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Abstract

We present a static analysis that approximates the relational semantics of imperative programs by systems of low-degree
polynomial equalities. Our method is based on Abstract Interpretation in a lattice of polynomial pseudo ideals — finite-dimensional
vector spaces of degree-bounded polynomials that are closed under degree-bounded products. For a fixed degree bound, the sizes
of bases of pseudo ideals and the lengths of chains in the lattice of pseudo ideals are bounded by polynomials in the number
of program variables. Despite the approximate nature of our analysis, for several programs taken from the literature on non-linear
polynomial invariant generation our method produces results that are as precise as those produced by methods based on polynomial
ideals and Gröbner bases.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The relational semantics of a program characterize its input–output behavior as a relation on states [23,22]. A pair
of states is included in the relation if the program, when started in the first state, can halt in the second. The relational
semantics are often expressed by a formula in the variables X , denoting the values of the program variables in the
initial state, and X ′, denoting the values in the final state. Such logical characterizations of the relational semantics
are often easier to comprehend than the program itself.

Consider the program presented in Fig. 1(a), which computes the square of a non-negative integer x by summing
the first x odd numbers. The relational semantics of this program are approximated by the relation

[[x ′
= x ∧ y′

= x ∧ z′
= x2

]],

where the variables x, y, and z denote the initial values of the corresponding program variables, while the variables
x ′, y′, and z′ denote their final values. Since the program never terminates when x is negative initially, this relation
is but an approximation of the relational semantics of the program. Nevertheless, the approximation is sound, and for
applications in which only the terminating behavior of the program is relevant, such an approximation proves quite
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var x, y, z : integer;

`1 : 〈y, z〉 := 〈0, 0〉;

`2 : while y 6= x do

〈y, z〉 := 〈y + 1, z + 2y + 1〉;

`3 : halt

(a)

var x, y, z : integer;

`1 : 〈y, z〉 := 〈x, x2
〉;

`2 : halt

(b)
Fig. 1. Computing the square.

valuable. A program verification system might view it as an abstraction of the program suitable for compositional
reasoning when establishing partial correctness. A re-engineering system might annotate the program with the relation
to document the program’s behavior. A compiler, noting that the relation defines a function, might produce the more
efficient – and terminating – version shown in Fig. 1(b).

The program of Fig. 1(a) contains only linear assignments, yet any approximation of its relational semantics by
a system of linear equalities fails to capture the essence of the program — that it computes the square of x . To
adequately describe the input–output behavior of this program, we must consider systems of quadratic polynomial
equalities. The expressiveness offered by non-linear polynomial equalities allows for more precise approximations of
program behavior. In the presence of loops, even programs with purely linear assignments and conditions can have
input–output relations that cannot be adequately approximated linearly.

The relational semantics can be approximated directly by Abstract Interpretation [5,4]. Alternatively, traditional
invariant generation methods [12,30,16,6] can be applied by augmenting the program with auxiliary variables that
preserve the initial values of program variables and approximating the set of reachable states. This reduction, however,
may cause some analyses to become infeasible, i.e., those with high complexity in the number of program variables.
For example, the set of extreme points and rays of a polyhedron may exceed the available memory when computing
convex hulls in linear relation analysis [8,14]. When approximating the relational semantics of a program, we must
be attentive to the complexity of our methods in terms of the number of variables, since there are twice as many —
representing the initial and final values.

We present a static analysis that approximates the relational semantics of imperative programs by systems of low-
degree polynomial equalities. Our method is based on Abstract Interpretation. Rather than interpret the program in
the concrete domain of binary relations on states, we interpret it in an abstract domain of polynomial pseudo ideals —
vector spaces of degree-bounded polynomials that are closed under degree-bounded products.

The principal advantage of our method is that it generates useful low-degree approximations of the relational
semantics with reasonable efficiency. For a fixed degree bound, the number of polynomials in a minimal basis of
a pseudo ideal and the time required to compute operators on pseudo ideals are bounded by polynomials in the
number of program variables. Furthermore, the lengths of chains in the lattice of pseudo ideals are bounded by a
polynomial in the number of program variables. As a result, while our choice of abstract domain leads to some loss of
precision in the analysis, there is no additional loss of precision due to the introduction of a widening to extrapolate
the limits of infinite chains. Another advantage of our approach is that, by a suitable choice of representation, it is
easily implemented using well-known algorithms from linear algebra.

The primary disadvantage of our method is that both the space and time complexity are exponential in the bound d
on the degrees of polynomials. For programs with many variables, our method is feasible only for small values of d.
In addition, the degree bound must be chosen a priori. Of course, it is possible to repeat the analysis for increasing
values of d until it yields sufficiently accurate results or becomes infeasible. Finally, the representation of pseudo
ideals we have adopted, while simplifying the implementation of the analysis, is often highly redundant. As a result,
our method often exhibits its polynomial worst-case behavior.

We have implemented our method and have applied it to several programs taken from the literature on non-linear
polynomial invariant generation [28,24,27]. Despite the approximate nature of program analysis using pseudo ideals,
for these programs our method produces results as precise as those produced by more heavyweight methods based on
polynomial ideals and Gröbner bases.

This article is organized as follows: In Section 2, we cover preliminary material, including transition systems,
lattices, vector spaces, polynomial ideals, and algebraic transition systems. Our method is developed in Section 3.
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We first present a brief introduction to Abstract Interpretation. Then, to motivate our choice of abstract domain, we
demonstrate the difficulties that arise in the domains of polynomial ideals and polynomial spaces — vector spaces of
degree-bounded polynomials. We then present our approach, describe the representations and algorithms used in its
implementation, and prove it sound. In Section 4, we demonstrate the utility of our method on a number of small but
subtle programs. We address related work in Section 5 and conclude with Section 6.

2. Preliminaries

Let X = {x1, . . . , xn} be a finite set of variables. A state σ : X → Q maps each variable to a rational. The set of
all states is denoted by Σ . A state formula ϕ is a first-order expression whose free variables belong to X . A state σ
satisfies ϕ, written σ |= ϕ, precisely when ϕ holds in the model that interprets the variables as in σ .

A (binary) relation ρ on Σ is a subset of Σ × Σ . Each pair 〈σ, σ ′
〉 of ρ consists of a prestate σ and a poststate σ ′.

The composition ρ1 ◦ ρ2 of two relations is the set of pairs 〈σ, σ ′
〉 such that 〈σ, σ̄ 〉 ∈ ρ1 and 〈σ̄ , σ ′

〉 ∈ ρ2 for some
intermediate state σ̄ . The set of all relations on Σ is denoted byR. Let X ′

= {x ′

1, . . . , x ′
n} be a set of primed variables

corresponding to the variables in X . A relation formula ψ is a first-order expression whose free variables belong to
X ∪ X ′. A pair 〈σ, σ ′

〉 satisfies ψ , written 〈σ, σ ′
〉 |= ψ , if ψ holds in the model that interprets X as in the prestate

and X ′ as in the poststate. A relation ρ satisfies ψ if 〈σ, σ ′
〉 |= ψ for every pair 〈σ, σ ′

〉 of ρ. The largest relation
satisfying the formula ψ is denoted by [[ψ]].

2.1. Transition systems

We model imperative programs by transition systems. A transition system P = 〈X, L , T , `init, `fin〉 consists of a
finite set of variables X , a finite set of locations L , a finite set of transitions T , an initial location `init ∈ L , and a final
location `fin ∈ L . A transition τ ∈ T is a tuple 〈`,m, ρ〉 consisting of a prelocation ` ∈ L , a postlocation m ∈ L , and
a relation ρ on Σ , known as the transition relation. Transitions represent single execution steps, and locations serve
to sequence transitions. We assume there are no transitions to the initial location or from the final location.

A trace 〈`0, σ0〉
τ1
→ . . .

τn
→〈`n, σn〉 is a finite sequence of interleaved configurations, i.e., locations paired with states,

and transitions that begins with the initial location `init and such that, for each i ∈ {1, . . . , n}, τi is 〈`i−1, `i , ρi 〉 for
some relation ρi with 〈σi−1, σi 〉 ∈ ρi . A state formula ϕ is invariant at location ` if σ |= ϕ whenever 〈`, σ 〉 appears
in a trace. That is, ϕ is invariant at ` if ϕ holds whenever ` is reached. A computation is a trace that ends with the final
location `fin.

Example 1. The program in Fig. 1(a) can be modeled by the transition system P = 〈X, L , T , `1, `3〉, where
X = {x, y, z}, L = {`1, `2, `3}, and T = {τ1, τ2, τ3}, with

τ1 = 〈`1, `2, [[x
′
= x ∧ y′

= 0 ∧ z′
= 0]]〉,

τ2 = 〈`2, `2, [[y 6= x ∧ x ′
= x ∧ y′

= y + 1 ∧ z′
= z + 2y + 1]]〉, and

τ3 = 〈`2, `3, [[y = x ∧ x ′
= x ∧ y′

= y ∧ z′
= z]]〉.

Transition τ1 models the initial assignment statement, transition τ2 models the loop body, and transition τ3 models
the loop exit. In modeling assignment statements, the preservation of unassigned variables is made explicit. Also, the
loop condition is modeled twice — once, in positive form, for the loop body, and once, in negative form, for the loop
exit.

A path π = `0
τ1
→ . . .

τn
→`n from location `0 to location `n of a transition system is a sequence of interleaved

locations and transitions such that, for each i ∈ {1, . . . , n}, τi is 〈`i−1, `i , ρi 〉 for some relation ρi . A path from `init to
`fin is said to be proper. Every computation induces a proper path. The path relation [[π ]] of path π = `0

τ1
→ . . .

τn
→`n

is the composition ρ1 ◦ · · · ◦ ρn of the transition relations along π . The path relation [[Π ]] of a set of paths is the union
of the path relations of the paths of Π .

Definition 2 (Relational Semantics). The relational semantics [[P]] of a transition system P is the union of the path
relations of its proper paths.

The relational semantics are also known as the input–output relation.
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A cycle is a finite path `0
τ1
→ . . .

τn
→`0 that begins and ends with the same location. A transition system is acyclic if it

contains no cycles. Since acyclic systems contain only finitely many paths, their relational semantics can be computed
as finite unions of path relations. The difficulty in computing the relational semantics lies with transition systems
containing cycles.

Let P be a transition system containing cycles, and suppose C is a cutset for P — a subset of locations with the
property that every cycle of P contains at least one cutpoint of C . Call a path π simple relative to C if π never passes
through a cutpoint of C . That is, π can begin and end with a cutpoint, but cannot contain a cutpoint as an intermediate
location. Let SimpC (l,m) denote the paths from l to m that are simple relative to C .

Suppose the cutset C consists of a single cutpoint c. Then the proper paths of P can be partitioned into those that
never pass through c and those that move from `init to c, cycle back to c a finite number of times, then move from c
to `fin. Based on this observation, we define the following four relations:

ρsimp = [[SimpC (`init, `fin)]]

ρinit = [[SimpC (`init, c)]]

ρcyc = [[SimpC (c, c)]]

ρfin = [[SimpC (c, `fin)]].

Each of these relations is a finite union of path relations. The relational semantics of P can be computed as follows:

[[P]] = ρsimp ∪ (ρ∗ ◦ ρfin),

where ρ∗ is the least fixed point of the semantic function fP associated with P:

fP (ρ) = ρinit ∪ (ρ ◦ ρcyc).

The fixed point ρ∗ gives the relational semantics to the cutpoint c.

When C contains multiple cutpoints, we compute the relational semantics to all cutpoints simultaneously by
defining the semantic function fP on maps from C to R. Let

fP (η)(c) = [[SimpC (`init, c)]] ∪

(⋃
b∈C

η(b) ◦ [[SimpC (b, c)]]

)
,

for all maps η from C to R and cutpoints c ∈ C . The least fixed point η∗ of fP , then, is the map that yields, for every
cutpoint c, the relational semantics of all paths from `init to c. The relational semantics of P are then defined in terms
of η∗:

[[P]] = [[SimpC (`init, `fin)]] ∪

(⋃
c∈C

η∗(c) ◦ [[SimpC (c, `fin)]]

)
.

This approach to defining the relational semantics at cutpoints is similar to the cutpoint-based approach to establishing
inductive assertions of flow chart programs [19].

Example 3. All cycles of the transition system P of Example 1 are cut by the single cutpoint `2. The simple paths
relative to this cutpoint consist of single transitions and yield the following relations:

ρsimp = [[false]] = ∅,

ρinit = [[x ′
= x ∧ y′

= 0 ∧ z′
= 0]],

ρcyc = [[y 6= x ∧ x ′
= x ∧ y′

= y + 1 ∧ z′
= z + 2y + 1]], and

ρfin = [[y = x ∧ x ′
= x ∧ y′

= y ∧ z′
= z]].

To compute the relational semantics, we first compute the least fixed point ρ∗ of the semantic function fP , where

fP (ρ) = ρinit ∪ (ρ ◦ ρcyc).
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Consider the sequence of relations ρ1 ⊆ ρ2 ⊆ ρ3 . . ., where

ρ1 = fP (∅)

= [[x ′
= x ∧ y′

= 0 ∧ z′
= 0]]

ρ2 = fP (ρ1)

= [[x ′
= x ∧ ((y′

= 0 ∧ z′
= 0) ∨ (x 6= 0 ∧ y′

= 1 ∧ z′
= 1))]]

ρ3 = fP (ρ2)

=

[[
x ′

= x ∧

(
(y′

= 0 ∧ z′
= 0) ∨ (x 6= 0 ∧ y′

= 1 ∧ z′
= 1) ∨

(x 6= 0 ∧ x 6= 1 ∧ y′
= 2 ∧ z′

= 4)

)]]
ρ4 = fP (ρ3)

=


x ′

= x ∧

 (y
′
= 0 ∧ z′

= 0) ∨ (x 6= 0 ∧ y′
= 1 ∧ z′

= 1) ∨

(x 6= 0 ∧ x 6= 1 ∧ y′
= 2 ∧ z′

= 4) ∨

(x 6= 0 ∧ x 6= 1 ∧ x 6= 2 ∧ y′
= 3 ∧ z′

= 9)





Generalizing the growing disjunction, the least fixed point is

ρ∗ = [[x ′
= x ∧ x 6∈ {0, . . . , y′

− 1} ∧ y′
∈ N ∧ z′

= (y′)2]].

Given this fixed point, we then compute the relational semantics as

[[P]] = ρsimp ∪ (ρ∗ ◦ ρfin)

= [[x ∈ N ∧ x ′
= x ∧ y′

= x ∧ z′
= x2

]].

Thus, provided x is a non-negative integer, the final values of x and y equal the initial value of x , and the final value
of z equals the square of the initial value of x . Unlike the approximation presented in Section 1, these semantics show
that P computes the square of x only when x is a non-negative integer.

2.2. Lattices

A lattice 〈L ,v,u,t〉 is a non-empty partially ordered set in which every pair of points l1, l2 ∈ L has a greatest
lower bound l1 u l2 (meet) and a least upper bound l1 t l2 (join) in L . We will often denote the lattice 〈L ,v,u,t〉

by its carrier L . A lattice L is complete if every subset of L has a greatest lower bound and a least upper bound in L .
Every finite lattice is complete, and every complete lattice possesses a least element ⊥ and a greatest element >. The
dual of the lattice 〈L ,v,u,t〉 is the lattice 〈L ,w,t,u〉 [10].

An ascending chain l1 @ l2 @ . . . @ lk @ . . . of the lattice 〈L ,v,u,t〉 is a strictly increasing sequence of points
of L , where @ denotes the irreflexive restriction of v. Dually, a descending chain l1 A l2 A . . . A lk A . . . is a strictly
decreasing sequence of points. A lattice satisfies the ascending (descending) chain condition if it contains no infinite
ascending (descending) chains. Every lattice satisfying both chain conditions is complete.

A function f : L → M is monotone from 〈L ,vL ,uL ,tL〉 to 〈M,vM ,uM ,tM 〉 iff l1 vL l2 implies
f (l1) vM f (l2) for all l1, l2 ∈ L , and monotone on 〈L ,v,u,t〉 if monotone from the lattice to itself. A fixed
point of a monotone function f on L is any point l ∈ L satisfying f (l) = l. Every monotone function on a complete
lattice possesses a least fixed point lfp( f ). In any lattice satisfying the ascending chain condition, the least fixed point
of a monotone function f can be computed iteratively:

lfp( f ) =

i≥0

f i (⊥)

After finitely many iterations, the computation will terminate.
A Galois connection 〈α, γ 〉 from a complete lattice L to a complete lattice M is a pair of monotone functions

α : L → M and γ : M → L satisfying l vL γ (α(l)) for all l ∈ L and α(γ (m)) vM m for all m ∈ M . When
〈α, γ 〉 is a Galois connection from L to M , 〈α, γ 〉 is also an adjunction, i.e., α(l) vM m iff l vL γ (m) for all l ∈ L
and m ∈ M . A Galois connection from L to M enables the least fixed point of a monotone function f on L to be
approximated by the least fixed point of a suitably-chosen function g on M [5,7,25].
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Theorem 4. Let 〈α, γ 〉 be a Galois connection from the lattice 〈L ,vL ,uL ,tL〉 to the lattice 〈M,vM ,uM ,tM 〉,
where both lattices are complete. Let f and g be monotone functions on L and M, respectively, satisfying

α( f (γ (m))) vM g(m),

for all m ∈ M. Then

lfp( f ) vL γ (lfp(g)) and α(lfp( f )) vM lfp(g).

Proof. See [25].

The approximation of f induced by the Galois connection 〈α, γ 〉 from L to M is defined as g(m) = α( f (γ (m))),
for all m ∈ M .

2.3. Vector spaces

A (rational) vector v in X = {x1, . . . , xn} is a map from X to Q. The set of all vectors is denoted by QX . The sum
v1 + v2 of two vectors satisfies (v1 + v2)(x) = v1(x)+ v2(x) for all x ∈ X . The scalar product λv of a rational λ and
a vector v satisfies (λv)(x) = λv(x) for all x ∈ X .

Definition 5 (Vector Space). A set of vectors S forms a vector space if

• 0 ∈ S,
• v1 + v2 ∈ S for all v1, v2 ∈ S, and
• λv ∈ S for all v ∈ S and λ ∈ Q.

The least space is the trivial space {0} consisting of the zero vector. The greatest space is QX . Vector spaces are closed
under intersection, but not union. Instead, the sum S1 + S2 is the least space containing S1 and S2, where S1 + S2
denotes the set of vectors of the form v1 + v2, with v1 ∈ S1 and v2 ∈ S2. The family S of vector spaces in X forms a
complete lattice 〈S,⊆,∩,+〉.

The space Sp(V ) generated by a set of vectors V is the intersection of all spaces containing V . Equivalently,
Sp(V ) is the set of linear combinations λ1v1 + · · · + λkvk of vectors of V with rational coefficients. A basis of a
vector space S is any set of vectors that generates S. Every vector space in QX has a finite basis. A basis V of a vector
space S is minimal if no proper subset of V generates S.1

All minimal bases of a vector space S have the same number of vectors, known as the dimension of S and denoted
by dim(S). The space {0} has dimension 0, while the space QX has dimension n, where X = {x1, . . . , xn}. For any
two vector spaces S1 and S2, if S1 ⊆ S2, then dim(S1) ≤ dim(S2). If S1 ⊂ S2, then dim(S1) < dim(S2). As a result,
the lattice of vector spaces 〈S,⊆,∩,+〉 satisfies both chain conditions. No ascending nor descending chain in this
lattice contains more than n + 1 points, where X = {x1, . . . , xn} [17].

Let � be a total order on the set of variables X . The leading variable LV(v) of a non-zero vector v is the greatest
variable that is mapped to a non-zero value, i.e., LV(v) = max� {x ∈ X | v(x) 6= 0}. A standard basis of the space S
is a basis V = {v1, . . . , vk} of non-zero vectors satisfying (i) vi (LV(vi )) = 1 for all vi ∈ V and (ii) v j (LV(vi )) = 0
for all vi , v j ∈ V with i 6= j . Standard bases provide canonical representations of vector spaces.

Most operations on vector spaces can be implemented using Gauss–Jordan elimination (or reduction) — an
algorithm that converts any finite basis of a space S into a standard basis in polynomial time [29]. The space S1
is included in the space S2, where S1 and S2 are generated by standard bases V1 and V2, respectively, iff the standard
basis of Sp(V1 ∪ V2) is V2. The standard basis of the sum S1 + S2 can be computed by applying Gauss–Jordan
reduction to the union of their bases. To compute the intersection of spaces S1 and S2, we apply Karr’s algorithm [15]
to compute a basis of S1 ∩ S2, followed by Gauss–Jordan reduction to compute a standard basis. Although Karr
presents his algorithm as computing the sum of two spaces represented by systems of linear equalities, the algorithm
also computes the intersection of spaces represented by bases.

1 The traditional definition of basis assumes that it is minimal. Our definition does not make this assumption to remain consistent with bases of
polynomial ideals.
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2.4. Polynomial ideals

A monomial m in X = {x1, . . . , xn} is a product of powers xe1
1 · · · xen

n , where the exponents e1, . . . , en are non-
negative integers. A (rational) polynomial p in X is a linear combination c1m1 + · · · + ckmk of monomials with
rational coefficients. The ring of polynomials in X is denoted by Q[X ].

The degree deg(m) of a monomial m = xe1
1 · · · xen

n is the sum e1 + · · · + en of its exponents. The degree deg(p)
of a non-zero polynomial is the maximal degree of its monomials with non-zero coefficients. The degree of the zero
polynomial is −∞. A polynomial is linear if its degree is one, quadratic if two, and cubic if three.

Definition 6 (Polynomial Ideal). A set I of polynomials forms an ideal if

• 0 ∈ I ,
• p1 + p2 ∈ I for all p1, p2 ∈ I , and
• qp ∈ I for all p ∈ I and q ∈ Q[X ].

The least ideal is the trivial ideal {0}, and the greatest is Q[X ]. Polynomial ideals are closed under intersection, but
not union. As is the case with spaces, the sum I1 + I2 of two ideals is the least ideal that contains I1 and I2. The
family I of ideals of polynomials in X forms a complete lattice 〈I,⊆,∩,+〉. This lattice satisfies the ascending chain
condition, but not the descending chain condition.

The ideal Id(P) generated by a set of polynomials P is the intersection of all ideals containing P . Alternatively,
Id(P) is the set of all linear combinations q1 p1 + · · · + qk pk of polynomials of P with polynomial coefficients. A
basis of a polynomial ideal I is a set of polynomials that generates I . A basis P of the ideal I is minimal if no proper
subset of P generates I . As is the case with vector spaces, every polynomial ideal has a finite basis. This result is
known as the Hilbert Basis Theorem. However, unlike vector spaces, minimal bases of polynomial ideals need not
have the same cardinality.

A (reduced) Gröbner basis is the analog for polynomial ideals of a standard basis for vector spaces. Gröbner
bases provide canonical representations of polynomial ideals that are suitable for computing intersections and sums of
ideals and deciding inclusion between ideals. Any finite basis of a non-trivial ideal can be transformed into a Gröbner
basis using Buchberger’s algorithm [9,1]. However, the size of a Gröbner basis can be exponential in the number of
variables [31].

2.5. Algebraic transition systems

Consider the ring Q[X, X ′
] of polynomials in X and X ′. The polynomial p vanishes on the relation ρ if ρ satisfies

the equality p = 0. The (polynomial) theory Th(ρ) is the set of polynomials in Q[X, X ′
] that vanish on ρ. The relation

[[P]] defined by a set of polynomials in Q[X, X ′
] is the largest relation on which every polynomial of P vanishes. The

relation ρ is algebraic if ρ = [[P]] for some set of polynomials P . The pair 〈Th, [[·]]〉 is a Galois connection from the
lattice 〈R,⊆,∩,∪〉 of relations to the lattice 〈I,⊇,+,∩〉, the dual of the lattice of ideals of polynomials in Q[X, X ′

].
Our method approximates the relational semantics of algebraic transition systems, where a transition system

P = 〈X, L , T , `init, `fin〉 is algebraic if the transition relation of every transition τi ∈ T is represented by a finite
set of polynomials Pi in Q[X, X ′

]. The degree deg(P) of an algebraic transition system is the maximal degree of any
polynomial appearing in the representation of a transition relation.

Imperative programs over variables taking on rational and integer values can be modeled by algebraic transition
systems, albeit with some potential loss of precision. For example, an assignment with a polynomial right-hand side
can be modeled precisely, while non-polynomial assignments are modeled as non-deterministic updates. A condition
expressed as a conjunction of polynomial equalities can be modeled precisely, while others must be approximated.
For example, a conditional statement involving an inequality can be modeled as a non-deterministic choice between
its two branches.

Example 7. The program of Fig. 1(a) contains only polynomial assignments, but the condition guarding the loop
is a disequality. The program can be modeled, with some loss of precision, by the algebraic transition system
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P = 〈X, L , T , `1, `3〉, where X = {x, y, z}, L = {`1, `2, `3}, and T = {τ1, τ2, τ3}, with

τ1 = 〈`1, `2, [[x
′
= x ∧ y′

= 0 ∧ z′
= 0]]〉,

τ2 = 〈`2, `2, [[x
′
= x ∧ y′

= y + 1 ∧ z′
= z + 2y + 1]]〉, and

τ3 = 〈`2, `3, [[y = x ∧ x ′
= x ∧ y′

= y ∧ z′
= z]]〉.

The transition relation of transition τ2, which models the body of the loop, is imprecise. It does not model the
disequality y 6= x . The loop exit, on the other hand, is modeled precisely since the negation of y 6= x is a polynomial
equality.

The imprecision caused by modeling imperative programs as algebraic transition systems can often be ameliorated
through judicious use of invariants. For example, the assignment x := x div 2 is not a polynomial assignment, where
the div operator denotes integer division, i.e., x div 2 = b

1
2 xc. Under normal circumstances, such an assignment must

be modeled as a non-deterministic update of x . However, if x is guaranteed to be even, the assignment is equivalent to
the polynomial assignment x :=

1
2 x . Techniques such as congruence analysis [13] and numerical power analysis [20]

can often be applied to derive invariants of the program that improve the accuracy of its algebraic model. As there are
many such analyses that can improve the accuracy of the modeling, the exact process used to model an imperative
program by an algebraic transition system lies outside the scope of this paper.

3. Approximating the relational semantics

We now present a static analysis that approximates the relational semantics of imperative programs by systems
of low-degree polynomial equalities. Our method assumes that the program is modeled as an algebraic transition
system and executes the transition system symbolically in the domain of polynomial pseudo ideals — vector spaces
of degree-bounded polynomials that are closed under degree-bounded products.

To motivate our choice of abstract domain and illustrate its design, we develop the method in stages. We first present
a summary of Abstract Interpretation — a framework for the design of program analyses based on symbolic execution
in abstract domains. We then consider the candidate abstract domains of polynomial ideals and polynomial spaces,
i.e., vector spaces of degree-bounded polynomials. In the first domain, the presence of infinite ascending chains leads
to non-termination. In the second, the results obtained are often weak. Next, we consider the domain of polynomial
pseudo ideals, which offers improved precision over polynomial spaces and satisfies the ascending chain condition.
We then describe the representations and algorithms used by our approach and prove the method sound.

3.1. Abstract Interpretation

Abstract Interpretation [5] provides a framework for the design of computable approximations of the semantics of
programs. In the traditional Galois connection approach, the standard (or concrete) semantics [[P]] of a program are
defined in terms of the least fixed point of a concrete semantic function fP on a complete lattice of concrete semantic
values, known as the concrete domain. The abstract semantics [[P]]A are defined in terms of the least fixed point of an
abstract semantic function gP on a complete latticeA of abstract semantic values, known as the abstract domain. The
concrete semantics are normally not computable. Instead, they provide an idealized semantics by which the soundness
and precision of the abstract semantics can be gauged. The abstract semantics, on the other hand, are intended to be
computable.

The key challenge in applying Abstract Interpretation is identifying a suitable abstract domainA. First, to guarantee
the soundness of the analysis, the concrete and abstract domains should be related by a Galois connection. Second, the
points of A should be representable in finite space. Third, the meet and join operators of A and the abstract semantic
function gP should all be computable. Fourth, to detect convergence of iterative fixed point computations, the partial
order onA should be decidable. Finally, to ensure termination of the analysis, the abstract domain should either satisfy
the ascending chain condition or possess a widening to extrapolate the limits of infinite chains [7].

For our method, the concrete semantics are the relational semantics and are defined in the concrete domain
〈R,⊆,∩,∪〉 of relations on states. One potential abstract domain is the dual 〈I,⊇,+,∩〉 of the lattice of ideals
of polynomials in Q[X, X ′

]. This domain is suggested by the Galois connection 〈Th, [[·]]〉 from 〈R,⊆,∩,∪〉 to
〈I,⊇,+,∩〉. Using Gröbner bases and Buchberger’s algorithm, ideals are representable in finite space, intersections
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and sums of ideals are computable, and inclusion between ideals is decidable. However, the worst-case exponential
space complexity of Gröbner basis methods will cause this approach to exhaust available memory for some programs.
More importantly, the infinite ascending chains of the abstract domain will frequently lead to non-termination.

Example 8. Consider the transition system P of Example 7. Let gP be the abstract semantic function induced by
〈Th, [[·]]〉. That is, gP (I ) = Th( fP ([[I ]])), for any ideal I of Q[X, X ′

].
Iterative computation of the least fixed point of gP yields the infinite chain I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃ Ik ⊃ . . ., where

I1 = gP (Q[X, X ′
])

= Id({x ′
− x, y′, z′

}),

I2 = gP (I1)

= Id({x ′
− x, y′(y′

− 1), z′
− y′

}),

I3 = gP (I2)

= Id({x ′
− x, y′(y′

− 1)(y′
− 2), z′

− (y′)2}), and

Ik = Id

({
x ′

− x,
k−1∏
i=0

(y′
− i), z′

− (y′)2

})
.

Within three iterations, the analysis discovers that x ′
= x and z′

= (y′)2. However, the analysis never terminates.
Instead, it visits an infinite chain that encodes disjunctions as products of polynomials. Note that I1 ⊃ I2 ⊃ I3 ⊃ . . .

is a descending chain of the lattice of polynomial ideals, but an ascending chain of the abstract domain, which is the
dual of the lattice of ideals.

When faced with an abstract domain with infinite ascending chains, there are two options. We can devise a widening
to extrapolate the limits of infinite chains. These extrapolated limits can be improved by use of a narrowing [7].
Alternatively, we can modify the domain to eliminate the infinite ascending chains. We adopt the latter strategy.

3.2. Polynomial spaces

By restricting the abstract domain to degree-bounded sets of polynomials, it is possible to eliminate all infinite
ascending chains. The points of such a domain cannot be closed under polynomial products, and thus they are not
polynomial ideals. They can, however, be closed under polynomial sums and scalar products.

Definition 9 (Polynomial Space). A set of polynomials S forms a polynomial space of degree d if

• deg(p) ≤ d for all p ∈ S,
• 0 ∈ S,
• p1 + p2 ∈ S for all p1, p2 ∈ S, and
• λp ∈ S for all p ∈ S and λ ∈ Q.

A polynomial space of degree d is simply a vector space of polynomials, where the polynomials are treated as
vectors indexed by monomials. The least such space is {0}, and the greatest is Qd [X ], the set of all polynomials in
X of degree d or less. The family of polynomial spaces of degree d forms a complete lattice that satisfies both chain
conditions.

In addition, for a fixed bound d , the sizes of minimal bases of polynomial spaces and the lengths of chains are
bounded by polynomials in the number of variables. The number of monomials in X = {x1, . . . , xn} of degree d or

less is
((n+1

d

))
— the number of multisets of size d chosen from n + 1 elements, where the additional element, i.e., 1,

allows for monomials of degree less than d . Now,
((n+1

d

))
≤ (n + 1)d , which is polynomial in n for a fixed d.

Let d ≥ 1 be a degree bound. For any relation ρ, the theory Thd(ρ) of degree d is the set of polynomials of
degree d or less that vanish on ρ. Thd(ρ) is a polynomial space of degree d for any relation ρ. Furthermore, 〈Thd , [[·]]〉

is a Galois connection from 〈R,⊆,∩,∪〉 to 〈Sd ,⊇,+,∩〉, the dual of the lattice of spaces of Qd [X, X ′
]. This Galois

connection suggests an abstract domain for approximating the relational semantics. However, this domain often yields
weak results.
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Example 10. Consider the transition system P of Example 7. Let gP be the abstract semantic function on quadratic
spaces induced by 〈Th2, [[·]]〉. That is, gP (S) = Th2( fP ([[S]])), for any quadratic space S of Q2[X, X ′

].
Iterative computation of the least fixed point of gP yields the chain S1 ⊃ S2 ⊃ S3, where

S1 = gP (Q2[X, X ′
])

= Sp({x ′
− x, y′, z′

}),

S2 = gP (S1)

= Sp({x ′
− x, y′

− z′
}), and

S3 = gP (S2)

= Sp({x ′
− x}).

Taking the least fixed point S∗ to be S3, we compute the abstract semantics as

[[P]]S2 = Th2(ρsimp ∪ [[S∗]] ◦ ρfin)

= Sp({x ′
− x, y′

− x}).

In this abstract domain, the analysis terminates quickly, but the result is weak. It infers the equalities x ′
= x and

y′
= x , but not z′

= x2.

3.3. Polynomial pseudo ideals

The weakness of the analysis in the domain of quadratic spaces is attributable to the fact that polynomial spaces are
not closed under polynomial products. To improve the accuracy of the analysis, we move to the domain of polynomial
spaces that are closed under degree-bounded products.

Definition 11 (Polynomial Pseudo Ideal). A set J of polynomials forms a polynomial pseudo ideal of degree d if

• deg(p) ≤ d for all p ∈ J ,
• 0 ∈ J ,
• p1 + p2 ∈ J for all p1, p2 ∈ J , and
• qp ∈ J for all p ∈ J and q ∈ Q[X ] with deg(qp) ≤ d.

The least pseudo ideal of degree d is {0}, and the greatest is Qd [X ]. While pseudo ideals are closed under
intersection, unlike polynomial ideals and polynomial spaces, they are not closed under sum.

Example 12. Consider the following quadratic pseudo ideals in X = {x, y, z}:

J1 = {λz2
+ λx | λ ∈ Q} and J2 = {λz2

+ λy | λ ∈ Q}.

The sum J1 + J2 does not form a pseudo ideal. For example, the polynomial x − y = (z2
+ x)− (z2

+ y) is a member
of J1 + J2, but z(x − y) 6∈ J1 + J2.

The pseudo ideal Psd(P) of degree d generated by a set P of polynomials of degree no greater than d is the
intersection of all pseudo ideals of degree d that contain P . A basis of a pseudo ideal J of degree d is any set of
polynomials P that generates J . The join J1 ]d J2 of two pseudo ideals of degree d is simply Psd(J1 ∪ J2). The
family of pseudo ideals of degree d forms a complete lattice that satisfies both chain conditions.

Proposition 13. For any d ≥ 1, 〈Thd , [[·]]〉 is a Galois connection from the lattice of relations 〈R,⊆,∩,∪〉 to
〈Jd ,⊇,]d ,∩〉, the dual of the lattice of pseudo ideals of Qd [X, X ′

].

Proof. Let d ≥ 1 be a degree bound. For any relation ρ, Thd(ρ) is a subset of Qd [X, X ′
], contains the zero

polynomial, and is closed under polynomial sums and degree-bounded products. Thus Thd(ρ) is a pseudo ideal of
degree d . If ρ1 ⊆ ρ2, then Thd(ρ1) ⊇ Thd(ρ2). Furthermore, since Thd(ρ) consists of polynomials that vanish on ρ,
ρ ⊆ [[Thd(ρ)]]. For any pseudo ideals J1 and J2 of degree d, J1 ⊇ J2 implies [[J1]] ⊆ [[J2]]. For any pseudo ideal J
of degree d , [[J ]] causes every polynomial in J to vanish. Thus, Thd([[J ]]) ⊇ J . �
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3.4. Representing pseudo ideals

A basis P of a pseudo ideal J of degree d is closed if J = Sp(P). That is, P is closed if the polynomial space
it generates is closed under degree-bounded products and is therefore a pseudo ideal. We represent pseudo ideals by
standard closed bases. This representation, while frequently redundant, simplifies the implementation of operators on
pseudo ideals.

Essential to our representation of pseudo ideals is an algorithm to compute the closure of a basis. Given a basis P
of a pseudo ideal J , the algorithm computes a closed basis P∗ of J . The basis P∗ is computed iteratively, as the limit
of a finite sequence of bases P1, P2, . . . , Pk . Initially P1 = P , and for each i ≥ 1, Pi+1 is computed from Pi as
follows: We first compute a basis Qi of the subspace of polynomials of Pi of degree no greater than d − 1. This basis
is computed by applying Gauss–Jordan reduction to eliminate all monomials in Pi of degree d. We then take Pi+1 to
be the standard basis of the space Sp(Pi ∪ {xq | q ∈ Qi , x ∈ X}). The algorithm terminates when Pi+1 = Pi . Since
the lattice of polynomial spaces satisfies the ascending chain condition, termination is guaranteed.

Example 14. Let J be the quadratic pseudo ideal generated by P , where

P = {x ′
− x, y′, z′

}.

In one iteration, we compute the closed basis of J as

P∗ =


x ′

− x,

(x ′)2 − x2,

x ′x − x2,

x ′y − xy,

x ′z − xz,

y′,

x ′y′,

(y′)2,

y′x,

y′y,

y′z,

z′,

x ′z′,

y′z′,

(z′)2,

z′x,

z′y,

z′z

 .
The polynomial (y′)2 − z′, which was lost in the analysis using polynomial spaces presented in Example 10, is in the
space generated by P∗.

The correctness of our algorithm is based on the following result:

Proposition 15. A polynomial space S of degree d is a pseudo ideal of degree d iff xp ∈ S for every polynomial
p ∈ S with deg(p) ≤ d − 1 and variable x ∈ X.

Proof. Let S be a polynomial space of degree d . Suppose S is also a pseudo ideal of degree d. Then for every p ∈ S
with deg(p) ≤ d − 1 and x ∈ X , we have xp ∈ S. Conversely, suppose xp ∈ S for every p ∈ S with deg(p) ≤ d − 1
and x ∈ X . We will first show that mp ∈ S for every p ∈ S and monomial m with deg(mp) ≤ d by induction on
deg(m). The base case is immediate, since 1 is the only monomial of degree 0.

To establish the induction step, suppose that for every monomial l of degree k and every polynomial p ∈ S, if
deg(lp) ≤ d then lp ∈ S. Let m be a monomial of degree k +1, p be any polynomial of S, and suppose deg(mp) ≤ d.
For some variable x and some monomial l, we have m = xl and deg(l) = k. Thus, by the induction hypothesis, lp ∈ S.
Furthermore, deg(lp) ≤ d − 1. Since it is assumed that S is closed under variable products, we have x(lp) = mp ∈ S.

Now, suppose p ∈ S and q = c1m1 + · · · + ckmk with deg(qp) ≤ d. Since S is closed under degree-bounded
products with monomials, m1 p, . . . ,mk p ∈ S. Since S is a space, qp ∈ S. Thus, S is a pseudo ideal of degree d. �

3.5. Computing operators on pseudo ideals

Since we represent pseudo ideals by standard closed bases, operators on pseudo ideals can be implemented using
algorithms for vector spaces. The intersection J1 ∩ J2 of pseudo ideals J1 = Sp(P1) and J2 = Sp(P2) is computed
using Karr’s algorithm. The join J1 ]d J2 is computed by Gauss–Jordan reduction applied to the closure of P1 ∪ P2.
The inclusion J1 ⊆ J2 is decided by verifying that the standard basis of Sp(P1 ∪ P2) is P2.

For our analysis, we will also need an abstract composition operator J1 •d J2 that approximates the concrete
composition [[J1]] ◦ [[J2]]. The abstract operator is computed using the following algorithm: Let J1 = Sp(P1) and
J2 = Sp(P2) be pseudo ideals of degree d represented by closed bases. We switch temporarily to the polynomial ring
Q[X, X̄ , X ′

], where X̄ = {x̄1, . . . , x̄n} is a set of intermediate variables corresponding to the variables of X . In this
ring, we compute the closure Q∗ of Q = P1[X ′

→ X̄ ] ∪ P2[X → X̄ ], where Pi [Y → Z ] denotes substitution in
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Pi of the variables in Y by the corresponding variables in Z . We then apply Gauss–Jordan reduction to eliminate all
monomials of Q∗ that contain an intermediate variable. The resulting set P of polynomials in X and X ′ is the basis
of J1 •d J2.

Proposition 16. For every d ≥ 1 and every pair of pseudo ideals J1 and J2 of degree d, Thd([[J1]] ◦ [[J2]]) ⊇ J1 •d J2.

Proof. Let d ≥ 1 be a degree bound, and let J1 and J2 be polynomial pseudo ideals of degree d represented by
standard closed bases P1 and P2, respectively. Consider the ternary relation r consisting of all triples 〈σ, σ̄ , σ ′

〉 with
〈σ, σ̄ 〉 ∈ [[J1]] and 〈σ̄ , σ ′

〉 ∈ [[J2]]. This relation causes every polynomial in Q = P1[X ′
→ X̄ ] ∪ P2[X → X̄ ] to

vanish, where the intermediate variables X̄ are interpreted as in the intermediate states. Thus, every polynomial in Q∗,
the closure of Q, also vanishes on r .

Let P be the result of eliminating all monomials containing an intermediate variable from Q∗. Since P ⊆

Sp(Q∗) ∩ Qd [X, X ′
], every polynomial in P vanishes on the relation ρ, where 〈σ, σ ′

〉 ∈ ρ iff 〈σ, σ̄ , σ ′
〉 ∈ r for

some σ̄ . But ρ is simply [[J1]] ◦ [[J2]]. So, every polynomial in P vanishes on [[J1]] ◦ [[J2]]. Since J1 •d J2 = Sp(P),
we have Thd([[J1]] ◦ [[J2]]) ⊇ J1 •d J2. �

3.6. Analysis with pseudo ideals

Let P = 〈X, L , T , `init, `fin〉 be an algebraic transition system, and let d be a degree bound, where d ≥ deg(P).
That is, the transition relation of each transition τi ∈ T is represented by a finite set of polynomials Pi of degree no
greater than d .

For any path π = `0
τ1
→ . . .

τn
→`n of P , define the abstract path relation [[π ]]Jd to be the pseudo ideal

(J1 •d J2) •d · · · •d Jn , where Ji = Psd(Pi ) for each i ∈ {1, . . . , n}. The abstract path relation [[Π ]]Jd of a set
of paths is the intersection of the abstract path relations of the paths in Π .

Proposition 17. For every d ≥ deg(P) and path π of P , Thd([[π ]]) ⊇ [[π ]]Jd . For every set of paths Π ,
Thd([[Π ]]) ⊇ [[Π ]]Jd .

Proof. Let π = `0
τ1
→ . . .

τn
→`n be an arbitrary path of P . For every i ∈ {1, . . . , n}, let Ji = Psd(Pi ), where τi has

relation [[Pi ]]. Since Pi ⊆ Ji , [[Pi ]] ⊇ [[Ji ]]. Since Thd([[Pi ]]) ⊇ Ji and 〈Thd , [[·]]〉 is an adjunction, [[Pi ]] ⊆ [[Ji ]].
Thus, [[Pi ]] = [[Ji ]].

Now,

Thd([[π ]]) = Thd([[P1]] ◦ · · · ◦ [[Pn]])

= Thd([[J1]] ◦ · · · ◦ [[Jn]])

⊇ (J1 •d J2) •d · · · •d Jn (by Proposition 16)

= [[π ]]Jd .

For a set of paths Π , Thd([[Π ]]) =
⋂
π∈Π Thd([[π ]]) ⊇

⋂
π∈Π [[π ]]Jd = [[Π ]]Jd . �

Let C be a cutset for P , and suppose C consists of a single cutpoint c. Consider the following abstract path relations
of P:

Jsimp = [[SimpC (`init, `fin)]]Jd

Jinit = [[SimpC (`init, c)]]Jd

Jcyc = [[SimpC (c, c)]]Jd

Jfin = [[SimpC (c, `fin)]]Jd

Let the abstract semantic function gP on 〈Jd ,⊇,]d ,∩〉 satisfy

gP (J ) = Jinit ∩ (J •d Jcyc),

for every J ∈ Jd . Then the abstract semantics of P are defined as

[[P]]Jd = Jsimp ∩ (J∗ •d Jfin),

where J∗ is the least fixed point of gP . Since each of the operators used in defining [[P]]Jd is computable, and since
the abstract domain has no ascending chains, the abstract semantics are computable.
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When C contains more than one cutpoint, the abstract semantic function gP is defined on maps from C to Jd :

gP (ζ )(c) = [[SimpC (`init, c)]]Jd ∩

(⋂
b∈C

ζ(b) •d [[SimpC (b, c)]]Jd

)
,

for every map ζ from C to Jd and every cutpoint c ∈ C . The abstract semantics are then defined as

[[P]]Jd = [[SimpC (`init, `fin)]]Jd ∩

(⋂
c∈C

ζ∗(c) •d [[SimpC (c, `fin)]]Jd

)
,

where ζ∗ is the least fixed point of gP .

Example 18. Consider the algebraic transition system P of Example 7, where all cycles are cut by the single cut-
point `2. We approximate its relational semantics in the domain of quadratic pseudo ideals as follows:

Jsimp = Ps2({1})

Jinit = Ps2({x ′
− x, y′, z′

})

Jcyc = Ps2({x ′
− x, y′

− y − 1, z′
− z − 2y − 1})

Jfin = Ps2({y − x, x ′
− x, y′

− y, z′
− z})

The abstract semantic function is gP , where

gP (J ) = Jinit ∩ (J •2 Jcyc),

for all J ∈ J2. Computing the least fixed point of gP iteratively yields the sequence J1 ⊃ J2 ⊃ J3 ⊃ J4 ⊃ J5, where

J1 = gP (Q2[X, X ′
])

= Ps2({x ′
− x, y′, z′

}),

J2 = gP (J1)

= Ps2({x ′
− x, y′

− z′, (y′)2 − z′
}),

J3 = gP (J2)

= Ps2({x ′
− x, (y′)2 − z′, y′z′

+ 2y′
− 3z′, (z′)2 + 6y′

− 7z′
}),

J4 = gP (J3)

= Ps2

({
x ′

− x, (y′)2 − z′, y′z′
−

1
6
(z′)2 + y′

−
11
6

z′

})
, and

J5 = gP (J4)

= Ps2({x ′
− x, (y′)2 − z′

}).

The crucial step is the second, which discovers that z′
= (y′)2:

J2 = gP (J1)

= Jinit ∩ (J1 •2 Jcyc)

= Jinit ∩ (Ps2({x ′
− x, y′, z′

}) •2 Ps2({x ′
− x, y′

− y − 1, z′
− z − 2y − 1}))

= Jinit ∩ Ps2({x ′
− x, y′

− 1, z′
− 1})

= Ps2({x ′
− x, y′, z′

}) ∩ Ps2({x ′
− x, y′

− 1, z′
− 1})

= Ps2({x ′
− x, y′

− z′, (y′)2 − z′
}).

Taking the least fixed point J∗ to be J5, we compute the abstract semantics as

[[P]]J2 = Jsimp ∩ (J∗ •2 Jfin)

= Ps2({x ′
− x, y′

− x, (x)2 − z′
})

Thus, the relational semantics of P are approximated by the relation

[[x ′
= x ∧ y′

= x ∧ z′
= x2

]].
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3.7. Soundness of the analysis

Let P = 〈X, L , T , `init, `fin〉 be an algebraic transition system, and let d be a degree bound, where d ≥ deg(P).
Suppose C is a cutset for P . If C consists of a single cutpoint c, the concrete semantic function fP is defined on the
lattice 〈R,⊆,∩,∪〉, and the abstract semantic function gP is defined on 〈Jd ,⊇,]d ,∩〉.

Lemma 19. Thd([[P]]) ⊇ [[P]]Jd when C consists of a single cutpoint c.

Proof. Let ρ∗ be the least fixed point of fP , and let J∗ be the least fixed point of gP . We will first demonstrate that
Thd(ρ∗) ⊇ J∗. By Proposition 17, Thd(ρinit) ⊇ Jinit and Thd(ρcyc) ⊇ Jcyc. Since 〈Thd , [[·]]〉 is a Galois connection
and, thus, an adjunction, ρcyc ⊆ [[Jcyc]]. So, for any J ∈ Jd ,

Thd( fP ([[J ]])) = Thd(ρinit ∪ ([[J ]] ◦ ρcyc))

= Thd(ρinit) ∩ Thd([[J ]] ◦ ρcyc)

⊇ Jinit ∩ Thd([[J ]] ◦ ρcyc) (since Thd(ρinit) ⊇ Jinit)

⊇ Jinit ∩ Thd([[J ]] ◦ [[Jcyc]]) (since ρcyc ⊆ [[Jcyc]])

⊇ Jinit ∩ (J •d Jcyc) (by Proposition 16)

= gP (J ).

Therefore, by Theorem 4, ρ∗ ⊆ [[J∗]] and Thd(ρ∗) ⊇ J∗.
Next, we show that Thd([[P]]) ⊇ [[P]]Jd . By Proposition 17, Thd(ρsimp) ⊇ Jsimp and Thd(ρfin) ⊇ Jfin. Again,

since 〈Thd , [[·]]〉 is an adjunction, ρfin ⊆ [[Jfin]]. Thus,

Thd([[P]]) = Thd(ρsimp ∪ (ρ∗ ◦ ρfin))

= Thd(ρsimp) ∩ Thd(ρ∗ ◦ ρfin)

⊇ Thd(ρsimp) ∩ Thd([[J∗]] ◦ ρfin) (since ρ∗ ⊆ [[J∗]])

⊇ Jsimp ∩ Thd([[J∗]] ◦ ρfin) (since Thd(ρsimp) ⊇ Jsimp)

⊇ Jsimp ∩ Thd([[J∗]] ◦ [[Jfin]]) (since ρfin ⊆ [[Jfin]])

⊇ Jsimp ∩ (J∗ •d Jfin) (by Proposition 16)

= [[P]]Jd . �

If the cutset C contains multiple cutpoints, fP is defined on 〈RC ,vR,uR,tR〉, the complete lattice of total
maps from C to R, where vR,uR, and tR are pointwise extensions of ⊆,∩, and ∪, respectively. For example,
η1 vR η2 iff η1(c) ⊆ η2(c) for all c ∈ C . Similarly, gP is defined on 〈J C

d ,wJd ,tJd ,uJd 〉, the complete lattice of
maps from C to Jd . These two lattices are related by the Galois connection 〈α, γ 〉, where α(η)(c) = Thd(η(c)) and
γ (ζ )(c) = [[ζ(c)]] for all η ∈ RC , ζ ∈ J C

d , and c ∈ C [25].

Lemma 20. Thd([[P]]) ⊇ [[P]]Jd when the cutset C contains multiple cutpoints.

Proof. The proof is similar to the proof of Lemma 19, and we omit many details. Let η∗ be the least fixed point of
fP , and let ζ∗ be the least fixed point of gP . For every ζ ∈ J C

d and cutpoint c ∈ C ,

α( fP (γ (ζ )))(c) = Thd([[SimpC (`init, c)]]) ∩

(⋂
b∈C

Thd([[ζ(b)]] ◦ [[SimpC (b, c)]])

)

⊇ [[SimpC (`init, c)]]Jd ∩

(⋂
b∈C

Thd([[ζ(b)]] ◦ [[ [[SimpC (b, c)]]Jd ]])

)

⊇ [[SimpC (`init, c)]]Jd ∩

(⋂
b∈C

ζ(b) •d [[SimpC (b, c)]]Jd

)
= gP (ζ )(c).
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var x, y, z : integer;

`1 : z := 0

`2 : while y 6= 0 do

if y mod 2 = 1 then

〈x, y, z〉 := 〈2x, (y − 1) div 2, z + x〉

else

〈x, y, z〉 := 〈2x, y div 2, z〉;

`3 : halt
Fig. 2. Russian peasant multiplication.

The first inclusion is justified by Proposition 17 and the fact that for any set of paths Π , Thd([[Π ]]) ⊇ [[Π ]]Jd

iff [[Π ]] ⊆ [[ [[Π ]]Jd ]]. The second is justified by Proposition 16. Invoking Theorem 4, Thd(η∗(c)) ⊇ ζ∗(c) and
η∗(c) ⊆ [[ζ∗(c)]] for every cutpoint c ∈ C .

Next, we show that Thd([[P]]) ⊇ [[P]]Jd .

Thd([[P]]) = Thd([[SimpC (`init, `fin)]]) ∩

(⋂
c∈C

Thd(η∗(c) ◦ [[SimpC (c, `fin)]])

)

⊇ Thd([[SimpC (`init, `fin)]]) ∩

(⋂
c∈C

Thd([[ζ∗(c)]] ◦ [[SimpC (c, `fin)]])

)

⊇ [[SimpC (`init, `fin)]]Jd ∩

(⋂
c∈C

Thd([[ζ∗(c)]] ◦ [[ [[SimpC (c, `fin)]]Jd ]])

)

⊇ [[SimpC (`init, `fin)]]Jd ∩

(⋂
c∈C

ζ∗(c) •d [[SimpC (c, `fin)]]Jd

)
= [[P]]Jd ,

where the first inclusion is justified by η∗(c) ⊆ [[ζ∗(c)]], and the last two are justified by Propositions 17 and 16,
respectively. �

Combining Lemmas 19 and 20, we conclude that our method is sound.

Theorem 21 (Soundness). For any algebraic transition system P , degree bound d ≥ deg(P), and non-empty cut-
set C, Thd([[P]]) ⊇ [[P]]Jd .

4. Applications

To demonstrate the utility of our method, we have implemented it in Java and applied it to several programs taken
from the literature on non-linear invariant generation. For the programs we have considered, our analysis produces
results as precise as those produced by other methods [28,26].

4.1. Russian peasant multiplication

The program shown in Fig. 2 is an implementation of a folk algorithm for multiplication. It computes the product
of non-negative integers x and y by decomposing y into its binary representation. We model the body of the loop by
two transitions, one for each branch of the conditional. The assignments to x and z in the loop body are polynomial,
but the assignments to y are not. The conditional statement, however, allows the assignments to y to be modeled
precisely: y := (y − 1) div 2 is equivalent to y :=

1
2 y −

1
2 when y is odd, and y := y div 2 is equivalent to y :=

1
2 y

when y is even. The loop condition is a disequality. Thus, it is ignored when modeling the loop body. However, its
negation, y = 0, is modeled precisely for the loop exit.
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var a, b, p, q : integer;

`1 : 〈p, q〉 := 〈1, 0〉;

`2 : while a 6= 0 ∧ b 6= 0 do

if a mod 2 = 0 ∧ b mod 2 = 0 then

〈a, b, p, q〉 := 〈a div 2, b div 2, 4p, q〉

else if a mod 2 = 1 ∧ b mod 2 = 0 then

〈a, b, p, q〉 := 〈a − 1, b, p, q + bp〉

else if a mod 2 = 0 ∧ b mod 2 = 1 then

〈a, b, p, q〉 := 〈a, b − 1, p, q + ap〉

else

〈a, b, p, q〉 := 〈a − 1, b − 1, p, q + (a + b − 1)p〉;

`3 : halt
Fig. 3. Alternate product.

All cycles of this program are cut by the single cutpoint `2. Applying our analysis in the domain of quadratic
pseudo ideals yields the following approximate semantics to cutpoint `2:

[[z′
= xy − x ′y′

]].

The relational semantics of the program are then approximated as

[[y′
= 0 ∧ z′

= xy]].

The analysis takes 90 ms to complete.2 Thus, the program halts with the final value of z equal to the product of the
initial values of x and y.

4.2. Alternate product

The program shown in Fig. 3 is taken from Rodrı́guez-Carbonell and Kapur [26]. It computes the product of non-
negative integers a and b. The body of the loop is modeled by four transitions, one for each branch of the conditional.
The first assignment in the loop body, while not polynomial, can be modeled precisely since the conditional statement
guarantees that a and b are both even. All remaining assignments are polynomial. The loop condition is a conjunction
of disequalities and is ignored in modeling the loop body. The loop exit, on the other hand, is modeled precisely since
the disjunction a = 0 ∨ b = 0 is equivalent to the polynomial equality ab = 0.

All cycles are cut by the single cutpoint `2. Noting that the program contains quadratic assignments, we apply our
analysis in the domain of cubic pseudo ideals. Our method approximates the relational semantics to `2 as

[[q ′
= ab − a′b′ p′

]],

and approximates the semantics of the program as

[[a′b′
= 0 ∧ q ′

= ab]].

While the result of the analysis is a quadratic relation, the fixed point used to compute it is cubic. Had we analyzed
the program in the domain of quadratic pseudo ideals, we would have derived the weaker approximation

[[a′b′
= 0]].

By working with cubic rather than quadratic pseudo ideals, we increase the accuracy of the analysis, along with the
space used and the time taken (2.1 s).

2 Reported times are for a 1.7 GHz Pentium with 1 GB of RAM.
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var x1, x2, y1, y2 : integer;

`1 : 〈y1, y2〉 := 〈0, x1〉;

`2 : while y2 ≥ x2 do

〈y1, y2〉 := 〈y1 + 1, y2 − x2〉;

`3 : halt
Fig. 4. Division by subtraction.

var x1, x2, y1, y2, y3, y4 : integer;

`1 : 〈y1, y2, y3, y4〉 := 〈x1, x2, 1, 0〉;

`2 : while y1 > y2 do

〈y2, y3〉 := 〈2y2, 2y3〉;

`3 : while true do

if y1 ≥ y2 then

〈y1, y4〉 := 〈y1 − y2, y4 + y3〉;

if y3 = 1 then

`4 : halt;

〈y2, y3〉 := 〈y2 div 2, y3 div 2〉


Fig. 5. Hardware integer division.

4.3. Division by subtraction

The program shown in Fig. 4 performs division by repeated subtraction. Given a non-negative integer x1 and
a positive integer x2, it computes their quotient and remainder into y1 and y2, respectively. All assignments in
this program are polynomial and are modeled precisely. The loop condition is an inequality, and neither it nor its
negation can be modeled by polynomial equalities. Thus, we treat the decision to iterate or terminate the loop as a
non-deterministic choice.

All cycles of the program are cut by the single cutpoint `2, and an analysis in the domain of quadratic pseudo ideals
yields the following relation in 190 ms:

[[x ′

1 = x1 ∧ x ′

2 = x2 ∧ x1 = x2 y′

1 + y′

2]].

This approximation of the relational semantics is imprecise. It does not guarantee that the final values of y1 and y2
are the quotient and remainder, respectively, of x1 and x2. To improve the result, linear relation analysis [8,14] can be
applied to discover the invariant 0 ≤ y2 < x2 at `3, assuming x1 ≥ 0 and x2 > 0 initially. Combining the results of
both analyses yields a more precise approximation of the relational semantics of the program:[[

x ′

1 = x1 ∧ x ′

2 = x2 ∧ x1 = x2 y′

1 + y′

2 ∧

(x1 ≥ 0 ∧ x2 > 0 → 0 ≤ y′

2 < x2)

]]
Thus, upon termination, y1 holds the quotient of x1 and x2, and y2 holds the remainder.

4.4. Hardware integer division

The program shown in Fig. 5, taken from Manna [19], also computes the quotient and remainder of a non-negative
integer x1 and a positive integer x2. The program contains two loops. The first initializes y3 to the smallest power of 2
for which y2 = x2 y3 is greater than or equal to x1. The second computes the quotient of x1 and x2 into y4 and the
remainder into y1. In modeling the program, we ignore the condition of the first loop and the first conditional of the
second loop, both of which are inequalities. For the second loop, the fact that y3 is a power of 2 combined with the
invariant y2 = x2 y3 at `3 permits us to model the assignments to y2 and y3 accurately.
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var n, p, q, r, h : integer;

`1 : 〈p, q, r〉 := 〈0, 1, n〉;

`2 : while q ≤ n do

q := 4q;

`3 : while q 6= 1 do
q := q div 4;

〈h, p〉 := 〈p + q, p div 2〉;

if r ≥ h then

〈p, r〉 := 〈p + q, r − h〉


`4 : halt

Fig. 6. Dijkstra’s square root.

Taking the cutset to be {`2, `3}, we analyze the program in the domain of quadratic pseudo ideals, deriving the
following relation to `2:

[[x ′

1 = x1 ∧ x ′

2 = x2 ∧ y′

1 = x1 ∧ y′

4 = 0 ∧ y′

2 = x2 y′

3]],

and the following relation to `3:

[[x ′

1 = x1 ∧ x ′

2 = x2 ∧ y′

2 = x2 y′

3 ∧ x1 y′

3 = y′

1 y′

3 + y′

2 y′

4]].

The relational semantics of the program are then approximated as

[[x ′

1 = x1 ∧ x ′

2 = x2 ∧ y′

2 = x2 ∧ y′

3 = 1 ∧ x1 = x2 y′

4 + y′

1]].

The entire analysis takes 1.3 s.
Again, this approximation does not guarantee that y4 holds the quotient and y1 holds the remainder at exit. To

improve the accuracy of the analysis, linear invariants of the program are needed.

4.5. Dijkstra’s square root

The program in Fig. 6, taken from Dijkstra [11], computes the integer square root of a non-negative integer n.
The program contains two loops, and the second loop contains non-polynomial assignments to the variables p and q.
However, Dijkstra’s analysis of the program reveals that, at location `3, p is divisible by 2k and q = 4k for some
integer k ≥ 0. Thus, the assignments to p and q can be modeled precisely.

Taking the cutset to be {`2, `3}, we analyze the program in the domain of quadratic pseudo ideals, deriving the
following relation to `2:

[[h′
= h ∧ n′

= n ∧ p′
= 0 ∧ r ′

= n]],

and the following relation to `3:

[[n′
= n ∧ (p′)2 = q ′n − q ′r ′

]].

The relational semantics are then approximated as

[[n′
= n ∧ q ′

= 1 ∧ n = (p′)2 + r ′
]].

The analysis takes 800 ms.
At location `3, the linear inequalities 0 ≤ r < 2p +q are invariant, assuming n ≥ 0. Combining this invariant with

the approximation computed by our method yields a better characterization of the relational semantics:

[[n′
= n ∧ q ′

= 1 ∧ r ′
= n − (p′)2 ∧ (n ≥ 0 → (p′)2 ≤ n < (p′

+ 1)2)]].

Thus, p′ is the integer square root of n, provided n is non-negative.
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5. Related work

Recently, a number of proposals have been advanced for generating non-linear invariants of imperative programs.
Sankaranarayanan et al. propose a constraint solving approach for generating invariant non-linear equalities [28].

This work extends our prior joint work on constraint-based generation of invariant linear inequalities [3]. Given a
template equality – a polynomial equality whose coefficients are linear expressions in a set of parameters – their
approach uses Gröbner basis methods to construct a system of non-linear constraints whose solutions correspond to
invariant instances of the template. They then propose heuristics for solving the generated constraints. The principal
advantage of the approach is that it eliminates the need for a widening to extrapolate the limits of infinite chains
of ideals. The principal disadvantage is its incompleteness. To avoid producing intractable systems of non-linear
constraints, the method generates constraints that are sufficient to ensure correctness of the invariant, but not necessary.

Rodrı́guez-Carbonell and Kapur propose non-linear invariant generation by Abstract Interpretation in the lattice of
polynomial ideals, with ideals represented by Gröbner bases [27]. To ensure termination of the analysis, they propose
a widening on ideals that computes a Gröbner basis with respect to a graded order on monomials and retains only
those polynomials in the basis of degree no greater than a degree bound d. The primary advantage of this approach
is the increased precision of working in the lattice of ideals. In addition, the method is able to handle disequalities
in the conditions of if and while statements using quotients of ideals. The primary disadvantage is the potential for
encountering the worst-case exponential complexity of Gröbner methods during the analysis. However, the empirical
results presented by Rodrı́guez-Carbonell and Kapur demonstrate that this worst-case complexity does not arise for
the programs they consider.

Müller-Olm and Seidl generate invariant polynomial equalities of bounded degree by backward propagation [24].
Their approach is limited to programs with linear assignments and ignores the conditions of if and while statements.
However, their analysis is based on methods from linear algebra and can be performed in both space and time that
is polynomial in the number of program variables. The approaches based on Gröbner bases, on the other hand, both
have space and time complexity that is exponential in the number of variables in the worst case.

Our method can be seen as a hybrid of the Gröbner basis methods and the method of Müller-Olm and Seidl. Like
the Gröbner methods, our method achieves increased precision due to its firm grounding in the theory of polynomial
ideals. Like the method of Müller-Olm and Seidl, our method gains space and time efficiency by using representations
and algorithms from linear algebra.

6. Conclusion

We have presented a method that computes algebraic approximations of the relational semantics of imperative
programs by Abstract Interpretation in a lattice of polynomial pseudo ideals of bounded degree. Our method can
be seen as extending Karr’s method for generating invariant linear equalities [15] to produce non-linear equalities
by exploiting the strong connection between polynomial ideals and infinite dimensional vector spaces [18]. Pseudo
ideals provide finite dimensional approximations of polynomial ideals that are fine enough to produce useful results,
yet coarse enough to remain tractable. For a fixed degree bound, the number of polynomials required to represent a
pseudo ideal, the time required to compute operators on pseudo ideals, and the lengths of chains of pseudo ideals
are all bounded by polynomials in the number of program variables. Our approach is incomplete, and it can be less
precise than Abstract Interpretation in the domain of polynomial ideals. However, for several programs drawn from
the literature on non-linear polynomial invariant generation, our method produces results as precise as those produced
by Gröbner basis methods.

In any event, while Abstract Interpretation using polynomial ideals provides a reasonable measure of relative
completeness, it too is incomplete. All algebraic theories are radical, but the lattice of polynomial ideals contains
non-radical ideals.3 As a result, an analysis of the program in Fig. 7(a) using polynomial ideals fails to deduce that the
program halts with x equal to zero. Moving to the lattice of radical ideals, however, will not yield a complete method.
For example, an analysis of the program in Fig. 7(b) using radical ideals will fail to deduce that the program halts with
both x and y equal to zero. The appropriate abstract domain for analyzing this program is the lattice of real ideals.

3 An ideal I is radical if pd
∈ I implies p ∈ I , and real if p2

1 + · · · + p2
k ∈ I implies p1, . . . , pk ∈ I .
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var x : integer;

`1 : if x2
6= 0 then

x := 0;

`2 : halt

(a)

var x, y : integer;

`1 : if x2
+ y2

6= 0 then

〈x, y〉 := 〈0, 0〉;

`2 : halt

(b)
Fig. 7. Incompleteness of ideals.

Our decision to approximate the relational semantics in a lattice of polynomial pseudo ideals rather than devise a
widening for the lattice of ideals is a pragmatic one, driven by the worst-case complexity of operations on ideals [21].
For some applications, however, the increased precision afforded by Abstract Interpretation in the lattice of ideals
justifies the cost. In these cases, the family of lattices of polynomial pseudo ideals can serve as the basis for a widening
for the lattice of ideals. For example, we can iterate for a finite number of steps using polynomial ideals, then move to
pseudo ideals of degree d , where d is the maximal degree of any polynomial appearing in a Gröbner basis. Better yet,
we can compute a set of monomials based on the Gröbner bases encountered and move to the corresponding lattice of
polynomial spaces which are closed under a suitable monomial-restricted product. That is, we can tailor the choice of
abstract domain to the set of monomials that appear important to the analysis, thereby permitting relevant high-degree
monomials while potentially avoiding the complexity of polynomial pseudo ideals of high degree.
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