 for each n ≥ 1 and ∨n≥1 Pn = P . For each n ≥ 1, by Lemma 2.4, choose nonzero vec-
tors σ1 ∈ Pn+1 ∧ (Pn ∨ Pξ )

⊥ and σ2 ∈ Pn+2 ∧ (Pn+1 ∨ Pξ )
⊥. Let σ = σ1 + σ2. Then σ

is a nonzero vector in P ∧ (Pn ∨ Pξ )
⊥. Hence for each nonzero vectors x in Pn and y in

(P ∨ Pξ )
⊥, the fact that σ ⊗ y and x ⊗σ are in Alg L induces that (σ ⊗ y)T (x ⊗σ) is in B.

Hence ⟨T x, y⟩σ ⊗ σ ∈ B. Similarly we can show that ⟨T x, y⟩ = 0 for each x in Pn and
y in (P ∨ Pξ )

⊥. Thus T x ∈ P ∨ Pξ for each x in Pn and n ≥ 1. Also since ∨n≥1 Pn = P ,
we have T P(H ) ⊆ (P ∨ Pξ ). This completes the proof of our above lemma. �

Lemma 2.6. With the above notation, assume that B ∩ B∗
= L ′. Then T ∈ Alg N .

Proof. We only need to show that T P(H ) ⊆ P for each P ∈ N with 0 < P < I . With
a given P in N such that 0 < P < I , we have the following two cases.

Case 1. There is a projection Q in N such that P < Q < I . For any nonzero vector x in
P , by Lemma 2.5 we have that T x ∈ P ∨ Pξ . It is easy to see that P and P⊥ξ span P ∨ Pξ .

Then we may write T x = y0 + λP⊥ξ for some y0 in P and λ ∈ C. Let α = −
∥(Q−P)ξ∥

2

∥Q⊥ξ∥2 .

Then η = (Q − P)ξ + αQ⊥ξ is a nonzero vector in (P ∨ Pξ )
⊥. From Lemma 2.3, we

have that x ⊗ η and y0 ⊗ η are in Alg L and T (x ⊗ η) − y0 ⊗ η is in B. Thus λP⊥ξ ⊗ η

is in B.
We may assume that λ ≠ 0 (otherwise T x0 = y0 ∈ P). Then P⊥ξ ⊗ η ∈ B. Write

P⊥ξ = (Q − P)ξ + Q⊥ξ . Hence

P⊥ξ ⊗ η = [(Q − P)ξ + Q⊥ξ ] ⊗ [(Q − P)ξ + αQ⊥ξ ]

= (Q − P)ξ ⊗ (Q − P)ξ + αQ⊥ξ ⊗ Q⊥ξ

+ α(Q − P)ξ ⊗ Q⊥ξ + Q⊥ξ ⊗ (Q − P)ξ.

Let A = (Q − P)ξ ⊗ (Q − P)ξ + αQ⊥ξ ⊗ Q⊥ξ . Then A is a selfadjoint operator and
P⊥ξ ⊗ η = A + α(Q − P)ξ ⊗ Q⊥ξ + Q⊥ξ ⊗ (Q − P)ξ . Also let B = (Q − P)ξ ⊗

Q⊥ξ − ∥Q⊥ξ∥
2(Q − P). Then B ∈ Alg N and Bξ = 0. Thus B ∈ Alg L . We also have

(Q− P)ξ ⊗ Q⊥ξ = B +∥Q⊥ξ∥
2(Q− P) and Q⊥ξ ⊗(Q− P)ξ = B∗

+∥Q⊥ξ∥
2(Q− P).

Now consider the operator P⊥ξ ⊗ η + (1 − α)B:

P⊥ξ ⊗ η + (1 − α)B = A + (B + B∗) + (α + 1)∥Q⊥ξ∥
2(Q − P).

Then it is a selfadjoint operator in B.
It is easy to check that Q[P⊥ξ ⊗ η + (1 − α)B] ≠ [P⊥ξ ⊗ η + (1 − α)B]Q. Hence

the operator P⊥ξ ⊗ η + (1 − α)B is not in L ′. This contradicts our assumption in the
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lemma. This shows that λ = 0, and then T x = y0 ∈ P for each x in P . It follows that
T P(H ) ⊂ P .

Case 2. P = I− < I . First we assume that P− < P . For any nonzero vector x in P ,
again by Lemma 2.5 and similar to Case 1, we may assume that T x = y0 + λP⊥ξ for

y0 in P and λ ∈ C. Let η = (P − P−)ξ + αP⊥ξ for α = −
∥(P−P−)ξ∥

2

∥P⊥ξ∥2 . Then η ≠ 0,

η ∈ (P−∨ Pξ )
⊥. It is easy to see that x ⊗η and y0 ⊗η are in Alg L . Thus T (x ⊗η)− y0 ⊗η

and then λP⊥ξ ⊗η are in B. If λ ≠ 0, then P⊥ξ ⊗η is in B. Also since (P− P−)ξ ⊗η is in
Alg L , we have αP⊥ξ ⊗η+(P − P−)ξ ⊗η is in B. This implies that η⊗η ∈ B. Since Pη

and η are linearly independent and Pη = (P− P−)ξ , we have P(η⊗η) ≠ (η⊗η)P . Hence
η ⊗ η is an operator in the diagonal of B, but not in L ′. This contradicts our assumption.
So λ = 0 and T x = y0 ∈ P for each x in P .

Now when P− = P , there is a strictly increasing sequence {Pn}n≥1 of projections in N
such that ∨

∞

n=1 Pn = P . For each n ≥ 1, by Case 1, we have T Pn ≤ Pn . Since the lin-
ear span of {x ∈ Pn : n ≥ 1} is dense in the range of P , we have T P(H ) ≤ P . This
completes the proof of our lemma. �

Lemma 2.7. With the above notation, assume that B ∩ B∗
= L ′. Then T ξ ∈ Cξ .

Proof. From Lemma 2.6, we have that T ∈ Alg N . Again, we separate the argument into
two cases.

Case 1: 0+ > 0. It is enough to show that ⟨η, T ξ⟩ = 0 for each η in (Cξ)⊥. Denote
Q = 0+.

Suppose on the contrary that there is a vector η in (Cξ)⊥ such that ⟨η, T ξ⟩ ≠ 0. Then
Qξ ⊗ η ∈ Alg L and (Qξ ⊗ η)T ∈ B. Let λ =

⟨η,T ξ⟩

∥Qξ∥2 , and set A = (Qξ ⊗ η)T − Qξ ⊗

(λQξ). Then A = Qξ ⊗ (T ∗η − λQξ) ∈ Alg N and Aξ = ⟨ξ, T ∗η − λQξ⟩Qξ = 0. So
A ∈ Alg L , and thus λQξ ⊗ Qξ = Qξ ⊗ (λQξ) = (Qξ ⊗ η)T − A ∈ B. Since λ ≠ 0, it
follows that Qξ⊗Qξ is a selfadjoint element in B. Clearly, Pξ (Qξ⊗Qξ) ≠ (Qξ⊗Qξ)Pξ .
This implies that (Qξ ⊗ Qξ) is not in L ′. This contradiction shows that ⟨η, T ξ⟩ = 0 for
each vector η in (Cξ)⊥. Consequently, T ξ ∈ Cξ .

Case 2. 0+ = 0. In this case, there exists a strictly decreasing sequence {Pn}n≥1 of
projections in N such that P1 < I and ∧

∞

n=1 Pn = 0. For any given n ≥ 1 and for each
nonzero vector η in (Pn ∨ Pξ )

⊥, we have Pnξ ⊗ η ∈ Alg L , and hence (Pnξ ⊗ η)T ∈ B.
We define λη =

⟨η,T ξ⟩

∥P⊥
n ξ∥2 for each nonzero vector η in (Pn ∨ Pξ )

⊥.

Suppose that λη0 ≠ 0 for some nonzero vector η0 in (Pn ∨ Pξ )
⊥. By Lemma 2.6, Pn is

invariant under T . Then we have T ∗η0 −λη0 P⊥
n ξ is in (Pn ∨ Pξ )

⊥, so that Pnξ ⊗ (T ∗η0 −

λη0 P⊥
n ξ) is in Alg L . Also by Lemma 2.3, we have Pnξ ⊗ η0 is in Alg L . It follows that

Pnξ ⊗ T ∗η0 = (Pnξ ⊗ η0)T is in B. Hence Pnξ ⊗ λη0 P⊥
n ξ is in B. This implies that

Pnξ ⊗ P⊥
n ξ is in B. Let D = Pnξ ⊗ P⊥

n ξ − ∥P⊥
n ξ∥

2 Pn . Then D ∈ Alg N and Dξ = 0,
and hence, D ∈ Alg L . By the equation ∥P⊥

n ξ∥
2 Pn = Pnξ ⊗ P⊥

n ξ − D, we have Pn
is in B. Clearly, Pn ∉ L ′. Now the selfadjoint operator Pn is in B, but not in L ′. This
contradiction tells us that λη = 0 and ⟨η, T ξ⟩ = 0 for each nonzero vector η in (Pn ∨ Pξ )

⊥.
Consequently, T ξ ∈ Pn ∨ Pξ for each n ≥ 1. Also since ∧n≥1(Pn ∨ Pξ ) = Pξ , we have
T ξ ∈ Cξ . This completes the proof of our lemma. �

We summarize the above results in the following theorem.
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Theorem 2.8. Suppose L is a one point extension of a nest N by Pξ , where ξ is a unit
vector separating for N ′′, and T is in B(H ). If Alg L and the algebra generated by T
and Alg L have the same diagonal, then T ∈ Alg L .

Corollary 2.9. Let N be a nest on a separable Hilbert space H , ξ be a separating vector
for N ′′. Let L be the lattice generated by N and Pξ . Then Alg L is maximal with respect
to its diagonal subalgebra.

Corollary 2.10. Let N , L and ξ be as before. Then Alg L is a KS-algebra.

In the rest of the paper, we give some other types of examples of non-selfadjoint algebras
which are maximal with respect to their diagonal subalgebras.

Example 2.11. Let D =


a a − b
0 b


: a, b ∈ C


. It is not difficultto show that D is a

subalgebra of M2(C) which is maximal with respect to the diagonal CI . We consider the
subalgebra of M4(C) as follows:

A =


A A − B
0 B


: A ∈ D, B ∈ M2(C)


.

Then A has diagonal CI . Now we show that A is maximal with respect to its diagonal
subalgebra.

Suppose B is a subalgebra of M4(C) containing A and with diagonal CI . Let


T1 T2
T4 T3


be in B, where Ti is in M2(C) for i = 1, 2, 3, 4.

Let T4 = U K be the polar decomposition of T4, where U is unitary and K is semi-
positive definite in M2(C). By calculation, we have

0 U∗

0 −U∗

 
T1 T2
T4 T3


−


0 −T3
0 T3


+


0 −K
0 K


=


K −K

−K K


,

which is a selfadjoint element in B. By the assumption, we have K = 0 and thus T4 = 0.
Let T2 − T1 + T3 = LV be the polar decomposition of T2 − T1 + T3, where V is unitary

and L is semi-positive definite in M2(C). We have
T1 T2
0 T3

 
0 −I
0 I


+


0 T3
0 −T3

 
0 −V ∗

0 V ∗


+


0 −L
0 L


=


0 0
0 L


,

which is a selfadjoint element in B. Hence L = 0 and thus T2 = T1 − T3.

Next we only need to show T1 is in D. We note that


T1 T1 − T3
0 T3


−


0 −T3
0 T3


=

T1 T1
0 0


is in B. Hence


A A
0 0


is in B for each A in the algebra D generated by T1 and

D.
Suppose the diagonal of D is nontrivial. Then there exists a selfadjoint operator H in D

such that H ∉ CI . Thus


H H
0 0


∈ B. So


H H
0 0


+


0 −H
0 H


=


H 0
0 H


is a selfadjoint

element in B. We have a contradiction. Hence D contains D and has the same diagonal as
D. It follows from the maximality of D that D = D, which yields T1 ∈ D. Consequently,

T1 T2
T4 T3


is in A .
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Example 2.12. For n ≥ 2, we let A be the subalgebra of Mn(C) consisting of all the
upper triangular matrices with the same diagonal entries. Then A is maximal with respect
to the diagonal CI .

Let H be a separable Hilbert space with an orthogonal basis {en : n = 1, 2, . . .}. For
each n = 1, 2, . . . , let Pn be the orthogonal projection from H onto the linear span of
{e1, e2, . . . , en}, and let P0 = 0. Let Φ(T ) =


n=1(Pn − Pn−1)T (Pn − Pn−1) for

T ∈ B(H ). Then Φ is the (unique) conditional expectation from B(H ) onto the von
Neumann algebra, denoted by D , generated by Pn, n = 1, 2, . . . . From Zorn’s lemma,
there is a subalgebra D0 of D which is maximal with respect to the diagonal CI . Let
T = Alg{Pn : n = 1, 2, . . .} and let A be the algebra generated by D0 and all the
operator T in T satisfying Φ(T ) = 0. Then A is non-reflexive and has the diagonal CI .

With a given T in B(H ), let B be the algebra generated by T and A . Suppose that B
has the diagonal CI . Then using the fact that ei ⊗ e j ∈ A for i < j , by induction, we can
show ⟨T ei , e j ⟩0 for all i < j , and thus T is in T . So T − Φ(T ) ∈ A and Φ(T ) ∈ B. The
maximality of D0 shows Φ(T ) ∈ D0, which implies that T ∈ A . Hence A is maximal
with respect to its diagonal.

Example 2.13 ([4]). For n ≥ 3 and k ≥ 2, suppose H1, H2, . . . , Hk are positive definite
matrices in Mn(C) such that H2

1 , . . . , H2
k generates Mn(C). We consider the tensor product

Mk+1 ⊗ Mn(C). Let Ei j , i, j = 1, . . . , k + 1, be the canonical matrix unit system. Define

A =


k+1
j=1

E j j ⊗ H−1
j−1 AH j−1 +


i< j

Ei j ⊗ Ai j : A, Ai j ∈ Mn(C)


,

where H0 = I . Then A is maximal (non-selfadjoint) with respect to its diagonal CI and
non-reflexive.
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