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1. Introduction

Let H be a Hilbert space, K a nonempty subset of H and F : K × K → R a bifunction. In [4,36] it was shown that a broad
class of problems in optimization, such as variational inequality, convex minimization, fixed point and Nash equilibrium
problems can be formulated as the equilibrium problem associated to the bifunction F and the set K

find x ∈ K such that F (x, y) � 0, ∀y ∈ K . (1.1)

A point x ∈ K solving this problem is said to be an equilibrium point (called equilibria as well). Bearing in mind the
numerous applications in physics, optimization and economic (e.g., see [4,3,7,18]) many techniques and algorithms have
been devised to analyze the existence and approximation of a solution to equilibrium problems; see [18,21,22,10,9].

In most of the known results in equilibrium theory it is assumed that the set K is closed and convex and the bifunction
F is convex in the second variable. Convexity seems to be an essential property, nevertheless, it happens that in certain
problems in optimization and other applied areas convexity is a sufficient but not necessary condition to obtain significant
results.

Inspired by the concept of convexity on a linear vector space the notion of geodesic convexity on some nonlinear metric
spaces has become a successful tool in optimization; see [43] and [38]. Udriste in [43] introduced the theory of convex
functions on Riemannian manifolds motivated by the fact that some constrained optimization problems can be seen as un-
constrained ones from the Riemannian geometry point of view. In addition, another advantage is that optimization problems
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with nonconvex objective functions can be written as convex optimization problems by endowing the space with an appro-
priate Riemannian metric. To illustrate this, let us consider the following problem (see [38, p. 169]):

min
x∈K

f (x) (1.2)

where K is the positive orthant Rn++ = {x ∈ R
n: xi > 0, i = 1, . . . ,n} and f : K → R is a nonconvex function defined as

f (x1, . . . , xn) =
m∑

i=1

ci

n∏
j=1

x
bij

j , (1.3)

where ci ∈ K and bij ∈ R for any i, j. By endowing K with the so-called affine metric (also called Dikin metric) defined by

G(x) =
⎛⎜⎝ 1/x2

1 · · · 0
...

. . .
...

0 · · · 1/x2
n

⎞⎟⎠ ,

that is, for any x ∈ K , u, v ∈ Tx K ,

〈u, v〉x = 〈
G(x)u, v

〉 = n∑
i=1

ui vi

x2
i

,

it is well known that K with the affine metric is a Hadamard manifold with null sectional curvature whose tangent space
at a point x is R

n . The geodesic joining x ∈ K to y ∈ K is the curve γ : [0,1] → K defined by

γ (t) = (
x1−t

1 yt
1, . . . , x1−t

n yt
n

)
,

with

γ ′(t) =
(

x1−t
1 yt

1 ln
y1

x1
, . . . , x1−t

n yt
n ln

yn

xn

)
.

Thus, the distance between x and y is

d(x, y) =
(

n∑
i=1

(
ln

yi

xi

)2
)1/2

.

It is easy to check that the function f is (geodesic) convex on K with respect to the affine metric. Then solving the
nonconvex constrained problem (1.2) in R

n with the Euclidean metric is equivalent to solving the unconstrained convex
minimization problem for f in the Hadamard manifold K with the affine metric.

These ideas have opened a new way to solve other related problems in optimization. In the study of these problems sev-
eral classes of monotone vector fields have been introduced, along with some convergent iterative methods; see [43,38,17,
23,11,39,37] and reference therein. For instance, in [11] examples of non-monotone vector fields which can be transformed
into monotone by choosing an appropriate Riemannian metric were given. All this has been one of the motivations for
researchers from different areas to extend concepts and techniques which fit in Euclidean spaces to Riemannian manifolds;
see, for example, [23,34,1,29,44,28].

Riemannian manifolds constitute a broad and fruitful framework for the development of different fields. Actually, in the
last decades concepts and techniques which fit in Euclidean spaces have extended to this nonlinear framework. Most of the
extended methods, however, require the Riemannian manifold to have nonpositive sectional curvature. This is an important
property which is enjoyed by a large class of Riemannian manifolds and it is strong enough to imply tight topological
restrictions and rigidity phenomena (cf. [39]). Particularly, Hadamard manifolds, which are complete simply connected and
finite-dimensional Riemannian manifolds of nonpositive sectional curvature, have turned out to be a suitable setting for
diverse disciplines. Hadamard manifolds are examples of hyperbolic spaces and geodesic spaces, more precisely, a Busemann
nonpositive curvature (NPC) space and a CAT(0) space; see [8,24,26].

Motivated by what we have mentioned previously, the purpose of this article is to develop an equilibrium theory in the
nonlinear framework of Hadamard manifolds. The organization of the paper is as follows. In Section 2 some notations, con-
cepts and results in Riemannian manifolds are presented. Although this preliminary section is similar to the one appearing
in other recent papers dealing with the extension of some results from the setting of Hilbert spaces to Hadamard manifolds
(see for instance [29,31]), its inclusion in this paper facilitates the reading of the present work. In Section 3 the existence of
equilibrium points is proved under similar conditions required in the case of Euclidean spaces, where a counterpart of KKM
Lemma is provided. Applications to mixed variational inequality, fixed point and Nash equilibrium problems are studied. In
particular, the counterpart of Kakutani Fixed Point Theorem for set-valued mappings defined on a Hadamard manifold is
proved. Section 4 is devoted to the approximation of equilibrium points. To this end, the convergence of Picard iteration
for the class of firmly nonexpansive mappings is proved and the definition of the resolvent of a bifunction on a Hadamard
manifold is introduced.
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2. Preliminaries

The fundamental and basic knowledge needed for a comprehensive reading of this paper and included in this section
can be found in the books on Riemannian geometry [12,41,43].

Let M be a simply connected m-dimensional manifold. Given x ∈ M , the tangent space of M at x is denoted by Tx M
and the tangent bundle of M by T M = ⋃

x∈M Tx M , which is naturally a manifold. A vector field A on M is a mapping of
M into T M which associates to each point x ∈ M a vector A(x) ∈ Tx M . We always assume that M can be endowed with a
Riemannian metric to become a Riemannian manifold. We denote by 〈·,·〉x the scalar product on Tx M with the associated
norm ‖ · ‖x , where the subscript x will be omitted. Given a piecewise smooth curve γ : [a,b] → M joining x to y (i.e.,
γ (a) = x and γ (b) = y), by using the metric, we can define the length of γ as L(γ ) = ∫ b

a ‖γ ′(t)‖dt . Then, for any x, y ∈ M
the Riemannian distance d(x, y), which induces the original topology on M , is defined by minimizing this length over the
set of all such curves joining x to y.

Let ∇ be the Levi-Civita connection associated with (M, 〈 , 〉). Let γ be a smooth curve in M . A vector field A is said to
be parallel along γ if ∇γ ′ A = 0. If γ ′ itself is parallel along γ , we say that γ is a geodesic, and in this case ‖γ ′‖ is constant.
When ‖γ ′‖ = 1, γ is said to be normalized. A geodesic joining x to y in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from x are defined for all t ∈ R. By the
Hopf–Rinow Theorem, we know that if M is complete then any pair of points in M can be joined by a minimal geodesic.
Moreover, (M,d) is a complete metric space and bounded closed subsets are compact.

Assuming that M is complete, the exponential map expx : Tx M → M at x is defined by expx v = γv (1, x) for each v ∈ Tx M ,
where γ (·) = γv(·, x) is the geodesic starting at x with velocity v (i.e., γ (0) = x and γ ′(0) = v). Then expx tv = γv (t, x) for
each real number t .

A complete simply connected Riemannian manifold of nonpositive sectional curvature is called a Hadamard manifold.
Throughout the remainder of the paper, we always assume that M is an m-dimensional Hadamard manifold. The following
result is well known and essential for our work.

Proposition 2.1. (See [41].) Let x ∈ M. Then expx : Tx M → M is a diffeomorphism, and for any two points x, y ∈ M there exists a
unique normalized geodesic joining x to y, γx,y , which is minimal.

So from now on, when referring to the geodesic joining two points we mean the unique minimal normalized one. This
proposition also says that M is diffeomorphic to the Euclidean space R

m . Thus M has the same topology and differential
structure as R

m . Moreover, Hadamard manifolds and Euclidean spaces have similar geometrical properties. Some of them
are described next.

Recall that a geodesic triangle �(x1, x2, x3) of a Riemannian manifold is a set consisting of three points x1, x2, x3 and
three minimal geodesics joining these points.

Proposition 2.2 (Comparison theorem for triangles). (See [41].) Let �(x1, x2, x3) be a geodesic triangle. Denote, for each i =
1,2,3 (mod 3), by γi : [0, li] → M the geodesic joining xi to xi+1 , and set αi := � (γ ′

i (0),−γ ′
i−1(li−1)), the angle between the vectors

γ ′
i (0) and −γ ′

i−1(li−1), and li := L(γi). Then

α1 + α2 + α3 � π, (2.1)

l2i + l2i+1 − 2lili+1 cosαi+1 � l2i−1. (2.2)

In terms of the distance and the exponential map, inequality (2.2) can be rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2) − 2
〈
exp−1

xi+1
xi,exp−1

xi+1
xi+2

〉
� d2(xi−1, xi), (2.3)

since 〈
exp−1

xi+1
xi,exp−1

xi+1
xi+2

〉 = d(xi, xi+1)d(xi+1, xi+2) cosαi+1.

Lemma 2.3. (See [8].) Let �(x, y, z) be a geodesic triangle in a Hadamard manifold M. Then, there exist x′, y′, z′ ∈ R
2 such that

d(x, y) = ∥∥x′ − y′∥∥, d(y, z) = ∥∥y′ − z′∥∥, d(z, x) = ∥∥z′ − x′∥∥.

The triangle �(x′, y′, z′) is called the comparison triangle of the geodesic triangle �(x, y, z), which is unique up to isom-
etry of M . The next result shows the relation between a geodesic triangle and its comparison triangle involving angles and
distances between points. This relation expresses the geometric idea of a manifold having nonpositive sectional curvature.
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Lemma 2.4. (See [30].) Let �(x, y, z) be a geodesic triangle in a Hadamard manifold M and �(x′, y′, z′) be its comparison triangle.

(1) Let α, β , γ (resp. α′ , β ′ , γ ′) be the angles of �(x, y, z) (resp. �(x′, y′, z′)) at the vertices x, y, z (resp. x′ , y′ , z′). Then

α′ � α, β ′ � β, γ ′ � γ . (2.4)

(2) Given any point q belonging to the geodesic which joins x to y, its comparison point is the point q′ in the interval [x′, y′] such that
d(q, x) = ‖q′ − x′‖ and d(q, y) = ‖q′ − y′‖. Then

d(z,q) �
∥∥z′ − q′∥∥. (2.5)

The following lemma is a consequence of inequality (2.5) and the parallelogram identity in Euclidean spaces.

Lemma 2.5. For all x, y, z ∈ M and q ∈ M with d(x,q) = d(y,q) = d(x, y)/2, one has

d2(z,q) � 1

2
d2(z, x) + 1

2
d2(z, y) − 1

4
d2(x, y). (2.6)

From the “law of cosines” in inequality (2.3) it readily follows the following inequality which is a general characteristic
of the spaces with nonpositive curvature (see [8]):〈

exp−1
x y,exp−1

x z
〉 + 〈

exp−1
y x,exp−1

y z
〉
� d2(x, y), ∀x, y, z ∈ M. (2.7)

Using the properties of the exponential map the following lemma was proved in [29].

Lemma 2.6. Let x0 ∈ M and {xn} ⊂ M such that xn → x0 . Then the following assertions hold.

(i) For any y ∈ M,

exp−1
xn

y → exp−1
x0

y and exp−1
y xn → exp−1

y x0.

(ii) If {vn} is a sequence such that vn ∈ Txn M and vn → v0 , then v0 ∈ Tx0 M.
(iii) Given the sequences {un} and {vn} satisfying un, vn ∈ Txn M, if un → u0 and vn → v0 with u0, v0 ∈ Tx0 M, then

〈un, vn〉 → 〈u0, v0〉.

A subset K ⊆ M is said to be convex if for any two points x and y in K , the geodesic joining x to y is contained in K ;
that is, if γ : [a,b] → M is a geodesic such that x = γ (a) and y = γ (b), then γ ((1 − t)a + tb) ∈ K for all t ∈ [0,1]. From now
on K ⊆ M will denote a nonempty closed convex set, unless explicitly stated otherwise.

For an arbitrary subset C ⊆ M the minimal convex subset which contains C is called the convex hull of C and denoted by
co(C). It is not difficult to check that co(C) = ⋃∞

n=1 Cn , where C0 = C and Cn = {z ∈ γx,y: x, y ∈ Cn−1}.
A real-valued function f defined on M is said to be convex if for any geodesic γ of M , the composition function

f ◦ γ : R → R is convex; that is,

( f ◦ γ )
(
ta + (1 − t)b

)
� t( f ◦ γ )(a) + (1 − t)( f ◦ γ )(b)

for any a,b ∈ R, and 0 � t � 1.
The subdifferential of a function f : M → R is the set-valued mapping ∂ f : M → 2T M defined by

∂ f (x) = {
u ∈ TxM:

〈
u,exp−1

x y
〉
� f (y) − f (x), ∀y ∈ M

}
, ∀x ∈ M,

and its elements are called subgradients. The subdifferential ∂ f (x) at a point x ∈ M is a closed convex (possibly empty) set.
Let D(∂ f ) denote the domain of ∂ f defined by

D(∂ f ) = {
x ∈ M

∣∣ ∂ f (x) �= ∅}
.

The existence of subgradients for convex functions is guaranteed by the following proposition.

Proposition 2.7. (See [17].) Let M be a Hadamard manifold and f : M → R be convex. Then, for any x ∈ M, the subdifferential ∂ f (x)
of f at x is nonempty. That is, D(∂ f ) = M.

The following proposition describes the convexity property of the distance function.
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Proposition 2.8. (See [41, p. 222].) Let d : M × M → R be the distance function. Then d is a convex function with respect to the
product Riemannian metric; that is, given any pair of geodesics γ1 : [0,1] → M and γ2 : [0,1] → M the following inequality holds for
all t ∈ [0,1]:

d
(
γ1(t), γ2(t)

)
� (1 − t)d

(
γ1(0), γ2(0)

) + t d
(
γ1(1), γ2(1)

)
.

In particular, for each y ∈ M, the function d(·, y) : M → R is a convex function.

The next proposition generalizes the result stated in [37, Proposition 3.4(ii)]. Some ideas of the proof, following the same
argument in [37], are provided here for the sake of completeness.

Proposition 2.9. Let x ∈ K and u ∈ Tx M. Define the function g : M → R by

g(y) = 〈
u,exp−1

x y
〉
.

Then both g are affine, in other words, g and −g are convex functions.

Proof. The proof, involving technical notions in differential geometry, is based on the fact that the function g is convex if
and only if the covariant derivative of any vector field by the gradient of g is positive (cf. [43]). Then, by using variations
of geodesics, one is able to see that the gradient of g is the parallel transport of the vector u, whose covariant derivative is
zero. Therefore, g happens to be convex and so is −g as well. �
3. Equilibrium problem

3.1. Existence of equilibrium points

An equilibrium theory in Euclidean spaces was first introduced by Ky Fan in [14,15] and then developed by Brezis,
Nirenberg and Stampacchia [7], Blum and Oettli [4] among others. The main theorem of this section is an existence result
for equilibrium problems in Hadamard manifolds, closely related to the results contained in [7]. Moreover, applications to
solve other related problems are provided.

Let F : K × K → R be a bifunction with K ⊆ M a closed convex subset. Consider the equilibrium problem (1.1) and
denote the equilibrium point set of F by EP(F ). In order to get an existence result for this equilibrium problem we first
provide an analogous to KKM Lemma [25] in the setting of Hadamard manifolds.

Lemma 3.1. Let G : K → 2K be a mapping such that, for each x ∈ K , G(x) is closed. Suppose that

(i) there exists x0 ∈ K such that G(x0) is compact;
(ii) ∀x1, . . . , xm ∈ K , co({x1, . . . , xm}) ⊂ ⋃m

i=1 G(xi).

Then
⋂

x∈K G(x) �= ∅.

Proof. Fix x1, . . . , xm ∈ K and define the subset of K

D
({x1, . . . , xm}) :=

m⋃
i=1

Di

where D1 = {x1} and, for any 2 � j � n,

D j = {z ∈ γx j,y: y ∈ D j−1}.
Then D({x1, . . . , xm}) is a closed subset of co({x1, . . . , xm}). Moreover any element yk ∈ Dk ⊆ D({x1, . . . , xm}) can be written
in the form

yk = γ (tk) (3.1)

where tk ∈ [0,1] and γ is the geodesic joining xk to some yk−1 ∈ Dk−1. To each xi we associate a corresponding vertex
ei of the simplex σ = 〈e1, . . . , em〉 ⊂ R

m+1. Let T : σ → D({x1, . . . , xm}) be the mapping defined by induction as follows: if
λ1 ∈ 〈e1, e2〉, then

T (λ1) := γ1(t1),
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where t1 is the unique element in [0,1] such that λ1 = t1e2 + (1 − t1)e1 and γ1 is the geodesic joining x1 to x2. Given
1 < k � m, if λk ∈ 〈e1, . . . , ek〉 \ 〈e1, . . . , ek−1〉, then λk = tkek + (1 − tk)λk−1 for some tk ∈ (0,1] and λk−1 ∈ 〈e1, . . . , ek−1〉.
Hence we define

T (λk) := γk(tk),

where γk is the geodesic joining xk to T (λk−1).
As a matter of fact, T (σ ) coincides with D({x1, . . . , xm}) by equality (3.1). Moreover T is continuous. To prove this, for

any j = 1,2, let

λ j =
m∑

i=1

t j
i ei ∈ σ ,

for some sequences {t j
i }m

i=1 ⊂ [0,1] satisfying
∑m

i=1 t j
i = 1. By definition we have that T (λ j) = γ

j
m(t j

m), where γ
j

m joins xm to

T (
∑m−1

i=1 t j
i ei). If we denote the diameter L := diam(D({x1, . . . , xm})), by the convexity of the distance it follows that

d
(
T
(
λ1), T

(
λ2)) � d

(
γ 1

m

(
t1
m

)
, γ 1

m

(
t2
m

)) + d
(
γ 1

m

(
t2
m

)
, γ 2

m

(
t2
m

))
�

∣∣t1
m − t2

m

∣∣d

(
xm, T

(
m−1∑
i=1

t1
i ei

))
+ d

(
T

(
m−1∑
i=1

t1
i ei

)
, T

(
m−1∑
i=1

t2
i ei

))

� L
∣∣t1

m − t2
m

∣∣ + d

(
T

(
m−1∑
i=1

t1
i ei

)
, T

(
m−1∑
i=1

t2
i ei

))
.

Therefore by recursion we obtain that

d
(
T
(
λ1), T

(
λ2)) � L

m∑
i=1

∣∣t1
i − t2

i

∣∣.
This is sufficient to prove the continuity of T .

Consider the closed sets {Ei}m
i=1, defined by Ei := T −1(D({x1, . . . , xm}) ∩ G(xi)). Let us prove that for every I ⊂ {1, . . . ,m}

co
({ei: i ∈ I}) ⊂

⋃
i∈I

Ei . (3.2)

Indeed, let λ = ∑k
j=1 ti j ei j ∈ co({ei1 , . . . , eik }), with {ti j } ⊂ [0,1] such that

∑k
j=1 ti j = 1. Since, by hypothesis,

T (λ) ∈ D
({xi1 , . . . , xik }

) ⊆ co
({xi1 , . . . , xik }

) ⊆
m⋃

i=1

G(xi),

then there exists j ∈ {1, . . . ,k} for which T (λ) ∈ G(xi j )∩ D({x1, . . . , xm}) and, consequently, λ ∈ Ei j . By applying KKM Lemma

to the family {Ei}m
i=1, we get the existence of a point λ̂ ∈ co({e1, . . . , em}) such that λ̂ ∈ ⋂m

i=1 Ei , so T (λ̂) ∈ ⋂m
i=1 G(xi). Then

we have proved that the family of closed sets {G(x)∩ G(x0)}x∈K has the finite intersection property. Since G(x0) is compact,
it implies that⋂

x∈K

G(x) =
⋂
x∈K

(
G(x0) ∩ G(x)

) �= ∅. �

Thanks to the previous lemma, we are able to get existence of solutions to the equilibrium problem (1.1) under mild
conditions on the bifunction F .

Theorem 3.2. Let F : K × K → R be a bifunction such that

(i) for any x ∈ K , F (x, x) � 0;
(ii) for every x ∈ K , the set {y ∈ K : F (x, y) < 0} is convex;

(iii) for every y ∈ K , x �→ F (x, y) is upper semicontinuous;
(iv) there exists a compact set L ⊆ M and a point y0 ∈ L ∩ K such that

F (x, y0) < 0, ∀x ∈ K \ L.
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Then there exists a point x0 ∈ L ∩ K satisfying

F (x0, y) � 0, ∀y ∈ K .

Proof. Define the mapping G : K → 2K such that for any y ∈ K

G(y) := {
x ∈ K : F (x, y) � 0

}
.

Since F (·, y) is upper semicontinuous, G(y) is closed for all y ∈ K . Additionally, by condition (iv) there exists a point
y0 ∈ K for which G(y0) ⊆ L, so G(y0) is compact. In order to apply Lemma 3.1 we have to prove that for any choice of
y1, . . . , ym ∈ K ,

co
({y1, . . . , ym}) ⊂

m⋃
i=1

G(yi). (3.3)

To this end, suppose on the contrary that there exists a point x̂, such that x̂ ∈ co({y1, . . . , ym}) but x̂ /∈ ⋃m
i=1 G(yi); that is,

F (x̂, yi) < 0, ∀i ∈ {1, . . . ,m}. (3.4)

This implies that for any i ∈ {1, . . . ,m}, yi ∈ {y ∈ K : F (x̂, y) < 0}. Since the set {y ∈ K : F (x̂, y) < 0} is convex by hypothe-
sis (ii),

x̂ ∈ co
({y1, . . . , ym}) ⊆ {

y ∈ K : F (x̂, y) < 0
}
,

which contradicts the assumption (i).
Then by Lemma 3.1 there exists a point x0 ∈ K such that

x0 ∈
⋂
y∈K

G(y),

with x0 ∈ G(y0) ⊆ L ∩ K . In other words, there exists x0 ∈ L ∩ K such that

F (x0, y) � 0, ∀y ∈ K . �
By setting L = K in the previous theorem, the following corollary is obtained. This fact might be deduced from results

in more general settings, but this would imply the introduction of some abstract concepts in homology theory such as
Lefschetz number or Cech cycle on acyclic absolute neighborhood retract spaces (cf. [13,2,32]).

Corollary 3.3. Let K ⊆ M be convex and compact and F : K × K → R such that

(i) for any x ∈ K , F (x, x) � 0;
(ii) for every x ∈ K , the set {y ∈ K : F (x, y) < 0} is convex;

(iii) for every y ∈ K , x �→ F (x, y) is upper semicontinuous.

Then there exists a point x0 ∈ K satisfying

F (x0, y) � 0, ∀y ∈ K .

Example 3.4. We present an example of an equilibrium problem defined in a Euclidean space whose set K is not convex
so it cannot be solved by using the classical results known in vector spaces. However, if we rewrite the problem in a
Riemannian manifold then it turns out to satisfy the conditions required in the previous corollary. Let

K = {
(x, y, z) ∈ R

3: 0 � x � 1, y2 − z2 = −1, z � 0
}

(3.5)

and F : K × K → R the bifunction defined by

F (x1, y1, z1, x2, y2, z2) = 4(x2 − x1) + (1 − x1)
((

y2
2 + z2

2

) − (
y2

1 + z2
1

))
. (3.6)

Note that K is indeed not convex in R
3.

Given a natural number m � 1, let E
m,1 denote the vector space R

m+1 endowed with the symmetric bilinear form (which
is called the Lorentz metric) defined by

〈x, y〉 =
m∑

xi yi − xm+1 ym+1, ∀x = (xi), y = (yi) ∈ R
m+1.
i=1
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The hyperbolic m-space H
m is defined by{

x = (x1, . . . , xm+1) ∈ E
m,1: 〈x, x〉 = −1, xm+1 > 0

}
,

that is the upper sheet of the hyperboloid {x ∈ E
m,1: 〈x, x〉 = −1}. Note that xm+1 � 1 for any x ∈ H

m , with equality if and
only if xi = 0 for all i = 1, . . . ,m. The metric of H

m is induced from the Lorentz metric 〈·,·〉 and it will be denoted by the
same symbol. Then H

m is a Hadamard manifold with sectional curvature −1 (cf. [8] and [16]). Furthermore, the normalized
geodesic γ : R → H

m starting from x ∈ H
m is given by

γ (t) = (cosh t)x + (sinh t)v, ∀t ∈ R, (3.7)

where v ∈ TxH
m is a unit vector.

Considering the set K immersed in the space M = R × H
1 which is a Hadamard manifold for being the product space of

Hadamard manifolds (cf. [8]), it is readily seen that K is convex and compact in M . On the other hand, conditions (i) and
(iii) in Corollary 3.3 hold, and the fact that F is convex in the second variable can be deduced from Example 3.14 and the
results which will be given Section 3.2.3. So Corollary 3.3 implies the existence of an equilibrium point for F .

3.2. Applications

3.2.1. Mixed variational inequalities
Given a single-valued vector field A : K → T M and a real-valued function f : K → R, the mixed variational inequality

problem associated to A and f , MVIP(A, f ), is formulated as follows:

find x0 ∈ K such that
〈
Ax0,exp−1

x0
y
〉 + f (y) − f (x0) � 0, ∀y ∈ K .

This problem has extensively been studied in the linear setting; see, for instance, [45,19]. Our approach to the problem is
to turn it into an equilibrium problem for a particular bifunction F A, f .

Theorem 3.5. Let A : K → T M be a continuous vector field and f : K → R a convex lower semicontinuous function. Assume that the
following condition holds:

(C) There exists a compact set L ⊆ M and a point y0 ∈ L ∩ K such that〈
Ax,exp−1

x y0
〉 + f (y0) − f (x) < 0, ∀x ∈ K \ L. (3.8)

Then MVIP(A, f ) has a solution in L ∩ K .

Proof. We define F A, f : K × K → R as

F A, f (x, y) := 〈
Ax,exp−1

x y
〉 + f (y) − f (x). (3.9)

Obviously the solutions to MVIP(A, f ) are the equilibrium points of F A, f . It is straightforward to see that F A, f satisfies
hypotheses (i) and (iii) in Theorem 3.2 thanks to the continuity properties, while condition (C) implies (iv). To prove (ii) we
fix x ∈ K . By Proposition 2.9 it follows that the function

y �→ 〈
Ax,exp−1

x y
〉

is convex. Then, being the sum of two convex functions, the function F A, f (x, ·) is convex as well. This ensures the convexity
of the set {y ∈ K : F A, f (x, y) < 0}. As a consequence of Theorem 3.2, there exists a point x0 ∈ L ∩ K such that

F A, f (x0, y) � 0, ∀y ∈ K ;
that is, x0 ∈ L ∩ K is a solution to MVIP(A, f ). �
Corollary 3.6. Let A : K → T M be a continuous vector field and f : K → R a convex lower semicontinuous function. If either

(i) K is compact, or
(ii) there exists y0 ∈ K such that the coercivity condition

〈Ay0,exp−1
y0

x〉 + 〈Ax,exp−1
x y0〉

d(y0, x)
→ −∞ as d(y0, x) → ∞ (3.10)

holds,

then MVIP(A, f ) has a solution.
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Proof. Let us prove that both hypotheses (i) and (ii) imply condition (C). If (i) holds, then the result readily follows by
choosing L = K .

Suppose now that (ii) holds. Let y0 ∈ K satisfying (3.10) and let u0 ∈ ∂ f (y0), the subdifferential of f at y0. Then for any
x ∈ K we have

f (y0) − f (x) � ‖u0‖d(y0, x).

From this inequality, it follows

−〈
Ay0,exp−1

y0
x
〉 + f (y0) − f (x) �

(‖Ay0‖ + ‖u0‖
)

d(y0, x). (3.11)

Since (3.10) holds, we can choose R > (‖Ay0‖ + ‖u0‖) and r > 0 such that for any x which does not belong to the closed
ball Br(y0) = {x ∈ M: d(x, y0) � r}, we have〈

Ax,exp−1
x y0

〉 + f (y0) − f (x) � −〈
Ay0,exp−1

y0
x
〉 − R d(y0, x) + f (y0) − f (x)

�
(‖Ay0‖ − R + ‖u0‖

)
d(y0, x)

< 0.

By setting L = Br(y0) this last inequality means that condition (C) is satisfied; therefore Theorem 3.5 implies the existence
of solution. �
Remark 3.7. By considering f the function constantly 0, it follows that Corollary 3.6 extends Theorem 1 and Corollary 3
in [34].

3.2.2. Fixed points of set-valued mappings
The problem of existence of fixed points of set-valued mappings defined on a Hadamard manifold can be approached via

an equilibrium problem of type (1.1). To this end we need the following lemma, an analogous of Fan’s Minimax Theorem,
whose proof follows a standard argument in convex analysis (see [4]).

Lemma 3.8. Let D, K ⊆ M be closed convex sets with D compact. Assume that ρ : D × K → R is upper semicontinuous in the first
variable and that for any x ∈ D and y ∈ K , −ρ(·, y) and ρ(x, ·) are convex functions. If

max
x∈D

ρ(x, y) � 0, ∀y ∈ K , (3.12)

then there exists x ∈ D such that ρ(x, y) � 0 for any y ∈ K .

Proof. Suppose that the thesis does not hold; that is, for all x ∈ D there exist y ∈ K and ε > 0 such that

ρ(x, y) < −ε.

Set S(y, ε) := {x ∈ D: ρ(x, y) < −ε}. Each S(y, ε) is open by the upper semicontinuity in the first variable of ρ . Moreover,
since the family {S(y, ε)} covers the compact set D there exists I = {1, . . . ,m} such that

D ⊆
⋃
i∈I

S(yi, εi),

where yi ∈ K and εi > 0 for any i ∈ I . This means that, given any arbitrary x ∈ D , there exists j ∈ I for which

ρ(x, y j) < −ε j � −min
i∈I

εi =: −ε. (3.13)

We define the functions f i(x) := −ρ(x, yi) − ε , for any i ∈ I , and the sets C1, C2 ⊂ R
m by

C1 := {
(η1, . . . , ηm): ∃x ∈ D such that f i(x) � ηi, ∀i ∈ I

}
and

C2 := {
(η1, . . . , ηm): ηi � 0, ∀i ∈ I

}
.

Thanks to the convexity of the set D and the functions −ρ(·, yi) for any i ∈ I , C1 is deduced to be convex. On the other
hand C2 is also convex and moreover C1 ∩ C2 = ∅ by inequality ((3.13)). Therefore we can apply Hahn–Banach Theorem in
R

m to get the existence of a hyperplane H := {(η1, . . . , ηm):
∑

i∈I λiηi = α} which separates C1 from C2. In particular, we
may assume that

∑
i∈I λi = 1 and that for any (ζ1, . . . , ζm) ∈ C1 and any (ξ1, . . . , ξm) ∈ C2
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∑
i∈I

λiξi � α �
∑
i∈I

λiζi (3.14)

holds. From the first inequality in (3.14) it is easily derived that α � 0 and that for any i ∈ I , λi � 0. Moreover, since
( f1(x), . . . , fm(x)) belongs to C1, we deduce that∑

i∈I

λi f i(x) � 0.

We have proved that there exist λ1, . . . , λm � 0 such that
∑m

i=1 λi = 1 and

m∑
i=1

λiρ(x, yi) � −ε.

By the convexity of ρ(x, ·) we get the existence of a point ŷ ∈ co({y1, . . . , ym}) ⊆ K such that

ρ(x, ŷ) � −ε < 0.

Since this is true for any arbitrary x ∈ D , it contradicts the assumption (3.12). �
Given a set-valued mapping T : K → 2K where K is a compact convex set, define the bifunction F : K × K → R by

F (x, y) = max
{−〈

exp−1
x z,exp−1

x y
〉
: z ∈ T (x)

}
, ∀x, y ∈ K . (3.15)

Assume that T (x) is compact and convex for any x ∈ K . Then the set of equilibrium points of F is the fixed point set of T ;
that is,

EP(F ) = Fix(T ) := {
x ∈ K : x ∈ T (x)

}
.

In fact, it is readily proved that any fixed point of T is an equilibrium point. Conversely, if x ∈ K is an equilibrium point,
then F (x, y) � 0 for any y ∈ K . Thus

max
{−〈

exp−1
x z,exp−1

x y
〉
: z ∈ T (x)

}
� 0,

for any y ∈ K . Since T (x) is compact, it follows from Lemma 3.8 that there exists z ∈ T (x) such that

−〈
exp−1

x z,exp−1
x y

〉
� 0, ∀y ∈ K .

Therefore d(x, z) � 0 and so x = z ∈ T (x).
By means of this equivalence, a counterpart of Kakutani Theorem (see, for instance, [46]) in this setting is obtained. To

this end, the concepts of upper semicontinuous and upper Kuratowski semicontinuous set-valued mapping, first defined for
vector fields on Hadamard manifolds in [29], are necessary.

Definition 3.9. Given T : M → 2M and x0 ∈ M , the mapping T is said to be

• upper semicontinuous, USC, at x0 if for any open set V ⊆ M satisfying T (x0) ⊆ V , there exists an open neighborhood
U (x0) of x0 such that T (x) ⊆ V for any x ∈ U (x0);

• upper Kuratowski semicontinuous, UKSC, at x0 if for any sequences {xk}, {uk} ⊂ M with each uk ∈ T (xk), the relations
limk→∞ xk = x0 and limk→∞ uk = u0 imply u0 ∈ T (x0).

Theorem 3.10. Let K ⊆ M be a compact convex set and T : K → 2K an UKSC mapping. Assume that for any x ∈ K , T (x) is closed and
convex. Then there exists a fixed point of T .

Proof. Given the bifunction F : K × K → R defined by (3.15), since its equilibrium points coincide with the fixed points
of T , if we prove that F satisfies the hypotheses in Corollary 3.3 then we obtain the existence of a fixed point of T . The
fact that, for any x ∈ K , F (x, x) = 0 is evident. For any x ∈ K , by Proposition 2.9 the function F (x, ·) is convex. Hence the
set {y ∈ K : F (x, y) < 0} is convex and hypothesis (ii) holds. It remains to prove that for any fixed y ∈ K the function
x �→ F (x, y) is upper semicontinuous. To this end, given y ∈ K , we define the set-valued mapping T̂ : K → 2R as

T̂ (x) = {〈
exp−1

x z,exp−1
x y

〉
: z ∈ T (x)

}
, (3.16)

and the function f : K → R as

f (x) = min T̂ (x). (3.17)
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Then the bifunction F , for any x ∈ K , can be rewritten as

F (x, y) = − f (x). (3.18)

Since T is UKSC, so is T̂ . Indeed, given xn → x0 ∈ K and un → u0 ∈ R such that un ∈ T̂ (xn) for any n � 0, we have that
un = 〈exp−1

xn
zn,exp−1

xn
y〉 for some zn ∈ T (xn). Letting n → ∞, we obtain that u0 = 〈exp−1

x0
z0,exp−1

x0
y〉 where zn → z0 ∈ K .

On the other hand, T is UKSC which implies that z0 ∈ T (x0). This means that u0 ∈ T (x0), so T̂ is UKSC.
Let us see now that f is lower semicontinuous; in other words, if xn → x0, then

lim inf
n→∞ f (xn) � f (x0). (3.19)

Suppose that un ∈ T̂ (xn) and un → u0. By the upper Kuratowski semicontinuity of T̂ we know that u0 ∈ T̂ (x0). Then u0 �
f (x0) by definition. Therefore inequality (3.19) holds. �
Remark 3.11. Clearly, the upper semicontinuity implies the upper Kuratowski semicontinuity, so the previous result remains
true assuming that T is USC instead.

3.2.3. Nash equilibrium for non-cooperative games
The classical existence result of a Nash equilibria in an n-person non-cooperative game, [33], was proved under the

assumptions that the strategy sets are compact and convex on a Hausdorff topological vector spaces and the payoff functions
are continuous and convex. The numerous applications in many areas of economics have led researchers from different fields
to investigate the possibility of weakening the convexity condition on either the strategy sets or the payoff functions; see,
for instance, [35,42]. Inspired by Udriste’s [43] geometrical approach for minimization problems, our aim here is to prove
the existence of Nash equilibrium points in the setting of Hadamard manifolds to provide an approach for problems with
either nonconvex strategy sets or nonconvex payoff functions which can be transformed to convex ones by introducing an
adequate Riemannian metric on the strategy sets (following the ideas in [38] and [11]).

Let I = {1,2, . . . ,m} be a finite index set which denotes the set of players. For any i ∈ I , consider Mi a Hadamard
manifold where the strategy set Ki ⊆ Mi of the i-th player will be given. Let K := K1 × K2 × · · · × Km belonging to the
Hadamard manifold M = M1 × · · · × Mm (cf. [8]). Suppose that for every i ∈ I there exists a payoff function f i : K → R

representing the loss of each player, depending on the strategies of all the player. The Nash equilibrium problem associated
to {Ki}i∈I and { f i}i∈I consists of finding x = (xi)i∈I ∈ K such that for all i ∈ I ,

f i(x) � f i(x1, . . . , xi−1, yi, xi+1, . . . , xm), (3.20)

for all yi ∈ Ki . In other words, no player can reduce his loss by varying his strategy alone. The point x is called a Nash
equilibrium point. This problem can be formulated as an equilibrium problem by defining the bifunction F : K × K → R as

F (x, y) =
∑
i∈I

(
f i(x1, . . . , xi−1, yi, xi+1, . . . , xm) − f i(x)

)
(3.21)

for any (x, y) ∈ K × K . In fact, x ∈ K is a Nash equilibrium point if and only if it is an equilibrium point of F . The direct
implication is clear. Conversely, if x ∈ K satisfying that F (x, y) � 0 for any y ∈ K , then for any i ∈ I , by choosing y ∈ K such
that y j = x j for any j �= i, we obtain

F (x, y) = f i(x1, . . . , xi−1, yi, xi+1, . . . , xm) − f i(x) � 0.

Then, under suitable conditions, as a consequence of the results for equilibrium problems stated in Section 3.1 we obtain
the following theorem regarding the existence of Nash equilibrium points.

Theorem 3.12. For any i ∈ I , let Ki ⊆ Mi be a compact convex set and fi : K → R a continuous function such that it is convex in the
i-th variable. Then there exists a Nash equilibrium point.

Proof. Note that K := K1 × K2 × · · · × Km is a compact convex set of the Hadamard manifold M = M1 × · · · × Mm . Since
the Nash equilibrium problem is equivalent to the equilibrium problem for the bifunction F defined in (3.21), it is enough
to prove that F satisfies the conditions in Corollary 3.3. Obviously for any x ∈ K , F (x, x) = 0. Given x ∈ K , the set {y ∈ K :
F (x, y) < 0} is convex because so are the functions f i in the i-th variable, for any i ∈ I . Finally, since every f i is continuous,
we can ensure that for any y ∈ K , the function x ∈ K �→ F (x, y) is continuous and then the result of Corollary 3.3 holds. �
Remark 3.13. It is worth mentioning that the previous theorem can be deduced from a more general one concerning the
existence of Nash equilibrium points in complete finite-dimensional Riemannian manifolds which was published in [27] by
Kristaly.
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Example 3.14. Let M1 = R the Euclidean space, and M2 = H
1 the hyperbolic space defined in Example 3.4. We define the

strategy sets as K1 = [0,1] and K2 = {(y, z) ∈ R
2: y2 − z2 = −1, −1 � y � 1, z � 0}. It is straightforward to see that Ki is

compact and convex in Mi for any i = 1,2. Now let f i : K = K1 × K2 → R, for i = 1,2, be defined as

f1(x, y, z) = 4x − y, (3.22)

f2(x, y, z) = (1 − x)
(

y2 + z2), (3.23)

for any (x, y, z) ∈ M = M1 × M2. Those are continuous functions in M . On the other hand, given x ∈ R fixed, under the
Riemannian metric endowed in M2, by using the expressions of the geodesics (see Example 3.4) the functions f1 and f2 are
convex in the first and second variable, respectively. Therefore, Theorem 3.12 ensures the existence of a Nash equilibrium
point.

4. Approximation of equilibrium points

The approach that we follow to approximate a solution of the equilibrium problem (1.1) involves the resolvent of the
bifunction F , which is a firmly nonexpansive mapping whose fixed point set coincides with the equilibrium point set of F .
As a first step we introduce the concept of firmly nonexpansive mappings in this framework along with an important
characterization. Then we prove the convergence of Picard iteration for firmly nonexpansive mappings.

4.1. Picard iteration for firmly nonexpansive mappings

The concept of firmly nonexpansive mappings was first introduced in the realm of Banach spaces [6] and the Hilbert
ball with the hyperbolic metric [20], so-called firmly nonexpansive mapping of the first kind in the latter case. In [31], this
notion was extended to the setting of Hadamard manifolds.

Definition 4.1. Given a mapping T : K → K defined on K ⊆ M , we say that T is firmly nonexpansive if for any x, y ∈ K , the
function Φ : [0,1] → [0,∞] defined by

Φ(t) = d
(
γ1(t), γ2(t)

)
(4.1)

is nonincreasing, where γ1 and γ2 denote the geodesics joining x to T (x) and y to T (y), respectively.

From the definition we deduce that any firmly nonexpansive mapping is nonexpansive, that is, for all x, y ∈ K

d
(
T (x), T (y)

)
� d(x, y). (4.2)

The following result was given in [31].

Proposition 4.2. (See [31].) A mapping T : K → K is firmly nonexpansive if and only if for any x, y ∈ K〈
exp−1

T (x) T (y),exp−1
T (x) x

〉 + 〈
exp−1

T (y) T (x),exp−1
T (y) y

〉
� 0. (4.3)

As in Banach spaces and the Hilbert ball [40], the class of firmly nonexpansive mappings is characterized by the good
asymptotic behavior of the sequence of Picard iterates {T n(x)}. In order to prove the convergence of this sequence, the
following definition and results are necessary.

Definition 4.3. Let X be a complete metric space and C ⊆ X be a nonempty set. A sequence {xn} ⊂ X is called Fejér monotone
with respect to C if

d(xn+1, y) � d(xn, y)

for all y ∈ C and n � 0.

Lemma 4.4. (See [5,17].) Let X be a complete metric space. If {xn} ⊂ X is Fejér monotone with respect to a nonempty set C ⊆ X, then
{xn} is bounded. Moreover, if a cluster point x of {xn} belongs to C , then {xn} converges to x.

Theorem 4.5. Let T : K → K be a firmly nonexpansive mapping such that its fixed point set Fix(T ) �= ∅. Then for each x ∈ K , the
sequence of iterates {T n(x)} converges to a fixed point of T .



V. Colao et al. / J. Math. Anal. Appl. 388 (2012) 61–77 73
Proof. Let xn = T n(x) for any n � 0. Note that, since K is closed and convex, it is a complete metric space. Thus, by
Lemma 4.4, it suffices to prove that {xn} is Fejér monotone with respect to Fix(T ) and that a cluster point of {xn} belongs
to Fix(T ). To this end, let n � 0 and y ∈ Fix(T ) be fixed. Since T is nonexpansive,

d(xn+1, y) = d
(
T (xn), T (y)

)
� d(xn, y).

Hence {xn} is Fejér monotone with respect to Fix(T ). Now let x be a cluster point of {xn}. Then there exists a subsequence
{nk} of {n} such that xnk → x. On the other hand, one has that

d
(
x, T (x)

)
� d(x, xnk ) + d

(
xnk , T (xnk )

) + d
(
T (xnk ), T (x)

)
� 2 d(xnk , x) + d

(
xnk , T (xnk )

)
.

Then we just need to prove that

lim
n→∞ d

(
xn, T (xn)

) = 0, (4.4)

because if so, taking limit, we obtain that d(x, T x) = 0, which means that x ∈ Fix(T ). Let y ∈ Fix(T ). Since {xn} is Fejér
monotone to Fix(T ), there exists the limit limn→∞ d(xn, y) = limn→∞ d(T (xn), y) = d. Given n � 0 fixed, let γn : [0,1] → M
the geodesic joining xn to T (xn). Then γn(1/2) = mn verifies

d(mn, xn) = d
(
mn, T (xn)

) = d
(
xn, T (xn)

)
/2.

Since T is firmly nonexpansive,

d
(
T (xn), y

)
� d(mn, y) � d(xn, y).

Then limn→∞ d(mn, y) = d. By inequality (2.6) of Lemma 2.5, we obtain

1

4
d2(xn, T (xn)

)
� 1

2
d2(xn, y) + 1

2
d2(T (xn), y

) − d2(mn, y).

Taking limit as n → ∞ we have that (4.4) holds. �
4.2. Resolvents of bifunctions

The definition of the resolvent of a bifunction in the setting of a Hilbert space H appears implicitly in [4] and was first
given in [10]. In order to distinguish the resolvent of vector fields and the resolvent of bifunctions we denote the latter with
an upper index, J F . Given a bifunction F : K × K → R, where K ⊆ H is nonempty closed and convex, the resolvent of F is
the set-valued operator J F : H → 2K such that for any x ∈ H ,

J F (x) = {
z ∈ K

∣∣ (∀y ∈ K ) F (z, y) + 〈z − x, y − z〉 � 0
}
.

Under some conditions on the bifunction F , J F can be proved to be well defined, single-valued and firmly nonexpansive,
and its fixed point set turns out to be the equilibrium point set of F ; see [10].

The following definition extends the previous one to the setting of a Hadamard manifold M .

Definition 4.6. Let F : K × K → R. For any λ > 0, the resolvent of F is the set-valued operator J F
λ : M → 2K defined by

J F
λ (x) = {

z ∈ K
∣∣ λF (z, y) − 〈

exp−1
z x,exp−1

z y
〉
� 0, ∀y ∈ K

}
, ∀x ∈ M.

Theorem 4.7. Let F : K × K → R be a bifunction satisfying the following conditions:

(1) F is monotone, that is, for any (x, y) ∈ K × K ,

F (x, y) + F (y, x) � 0;
(2) for each λ > 0, J F

λ is properly defined, that is, the domain D( J F
λ ) �= ∅.

Then for any λ > 0,

(i) the resolvent J F
λ is single-valued;

(ii) the resolvent J F
λ is firmly nonexpansive;

(iii) the fixed point set of J F
λ is the equilibrium point set of F ,

Fix
(

J F
λ

) = EP(F );
(iv) if D( J F ) is closed and convex, the equilibrium point set EP(F ) is closed and convex.
λ
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Proof.

(i) We fix x ∈ D( J F
λ ) and assume that there exist z1, z2 ∈ J F

λ (x). By definition this means that

λF (z1, z2) − 〈
exp−1

z1
x,exp−1

z1
z2

〉
� 0, (4.5)

λF (z2, z1) − 〈
exp−1

z2
x,exp−1

z2
z1

〉
� 0. (4.6)

By summing inequalities (4.5) and (4.6), by condition (1) and applying inequality (2.7), we get

d2(z1, z2) �
〈
exp−1

z1
x,exp−1

z1
z2

〉 + 〈
exp−1

z2
x,exp−1

z2
z1

〉
� 0.

Therefore z1 = z2.
(ii) To prove that J F

λ is firmly nonexpansive we consider x1, x2 ∈ D( J F
λ ). By definition of resolvent we get

λF
(

J F
λ x1, J F

λ x2
) − 〈

exp−1
J F
λ x1

x1,exp−1
J F
λ x1

J F
λ x2

〉
� 0, (4.7)

λF
(

J F
λ x2, J F

λ x1
) − 〈

exp−1
J F
λ x2

x2,exp−1
J F
λ x2

J F
λ x1

〉
� 0. (4.8)

If we sum inequalities (4.7) and (4.8), it follows that〈
exp−1

J F
λ x1

x1,exp−1
J F
λ x1

J F
λ x2

〉 + 〈
exp−1

J F
λ x2

x2,exp−1
J F
λ x2

J F
λ x1

〉
� 0,

for any x1, x2 ∈ D( J F
λ ), which is equivalent to say that J F

λ is firmly nonexpansive as we proved in Proposition 4.2.
(iii) Given x ∈ D( J F

λ ),

x = J F
λ x ⇔ F (x, y) − 〈

exp−1
x x,exp−1

x y
〉
� 0 (∀y ∈ K ) ⇔ F (x, y) � 0 (∀y ∈ K ).

So Fix( J F
λ ) = EP(F ).

(iv) This item follows from the same argument as in the proof of Corollary 3 in [31]. �
Remark 4.8. The resolvent could be defined for a set-valued bifunction F : K × K → 2R as the set-valued function J F

λ : M →
2K such that

J F
λ (x) = {

z ∈ K
∣∣ λu − 〈

exp−1
z x,exp−1

z y
〉
� 0, ∀y ∈ K , ∀u ∈ F (z, y)

}
,

for any λ > 0 and any x ∈ M . Then, assuming that F monotone means that u + v � 0 for any u ∈ F (x, y), v ∈ F (y, x) and
x, y ∈ K , the previous theorem would remain true except for (iii) which needs F to be single-valued.

The next theorem gives sufficient conditions for the resolvent to have full domain.

Theorem 4.9. Let F : K × K → R be a bifunction satisfying hypotheses (i), (iii) and (iv) in Theorem 3.2. Additionally, assume that

(a) F is monotone;
(b) for any fixed x ∈ K , the map y �→ F (x, y) is convex.

Then D( J F
λ ) = M.

Proof. First of all, note that being F convex in the second variable, it satisfies all the hypotheses in Theorem 3.2. Hence
there exists a point y0 ∈ K such that

−F (y0, z) � 0, ∀z ∈ K . (4.9)

Fix x̃ ∈ M, λ > 0 and define G : K × K → R by

G(z, y) := λF (z, y) − 〈
exp−1

z x̃,exp−1
z y

〉
.

Let us prove that G satisfies all the assumptions in Theorem 3.2. It easily follows from (i) that G(z, z) � 0 and that for
any fixed y ∈ K , the function z �→ G(z, y) is upper semicontinuous. To prove that for any fixed z ∈ K , the set Γ := {y ∈ K :
G(z, y) < 0} is convex, observe that the mapping

y �→ −〈
exp−1

z x̃,exp−1
z y

〉
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is convex by Proposition 2.9. Being the sum of two convex functions, G(z, ·) itself is convex and hence Γ is convex as well.
Finally, fix y0 ∈ K such that inequality (4.9) holds and observe that by inequality (2.7) and by the monotonicity of F we
have,

G(z, y0) = λF (z, y0) − 〈
exp−1

z x̃,exp−1
z y0

〉
� −λF (y0, z) + 〈

exp−1
y0

x̃,exp−1
y0

z
〉 − d2(y0, z)

�
(
d(x̃, y0) − d(y0, z)

)
d(y0, z). (4.10)

Set L to be the compact set {z ∈ K : d(z, y0) � d(x̃, y0)}. Hence y0 ∈ L and for any z ∈ K \ L we have

G(z, y0) < 0

by (4.10). That is, assumption (iv) is also satisfied. Hence we can apply Theorem 3.2 to get the existence of z̃ ∈ K such that

G(z̃, y) � 0, ∀y ∈ K .

This last inequality implies J F
λ (x̃) = z̃. �

The previous theorems allow us to approximate a solution to the equilibrium problem associated to a bifunction F , by
means of the resolvent and the sequence of iterates {( J F

λ )nx} whose convergence is assured by Theorem 4.5.

Theorem 4.10. Let F : K × K → R be a monotone bifunction such that EP(F ) �= ∅. Let λ > 0 and assume that the resolvent of F , J F
λ ,

is properly defined with K ⊆ D( J F
λ ). Then, for each x ∈ D( J F

λ ), the sequence defined by

xn+1 = (
J F
λ

)n
x, ∀n � 0, (4.11)

converges to an equilibrium point of F .

As happens in Hilbert spaces, the resolvent of a bifunction constitutes a generalization of the resolvent of a maximal
monotone vector field and the Moreau–Yosida regularization of a convex function. In these cases, as shown in the following
examples, we know that the resolvent is properly defined and moreover, J F

λ (x) �= ∅ for any x ∈ M , that is D( J F
λ ) = M .

4.3. Resolvents of vector fields

In the single-valued case the resolvent of a maximal monotone vector field can be seen as the resolvent of a bifunction.
Let A : M → T M be a single-valued monotone vector field with full domain D(A) = M; that is, for any x, y ∈ M〈

A(x),exp−1
x y

〉
�

〈
A(y),−exp−1

y x
〉
.

Assume that A is maximal monotone; that is, for any x ∈ M and u ∈ Tx M , the condition〈
u,exp−1

x y
〉
�

〈
A(y),−exp−1

y x
〉
, ∀y ∈ M, (4.12)

implies that u = A(x); in other words, there exists no other monotone vector field containing A. For any λ > 0, the resolvent
of A, J A

λ : M → 2M , defined by

J A
λ (x) := {z ∈ M | x = expz λAz}, ∀x ∈ M,

was proved to be single-valued and firmly nonexpansive with full domain D( J A
λ ) = M (see [31]). Define the bifunction

F : M × M → R by

F (x, y) = 〈
Ax,exp−1

x y
〉
, ∀x, y ∈ M. (4.13)

The monotonicity of A implies the monotonicity of F . On the other hand, for any x ∈ M and λ > 0, the resolvent of F can
be written as

J F
λ (x) = {

z ∈ K
∣∣ 〈

λA(z) − exp−1
z x,exp−1

z y
〉
� 0, ∀y ∈ M

}
.

Thus, if z = J A
λ (x) we have that λAz = exp−1

z x and then z ∈ J F
λ (x); that is,

J A
λ (x) ⊆ J F

λ (x), ∀x ∈ M.

Therefore the conditions in Theorem 4.7 hold for F defined in (4.13), so the fact that J F
λ is single-valued implies that

J A
λ (x) = J F

λ (x), ∀x ∈ M.
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Then the resolvent of A allows us to approximate a solution to the variational inequality problem〈
Ax,exp−1

x y
〉
� 0, ∀y ∈ M, (4.14)

whenever it exists, by means of the sequence {( J A
λ )n(x)} for some x ∈ M .

Convergence properties of other iterative methods to solve the variational inequality problem (4.14), or equivalently to
find a singularity of a monotone vector field, can be found in the literature (see for instance [11,16,34]).

4.4. Moreau–Yosida regularization of a convex function

Letting f : M → R be a convex function, the Moreau–Yosida regularization fλ : M → R of f is defined by

fλ(x) = argmin
y∈M

{
λ f (y) + 1

2
d2(x, y)

}
. (4.15)

In [17] it was proved that there exists a unique point yλ = fλ(x) for any x ∈ M and λ � 0, which is characterized by

1

λ
exp−1

yλ
x ∈ ∂ f (yλ). (4.16)

Then the mapping fλ is well defined and single-valued. On the other hand, the Moreau–Yosida regularization of a convex
function is the resolvent of the bifunction F : M × M → R defined by F (x, y) = f (y) − f (x). Indeed, given x ∈ M , let
z = fλ(x). This means that 1

λ
exp−1

z x ∈ ∂ f (z), and by definition of the subdifferential of f , for any y ∈ M ,

1

λ

〈
exp−1

z x,exp−1
z y

〉
� f (y) − f (z).

Equivalently,

λF (z, y) − 〈
exp−1

z x,exp−1
z y

〉
� 0,

so z ∈ J F
λ (x). Then F is properly defined. Since F is monotone as well, Theorem 4.7 assures that J F

λ is single-valued,
therefore we get the equality

fλ(x) = J F
λ (x), ∀x ∈ M.

Note that a fixed point of fλ is a solution of the minimization problem

min
x∈M

f (x). (4.17)

Thus the firmly nonexpansivity of fλ allows us to apply Theorem 4.5 to get the convergence of the sequence {( fλ)n(x)} to a
minimizer of f . The resulting sequence is the proximal point algorithm for convex functions, first studied in [17].
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