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Abstract 

The Shi arrangement 5e, is the arrangement of affine hyperplanes in ~n of the form x i - X / =  0 
or 1, for 1 ~< i < j  ~< n. It dissects R" into (n + 1)n- 1 regions, as was first proved by Shi. We give 
a simple bijective proof of this result. Our bijection generalizes easily to any subarrangement of 

containing the hyperplanes xi - x j  = 0 and to the extended Shi arrangements. It also implies 
the fact that the number of regions of SP, which are relatively bounded is (n - 1) "-1. (~) 1999 
Elsevier Science B.V. All rights reserved 
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1. Introduction 

A hyperplane arrangement d is a finite set o f  affine hyperplanes in ~n. The regions 

o f  d are the connected components o f  the space obtained from R n by  removing the 

hyperplanes o f  ~1. A classical example is provided by  the braid arrangement t i n .  It 

consists o f  the hyperplanes in ~n o f  the form xi = x j  for 1 <~i < j  ~<n, i.e. the reflecting 

hyperplanes o f  the Coxeter group o f  type An- i .  Its regions correspond to permutations 

of  the set [n] :=  { 1,2 . . . . .  n}. 

A deformation of  d n  [21] is an arrangement each o f  whose hyperplanes is parallel 

to one o f  the hyperplanes o f  t i n .  We  will be concerned with a deformation o f  ~¢n 
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Fig. 1. The Shi arrangement for n = 3. 

which has remarkable combinatorial properties. It is the Shi arrangement, denoted by 
SP~, and consists of the hyperplanes 

x i - x j = O  for l<~i<j<~n 

and 

x i - x j = l  for l<<,i<j<~n (1) 

in R n. Fig. 1 shows ~ 3  intersected with the plane x I -~-x 2 Jr-x 3 = 0. Shi was the first 
to consider Se~ in his investigation of the affine Weyl group of type An-l [18]. He 

used techniques from combinatorial group theory and gave a constructive proof of the 
following result. 

Theorem 1.1 (Shi [18, Corollary. 7.3.10]). The number of regions o f ~  is (n+ 1) n-l. 

Shi [19] generalized Theorem 1.1 to a natural analogue of ~ ,  defined for any ir- 
reducible crystallographic root system (see Remark 3 in Section 4). Since Shi's work, 
the arrangement ~ has continued to appear in the context of  affme Weyl groups 
[8-10], as an object of independent interest in enumerative combinatorics [3,10,21,23], 
as a particularly nice example where old [4,24] and new techniques [1,2,15,16] from 
the theory of hyperplane arrangements apply and more recently, in the context of 
representations of  affine Hecke algebras [17]. Some of this work remains to be done 
for the various root system analogues. We briefly describe those developments which 
are relevant here. 

Remark. A semi-bijective proof of Theorem 1.1 was given by Headley in his work 
on atfine Weyl groups [9,8]. Assuming Theorem 1.1, Headley went on to compute 
the characteristic polynomial [14, Section 2.3] of 6e~ as Z(6e~,q)=q(q - n) n-l. This 
statement is stronger than Theorem 1.1 since Zaslavsky's theory [24] expresses the 
number of regions of a hyperplane arrangement ~¢ in R n as ( - 1  ) n ; t ( d , -  1 ). Moreover, 
Zaslavsky [24] expresses the number of relatively bounded regions of  m¢ as [Z(d, 1 )[. 
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Therefore, Headley's formula also implies that this number for 5:, is (n-1 ),-1. Headley 
[10] generalized his formula to other root systems (see also Remark 4 in Section 4). 

A bijective proof of Theorem 1.1 follows from work of Pak and Stanley 
[21, Section 5]. They established a correspondence between the regions of 5:~ and 
the parkin9 functions on [n], which are known to be counted by (n + 1 )"- 1. Although 
this correspondence is easy to define, a lot of effort is needed to prove that it is indeed 
a bijection (see the proof of [23, Theorem 2.1]). However, it allows one to enumerate 
the regions according to a certain statistic d(R), the 'distance' of the region R from 
a fixed base region R0. Under the bijection, the statistic d corresponds to a natural 
statistic on the parking functions on [n] which is closely related to the inversion enu- 
merator for trees [13]. We refer the reader to Remark 5 in Section 4 and [23] for more 
information. 

A simple counting proof of Headley's formula was given by an application of the 
'finite field method' of [1,2] (see [1, Theorem 3.3; 2, Theorem 6.2.1]). This general 
method to compute characteristic polynomials of hyperplane arrangements makes use 
of a combinatorial interpretation of the values of Z ( d , q )  at large primes q. Other 
applications included (but were not limited to) the Shi arrangements for the other 
infinite families of root systems, the family of arrangements between d ,  and 5:,, along 
with various generalizations, and a simple formula for the face numbers of 5:~ of any 
fixed dimension. This formula yields another interesting generalization of Theorem 1.1, 
which we describe in Section 4. Other such results, mainly for deformations of d , ,  
are included in work of Postnikov and Stanley [15, Chapter 1, 16]. 

The arrangement 5:,, as well as the whole family of arrangements between d ,  and 
5:,, was also studied from the point of view of freeness  [14, Chapter 4] in [4]. As 
a special case of the techniques in [4], one can use the classical method of deletion 

and restriction to give simple inductive proofs to Headley's formula and Theorem 1.1, 
suitably generalized. We give details in Section 4. 

The results: We first give a simple bijective proof of Theorem 1.1. Our bijection 
can also be stated in terms of parking functions but is different from that of Pak and 
Stanley. It has the advantage that it generalizes easily to any arrangement between ,~¢, 
and 6e~, a problem which provided the main motivation for this work, as follows. Let 
G be a simple graph on the vertex set [n]. We denote by 5Qc the arrangement 

xi - xj = 0  

xi - x  j =  1 

for 1 <~i<j~n ,  

for l <~i<j<~n, i j E G  
(2) 

in ~n, first considered in [1, Section 3, 2, Section 6.2] and later in [4]. It specializes 
to d ,  when G is empty and to 6(,, when G is the complete graph. Let Z,+l denote 
the abelian group of integers modulo n ÷ 1 and let H be the cyclic subgroup of 
Z~+ 1 generated by (1, 1 . . . . .  1). One can think of Z~+ 1 as the set of all placements 
of n distinct balls into n + 1 distinct boxes arranged cyclically. Special cases of the 
following theorem have appeared in [1,2] (see Theorems 3.2 and 3.3 in Section 3). 
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Theorem 1.2. The regions o f  6an.6 are in bijection with the cosets 

(al,a2 . . . . .  an) + H E 7/",+l/H (3) 

which satisfy the following condition: given i, i f  j is the smallest integer such that 

i < j  and ai = a j, then ij E G. 

Furthermore, in a dual formulation, our bijection maps the relatively bounded regions 
of 6P~ to the prime parking functions on [n], a concept due to Gessel. The prime parking 
functions on [n] are known to be counted by ( n - 1  )n-l and hence we derive bijectively 
the formula for the number of relatively bounded regions of 5¢,, only derived so far 
as a corollary to Headley's formula. 

Stanley [23] has generalized the correspondence of [21, Section 5] to a bijection 
between the regions of the extended Shi arrangement 

x i - x j = - k + l , - k + 2  . . . . .  k for l<<.i<j<~n (4) 

and k-parking functions on [n], which are counted by (kn + 1) n-1. Our bijection also 
generalizes easily in this direction. 

This paper is organized as follows: Section 2 contains our bijective proof of 
Theorem 1.1 and its version for the relatively bounded regions. In Section 3 we 
prove the more general Theorem 1.2 and derive some special cases, previously obtained 
with non-bijective methods. We also generalize our bijection to the extended Shi ar- 
rangements. In Section 4 we give explicitly the proof of  Theorem 1.1 which follows 
from the methods of [4] and list some open problems related to the combinatorics 
of 5¢~. 

Note. While revising this paper, we observed that if simplified and bijectified, 
Headley's proof of  Theorem 1.1, which we mentioned earlier, could lead to the proof 
in Section 2. Due to its simplicity and various generalizations and consequences, we 
still find this bijective formulation interesting in its own right. 

2. The bijection 

We first describe our bijection in terms of  parking functions. A parking function on 
[n] is a map f : [n ] - -*  [n] such that for all 1 <~j<~n, the cardinality of the set f - l ( [ j ] )  
is at least j .  We also use the notation f = (al,a2 . . . . .  an), where ai = f ( i )  for 1 <~i<<.n. 
Parking functions were first studied by Konheim and Weiss [11]. For the reason for 
the terminology 'parking function' see [7, Section 2.6; 21, Section 5]. An extensive 
literature is given in [23]. 

In order to describe the bijection we index the regions of 6a~ as follows. First, given 
a region R, we consider only the xi - x j  = 0  hyperplanes and let w = wlw2. . .wn be 
the unique permutation of [n] such that xw~ >Xw2 > "'" >Xw~ holds on R. Second, we 
draw an arc ( i , j )  in w from i to j if  i < j  and x i - x / >  1 holds on R. Third, we remove 
any arcs 'containing' another arc. In other words, if there is an arc ( j , k )  then we 
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2 4 6 8 5 1 9 7 3  

Fig. 2. The diagram of a region of <~,j. 

remove any arcs (i,/), (i,k) or ( j , l )  if x i > x j > x k > x l ,  x i>x j  or Xk>Xl holds on R 
respectively. Clearly, these arcs are forced by the arc ( j , k )  and hence are redundant. 
The diagram of R is the resulting permutation of [n] with arcs going rightwards from 
smaller to larger integers, with no arc containing another. 

Example. The region of  5P9 indexed by the diagram of Fig. 2 is defined by the 

inequalities X2>X4>X6>. . .  >X7~>X 3 and x 2 -  x 4 < l ,  x 2 -  x 6 > l ,  x 4 -  x 6 < l ,  
x2 - x8 > 1, etc. 

Note that for each diagram p, the arcs naturally determine a partition n =  np 

of [n] into chains of increasing integers. In the example above, this partition is 
n=269/457/8/13.  We say that the position of m in p is j if m = w j ,  i.e. if m is 
the j th integer from the left which appears in p. 

Definition 2.1. Let 0-~ be the map from the regions of 5e~ to parking functions on [n] 
which sends the region with diagram p to the function 

f ( i )  = the position in p of the lettrnost element in the chain containing i. 

This is clearly a parking function, so a,  is well defined. The region in our example 
is mapped by 0- 9 to the parking function (6, 1,6, 2, 2, 1,2, 4, 1 ). 

Theorem 2.2 (Main Theorem). The map 0-n is a bijection between the regions o f  5P, 

and parking functions on [n]. 

Proof. We describe the inverse of 0-~ explicitly. Given a parking function f ,  we get 
the partition n simply by placing i and j in the same block if f ( i )  = f ( j ) .  The chains 
are obtained by listing the elements of  each block in increasing order, from left to 
right. It remains to determine the permutation. To do so, we place the chains relative 
to each other one at a time, in increasing order of their values under f .  Assume that 
we have already placed the chains with values less than j and are to place the chain 
with value j .  Since f is a parking function, there are at least j - 1 elements already 
placed. We insert the leftmost element of the chain in position j ,  counting from the 
left. There is a unique way to place the other elements of the chain to the fight without 
forming any pair of arcs with one containing the other. This braiding defines a diagram 
p and hence a region R of 6e,. We leave it to the reader to check that this map is 
indeed the inverse of tr,,. [] 

Fig. 3 illustrates the procedure to get back the region of 5% from the parking function 
for our example. 
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2 6 9  

2 4 6 5 9  7 

2 4 6 8 5 9  7 

2 4 6 8 5  1 9 7 3  

Fig. 3. Constructing the region a~-l(f). 

Xl=X 2 

Xl=X x 2 = x  3 

1 

2 3 ~ 2 2  

Fig. 4. The bijeetion a3. 

Fig. 4 shows the 16 parking functions of length 3 associated to the regions of 5e3, 
according to a3. 

The fact that there are (n + 1) "-l  parking functions on [n] follows from the obser- 
vation, due to Pollack [6, p. 13] and repeated by Haiman [7, pp. 28, 33] and Stanley 
[22, Section 2], that every coset in Z~+I/H contains exactly one parking function. The 
following corollary proves Theorem 1.1. 

Corollary 2.3. The map an induces a bijection between the regions o f  6e~ and elements 

of 71".+l/n. 

The bounded regions. One can associate a region R of  5a~ to a diagram p in another 
obvious way. If w = WlW2 • . .  wn is the permutation of [n] defined by p, then we require 
that Xw, >Xw: > • . .  >Xw, holds on R, as before. If there is an arc in p going rightwards 
from i to j ,  so that i < j ,  we require instead that xi - x j  < 1 holds on R. These rules 
define uniquely a region R of  5a~. For example, the diagram in Fig. 2 now corresponds 
to the region defined by the inequalities x2 >x4 >x6 > -- • >x7 >x3 and x2 - x4 < 1, 
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X 1 = X 3 X 2 =  X 3 

132 

2 2 1 ~ 1 1 3  

x x 

Fig. 5. The bijection z3. 

x2 - x 6  < 1, x4 - x 6  < 1, x2 -x8  > 1, etc. We call p the dual diagram of R. The bijection 
between diagrams and parking functions, described in Definition 2.1, yields another 
bijection between regions of 6:, and parking functions on [n], which we denote by vn 
and illustrate in Fig. 5 for n = 3. 

A prime parking function on [n] is a map f :  [n] --- [n] such that for all 1 <~j<<.n - 1, 
the cardinality of  the set f - l ( [ j ] )  is at least j + 1. In particular, f is a parking 
function on [n] which does not contain n in its image. Prime parking functions on [n] 
were recently defined by Gessel who showed that there are (n - 1) "-I of  them, using 
standard generating function techniques (unpublished). He also observed that they are 
in bijection with the forests of labeled rooted trees on [n] in which the root with the 
smallest label has no descendants. 

A region of 6:, is relatively bounded, or simply bounded, if its intersection with the 
hyperplane xl + x2 + • • • + x, = 0 is bounded as a subset of Euclidean space. 

Theorem 2.4. The map ~, is a bijection between the bounded regions of S:, and prime 
parking functions on In]. 

Proof. A region R of 6:, is unbounded if and only if there is a j E [n - 1] such that 
no arc is directed from the first j integers to the last n - j  integers in its dual diagram. 
In terms of the parking function f = z,(R), this means that the cardinality of f - l ( [ j ] )  
is exactly j .  [] 

A similar observation to that of Pollack for parking functions was made by Kalikow 
(personal communication) for prime parking functions. This can be stated as follows: 

every coset of the cyclic subgroup of  Z~_l generated by (1, 1 . . . . .  1) contains exactly 
one prime parking function. The following corollary gives a bijective proof of the fact 
that the number of  bounded regions of  5:~ is (n - 1)n-1. 

Corollary 2.5. The map zn induces a bijection between the bounded regions of 5P, 
and elements of  Z~_1/(1, 1 . . . . .  1). 
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3. Generalizations 

In this section we generalize Theorem 2.2 to the arrangements between d n  and 

5P~ and derive some special cases, previously obtained by other methods. Also, in a 

different direction, we give a generalization to the extended Shi arrangements. 

Arrangements between Sin and 6(,,. Recall the definition of 6Pn, G given in (2). 

A region R of 5Pn, c can be represented as a permutation w of [n] together with a set 
of  arcs, as in the case of  5e,. We now draw an arc ( i , j )  in w from i to j if i < j ,  

ij ¢ G and xi - xj > 1 holds on R. We remove all redundant arcs, as before, to get the 
diagram of R. We define the map an, c from the regions of  5~,,6 to parking functions 

as in Definition 2.1. 

Theorem 3.1. The map an, G is a bijection between the regions Of ~n,G and the park- 

ing functions f = (al,a2 . . . .  ,an) which satisfy the followin 9 condition: given i, i f  j is 
the smallest integer such that i < j  and ai = aj, then ij E G. 

Proof. Let R be a region of 5an, a with diagram p. For a chain i~ <i2 < • .. < i t  in 

p we have ik-lik E G for all 1 < k  ~<r by construction. Hence the associated parking 

function f - - ( a l , a 2  . . . . .  an), for which air =ai2 . . . . .  ai,, has the property stated in 
the theorem. The inverse of  trn,6 is as in the special case of Theorem 2.2. [] 

Theorem 1.2 follows immediately if we interpret parking functions as elements 

of  Z",+I/H, as in Section 2. As an application of Theorem 1.2 we obtain bijective 
proofs for two simple results from [1,2]. The next theorem follows also from 

[4, Corollary 3.6]. 

Theorem 3.2 ([1, Theorem 3.4; 2, Theorem 6.2.2]). Suppose that the 9raph G has 
the followin9 property: i f  1 <~i < j  <k  <~n and ij E G then ik ¢ G. Then the number of  
regions of  6Pn, c is the product 

r i  ( n -  dj + 1), (4) 
1 <j<<.n 

where d j = # { i < j [ i j  is not in G} for l<j<~n. 

Proof. Under the given assumption on G, the cosets (3) of  Theorem 1.2 are exactly 
the ones that satisfy the following condition: if i < j  and ai = aj then ij E G. It suffices 
to show that the number of  such cosets is the product (4). Indeed, fix a value for al to 
break the cyclic symmetry and suppose we have chosen values a2 . . . . .  a j_ 1 satisfying 
the condition. We want to choose aj E 71n+1 so that aj y~ai whenever i < j  and ij is not 
in G. These values ai are all distinct, since for two such il < i2 <j ,  ili2 is not in G by 
the assumption on G and hence ai~ y~ ai2 by the choice of  ag 2. It follows that there are 
di forbidden values for aj and hence n - dj + 1 allowable ones. [] 
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2 1 2 1 4 3 4 3 

Fig. 6. The diagram of a region of ~42. 
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Theorem 3.3 ([1, Theorem 5.6; 2, Corollary 7.1.6]). Let G be the path {12,23 , . . . ,  

( n -  1)n}. The number o f  regions o f  SPn.o is the sum 

n !  - 

k=l 

Proof .  Now a coset (1.2) satisfies the condition of  Theorem 1.2 if  and only if the 
entries which take any fixed value of  7/n+1 form a string ai=ai+l . . . . .  aj. There 

n--I n--1 --- (k-  l) ways form n - are (n-k) to k +  1 such strings and n!/k! ways to assign distinct 
values to them, modulo cyclic symmetry. [] 

This sum is also the number of  ways to partition the set [n] and linearly order the 

elements within each block. A simple bijection, as was observed by Stanley (private 
communication),  shows that the same quantity is the total number of  elements in 

the intersection poser of  5~,,, i.e. the number of  affine subspaces o f  ~n which are 
intersections of  some of  the hyperplanes of  5an. 

The extended Shi arrangements. Following [23], we denote by 6pk the extended 
Shi arrangement (3). Stanley [23] has defined a k-parking function on [hi to be a 

sequence o f  positive integers f - - ( a l , a 2  . . . . .  an) such that the unique increasing rear- 

rangement bt ~<b2 ~< . . .  ~<bn of  the terms of  f satisfies bi ~ 1 + k ( i - 1 )  for all i. Thus a 
1-parking function is an ordinary parking function. He generalized the correspondence 
o f  [21, Section 5] to a bijection between the regions of  6e, k and k-parking functions on 

[n]. He also noted that, in agreement to the k = 1 case, k-parking functions on [n] are 

in bijection with the cosets o f  the cyclic subgroup of  Z~n+l generated by (1, 1 . . . . .  1 ), 
where 77~+~ is the abelian group of  integers modulo kn ÷ 1. Hence there are exactly 
(kn + 1) n-t  k-parking functions on [n]. Additional work on ~,~ is included in [2, 

Section 7.1; 4, Section 3; 15, Section 1.5; 16, Section 9]. 
We now generalize the bijection an to treat the arrangements 5e~ k. We associate 

a diagram to a region R of  5P, k as follows. First, we consider only the hyperplanes 

x , - x j = l  for - k  + l<~l<<.k- 1 and let Y = y l  y 2 " " Y k ,  be the unique permutation 

of  the variables xi + m, where 1 ~< i ~< n and 0 ~< m ~< k - 1, such that Yl > y2 > " • • > Ykn 
holds on R. We draw arcs in y going rightwards from xi + m to xi + m - 1 for all i and 
m > 0. Second, we draw an arc from xi to xj + k - 1 if  i < j  and xi - xj > k holds on R. 
Finally, we remove all arcs containing another arc and replace each variable xi ÷ m 
by i. The arcs determine naturally a partition of  the multiset M~ = {lk ,2  k . . . . .  n k } into 

chains of  weakly increasing integers such that the elements of  M~ equal to i all appear 
in the same chain. 
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Example. The diagram of Fig. 6 represents the region of  6e42 defined by the inequalities 

x2 9- l > x l  q- l > x 2 > x l > x 4  -q- l>x3 + 1 >x4>x3,  x2 - x 4 > 2  and x~ - x3<2. The 
corresponding partition of M 2 = { 1, 1,2, 2, 3, 3, 4, 4} into chains is 2244/11/33. 

k by sending the region R of 5e~ k with diagram p Definition 3.4. We define the map a n 

to the function f = ( a l , a 2  . . . . .  an) with 

ag = the position in p of the leftmost element of the chain containing all i's. 

As before, it is easy to check that f is a k-parking function. For the region of Fig. 6 
we have f = (2, 1, 6, 1 ). 

k is a bijection between the regions o f  5e. k and k-parking Theorem 3.5. The map ~r n 

functions on [n]. 

Proof. We describe the inverse map of a~, as in the proof of Theorem 2.2. Let 

f = ( a l , a 2  . . . . .  an) be a k-parking function and bl ~<b2~ < . - .  ~<bn be the unique in- 
creasing rearrangement of its terms. For each value j of f ,  consider a chain Cj of 
positive integers, listed from left to right in increasing order. The chain Cj contains k 
copies of r if ar = j  and none otherwise. Place the chains one at a time, in order 
of increasing value j.  If j = bi > bi_ l, then there are k(i - 1 )~>j - 1 elements listed 
before placing Cj, since f is a k-parking function. Insert the leflmost element of Cj in 
position j ,  counting from the left, and the other elements to the right so that no pair 
of arcs with one containing the other is formed. This defines the desired diagram, and 
hence region of 6e~ k. [] 

Fig. 7 illustrates the bijection a~. 

4. Remarks and open problems 

1. The computation of Z(Sa,,q) by deletion and restriction in [4, Theorem 3.1] can 
be carried out on the level of the number of regions. It results in a naive inductive 
proof of  Theorem 1.1, suitably generalized, which we describe explicitly next. Let d 
be a hyperplane arrangement and H E ~¢ a distinguished hyperplane. The crucial and 
well known fact that we use in what follows is that 

r ( d )  = r ( d ' )  + r(~¢"), (5) 

where d ' =  d -  {H} is the corresponding deleted arrangement and d ' t =  {H' NH[  
H p E d ~} is the restricted arrangement to H. Note that d "  is an arrangement in the 
affine space H. 
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x ~ x  x -~x 
\ 

x 1 = x  2 

Fig. 7. The bijection ~ .  

Theorem 4.1. For any integers m>>.O and 2 <<.k <~n + 1, the arrangement 

0,1 . . . . .  m for 2-G<j<k, 

x l - x j :  0,1 . . . . .  m + l  fork<~j<<.n, (6)  

0,1 for 2<~i<j<~n 

has (n + m)k-2(n  + m + 1) "-k+l regions. In particular, for m = 0  and k = 2 ,  5a, has 
(n + 1)"- l regions. 

Proof .  We proceed by double induction on n and n -  k, the result being clear for 

n = 2. The case m = 0 and k = n + 1 follows easily from the result for ~ _  i. Indeed, 

each o f  the n "-2 regions o f  5e~_l in the space with coordinate functions x2 , . . . ,xn  

determines a linear order o f  these variables and there are n ways to form a region 

o f  (6)  by inserting Xl in this order. We can now assume 2<<.k<<.n, since the arrange- 

ment (6)  having parameters m >t I and k = n + 1 coincides with (6)  having parameters 

m - 1 and k = 2. Consider the hyperplane H o f  (6)  with equation Xl - xk = m + 1. 

The corresponding deleted arrangement has the same form as (6), with k replaced by 

k + 1. The restricted arrangement to H has again the same form, with n replaced 

by n - 1 and m replaced by  m + 1, once one replaces xk by xl - m - 1 in the equations 

involving x~. The result follows by the induction hypothesis on these two arrange- 

ments and (5). [] 
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2. Let k be any integer satisfying 1 ~< k ~< n. The number of faces of 5:, of  dimen- 
sion k was shown [1, Theorem 6.5; 2, Corollary 8.2.1] to have the surprisingly simple 
combinatorial interpretation 

fk(5:~) = ( ~ ) #  { f :  [n - 1 ]  --+ [n + l] , [n - k] C lm f }, 

where I m f  is the image of the map f .  This formula reduces to Theorem 1.1 for 
k = n. The general case lacks a bijective proof and shows that the combinatorics of 5:, 
is still not well understood. A similar interpretation was obtained for the extended Shi 
arrangements [2, Theorem 8.2.2]. 

3. Shi [19] has generalized Theorem 1.1 to any irreducible crystallographic root sys- 
tem 4i. The analogue of the Shi arrangement for the root system Dn has the additional 
hyperplanes X i "q-X/ = 0  or 1 for l<~i<j<<.n. For B, and C,, one has to add to these 
the hyperplanes xi = 0 or 1 and 2xi = 0 or 1, respectively, for 1 ~< i ~<n. The number of 
regions in the general case is (h + 1)l, where h is the Coxeter number of 4, which 
has the value 2 n -  2, 2n and 2n for q~ = D,, B, and C,,, respectively, and l is the rank 
of ~b, which has the value n for these three root systems. 

Shi's proof [19] is long but uniform, while the proofs in [1, Theorem 3.13; 2, Theo- 
rem 6.3.5] are simple but are given case by case and use the characteristic polynomial. 
It would be interesting to find simple bijective proofs, similar to the one for type A in 
Section 2, at least for the infinite families of type B, C and D. 

4. There is no uniform proof known for the analogue of Headley's formula [8, 
9, Chapter VI, 10] for other irreducible crystallographic root systems (see also [1, 
Corollary 3.2, 2, Corollary 6.1.2] and the remarks that follow these corollaries). This 
formula expresses the characteristic polynomial as ( q -  h):, where h and l are as in 
Remark 3. 

5. For a region R of 5:,, let d(R)  be the number of pairs ( i , j )  with l<~i<j<~n 

such that either xi <X/ or x i - x j  > 1 holds on R. In other words, d(R)  is the number of  
hyperplanes of 60, which seperate R from the base region R0, defined by the inequalities 
x~ >x2 > . . .  >x ,  and x I - -  X n "< 1. Recall that an inversion of a tree T on the vertex 
set [0,n] := {0, 1 . . . . .  n) is a pair ( i , j )  with 1 <~i<j<~n, such that the vertex j lies on 
the unique path in T from 0 to i. The bijection of Pak and Stanley [21, Section 5] 
combined with a bijection between parking functions and trees due to Kreweras [12] 
shows that the number of regions R of 6:, with d ( R ) =  m is equal to the number of 
trees on [0, n] with (g) - m  inversions. It would be interesting to find a simpler and 
more direct proof of  this statement. 

The same quantity was interpreted in [3] as the number of posets P on [n] which 
avoid certain three-element induced subposets and consist of m relations of the form 
a < p b .  

6. Except for the type A [4], it is not known whether the Shi arrangements are free. 
This is a special case of a conjecture of Edelman and Reiner [5, Conjecture 3.3]. An 
indication for the validity of this statement is contained in recent work of Solomon 
and Yerao [20]. 
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