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Abstract: This paper describes two methods for the solution of (weakly) singular two-point boundary-value problems:

x"(x%Y =f(x,y), 0<x<l,

y(0)=4, y(1)=B, O0O0<a<l.
Consider the uniform mesh x, =ik, h=1/N, i = 0(1) N. Define the linear functionals L,(y)= y(x;) and M,(y) =
(x7*(x*")| «—x,- In both these methods a piecewise ‘spline’ solution is obtained in the form s(x)=1s,(x),
x €[x,_y, x;}, i =1(1) N, where in each subinterval 5,(x) is in the linear span of a certain set of (non-polynomial)
basis functions in the representation of the solution y(x) of the two-point boundary value problem and satisfies the
interpolation conditions: L,_1(s)=L;_1(y), Li(s)=Li{(y), M;_1(s)=M,_{(y), M;(s)=M;(y). By construction s
and x~%(x%’) € C[0,1]. Conditions of continuity are derived to ensure that x°%’ € C[0, 1]. It follows that the
unknown parameters y;, and M;(y), i =1(1) N —1, must satisfy conditions of the form:

1 1 1 1
- Zyi—l + (7 7 )y,- =g i

i i+1 i+1

kM (p) T kM) kMg (p) =0, i=1(1)N-1. (%)
The first method consists in replacing M,(y) by f(x;, ;) and solving (*) to obtain the values y;; this method is a
generalization of the idea of Bickley [2] for the case of (weakly) singular two-point boundary-value problems and
provides order k* uniformly convergent approximations over [0, 1]. As a modification of the above method, in the
second method we generate the solution y; at the nodal points by adapting the fourth-order method of Chawla [3] and
then use the conditions of continuity ( *) to obtain the corresponding smoothed approximations for M;(y) needed for
the construction of the spline solution. We show that the resulting new spline method provides order k* uniformly
convergent approximations over [0,1]. The second-order and the fourth-order methods are illustrated computationally.

Keywords: Singular two-point boundary-value problems, spline solution, non-polynomial basis functions, interpolation
conditions, continuity conditions.

1. Introduction

We consider the class of (weakly) singular two-point boundary value problems:
Dy=x"(xvy")Y =f(x, y), 0<x<1l, a€(0,1),
y(0)=4, y(1)=B8B, A, B constants. (1)
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We assume that, for (x, y) € {[0, 1] X R};
(A) f(x, y) is continuous, df/dy exists and is continuous and 9f/dy > 0.

Such problems arise in the study of generalized axially symmetric potentials after separation of
variables has been employed [8,11]. The discrete variable numerical solution of the singular
two-point boundary-value problems (1) by finite differences has been considered by many
authors; see, for example, [11], [8], [4], [5], and the references given in these papers. The finite
difference methods presented so far had order at most two. Recently, Chawla [3] described a
fourth-order discrete variable finite difference method for the problem (1) for the case f(x, y)
replaced by x~*f(x, y).

The use of cubic spline for the solution of (regular) linear two-point boundary-value problems
was suggested by Bickley [2]. Later, Fyfe [10] discussed the application of deferred corrections to
the method suggested by Bickley by considering again the case of (regular) linear boundary-value
problems. In comparison with finite difference methods, spline solution has its own advantages.
For example, once the solution has been computed, the information required for spline
interpolation between mesh points is available. This is particularly significant when the solution
of the boundary-value problem is required at various locations in the interval [0, 1]. An
important instance also is the use of an automatic plotter that frequently requires interpolation
at great many intermediate points. However, it is well known since then that the cubic spline
method of Bickley gives only order A% convergent approximations. But cubic spline itself is a
fourth-order process. Recently, for (regular) nonlinear two-point boundary-value problems
Chawla and Subramanian [6], [7] have described methods based on cubic splines which provide
order A* uniformly convergent approximations.

In the present paper we describe two ‘spline’ approximation methods suited to the two-point
boundary-value problem (1). Consider the uniform mesh x, =ih, h=1/N, i = 0(1) N. Associated
with the differential operator 2 in (1), we define the following functionals:

L(y)=y(x),  Z(y)=(x%") ],
M(p)=x"(x ) lemrr MI(0) = (7 (x9")) [ e,

Writing the differential equation in (1) as (x%") = x%f(x, y), integrating from x; to x,
dividing by x°, then integrating from x; to x and interchanging the order of integration, we
obtain
x ta(xl—a _ tl—a)

A0 ar, @

P(3) =0, (L) + 91, (NZ )+ [ =5

where f(t) = f(¢, y(t)) and
¢0,i(x)=1’ ¢1,i(x)=(xl_a—x}aa)/(l_a)-

Again, in (2) using the Taylor expansion for f(¢):

F)=f(x)+ (1= x)f"(x,) + /x’(t— u) /" (u) du, (3)
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we obtain the following representation for the solution of the two-point boundary value problem
(1):
y(x)= ¢0,i(x)Li()’) + ¢1,i(x)Zi()") + ¢2,i(x)Mi(y) + ¢3,i(x)Mi’(y) + R, (y: x),

(4)
where
2 xi2 xlt_x+1
¢21( ) 2(1+a) a+1¢'l,i(x)’
_x(x—xi)_(x —x})(4+a) x2+?

9.0 = 507 a) " Gaxar2) @ih@ry )
and the remainder R,(y; x) is given by

R,(y; x)= [ G(x: u)f"(u) du, (5)

where

x—u) (X¥’-u’)(4+0a) ust? x'Te—qyltme

Glxs u) = 21+ a) 6(1+a)2+a) (a+1)(a+2) 1-a

The representation (4) for the solution of the two-point boundary-value problem (1) in terms
of the linear functionals L.(y), Z,(y), M,(y), M/(y) is fundamental for the construction of our
spline approximation for the solution.

Let Z{ g, 15> $245 ¢3,) denote the linear span of ¢y, ¢y, b2;, §3,- Note that ¢y, ¢,
¢, ¢;, are biorthonormal with respect to the linear functionals L,(y), Z,(y), M,(y) and
M/ ( y); that is, for j= 0(1)3,

(¢]1) 0]7 (qu;) 11’
Mi(¢j,i)=62,j’ (¢jz) 31’

(8,;=1,if j=i and 0 otherwise). This implies that (4) represents an interpolation formula for
the solution y(x) of the two-point boundary-value problem (1) form Z{¢g;, ¢1,, ¢, ¢3,} In
terms of the linear functionals L,(y), Z,(y), M,(y) and M/(y), together with a remainder. Note
also that for any ¢ € L{ ¢y, é1;, P2.0 ¢3,}, We have (x *(x%")")" =0

For each i = 1(1) N, on the subinterval [x,;_;, x;] we construct a spline approximation s,(x) to
the solution y(x) of the singular two-point boundary value problem (1) as follows:

(1) s(x) €Ly bri» Pris D3}

(i) s;(x) satisfies the interpolation conditions
L(s)=L,(y), L_(s;)=L,_(y),
M(s)=M(y),  M,_(s;)=M_,(y). (6)
The global spline approximation s(x) for the solution y(x) of the two-point boundary-value
problem (1) may now be defined as follows:
(1) s, x%  and x~*(x%") € CJ0, 1],
(i1) for i =1(1)N, on each subinterval [x;_,, x,], s(x) coincides with s;(x).
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Note that by construction s and x~%(x%’)’ are continuous at the nodes and, hence, s and
x %(x%’) € C[0, 1]. Now, in order that x%’ € C[0, 1], x“  must be continuous at the nodes
and, hence, s must satisfy the following ‘continuity conditions’:

Z(s)=Z(s;+1), i=1(1)N-1. (7)

In Section 2 we show that these conditions of continuity imply that the unknown parameters y,
and M,(y), i =1(1)N — 1, must satisfy the conditions of equation (13).

This paper describes two methods for the construction of spline solution of (weakly) singular
two-point boundary-value problems (1). The first method described in Section 2 consists in
replacing M;(y) by f(x;, y;) and solving the ‘conditions of continuity’ given by equation (13) to
obtain the values y;; this method is a generalization of the idea of Bickley [2] for the case of
(weakly) singular two-point boundary value problems (1). In Section 3 we show, under ap-
propriate conditions (see Theorem 3.1), that this method provides order A% uniformly convergent
approximations for the solution.

Note that for a = 0, the above method reduces to the well known procedure of the cubic spline
solution of (regular) two-point boundary-value problems y” =f(x, y), y(0)=4, y(1)=B.
However, as pointed out above, cubic spline interpolation is a fourth-order process (see (27)) and
a suitable modification of the original idea of Bickley should produce order 4* cubic spline
approximations. This has been successfully demonstrated by Chawla and Subramanian [6,7] for
the case of regular two-point boundary-value problems.

Accordingly, as a modification of the method described in Section 2, in the second method
described in Section 4 we generate the solution y; at the nodal points by adapting the fourth
order method of Chawla [3]. These values of the solution are then used in the conditions of
continuity given by equation (13) to obtain the corresponding smoothed approximations for
M ( y) needed for the construction of the spline solution. We show, under appropriate conditions
(see Theorem 4.1), that the resulting new spline method provides order 4* uniformly convergent
approximations over [0, 1]. Both the spline methods are illustrated computationally in Section 5.

2. The first spline method: generalization of Bickley’s idea

In this section we describe the construction of the spline solution as defined above. For this
purpose, we first consider the construction of s,(x) over [x,;_,, x;] for i =1(1) N.
For each i = 1(1)N, x €[x,_;, x;], we may represent s,(x) as

s;(x) = Hbo,i(x)Li(J’) + ‘Pl,i(x)Li—l(Y) + lPZ,i(x)Mi(y) + xP3,i(x)]‘4i—1()’), (8)

where ¥ ,(x), ¥ ,(x), Hbz,i(x), ¥3,(x) eZL{ o, D155 P2 $3}-

In order that this s,(x) satisfies the interpolation conditions (6) it is clear that the functions
Yo (X), ¥1,(x), ¥5,(x), and ¢¥;,(x) must be biorthonormal with respect to the linear function-
als L;,, L,_,, M; and M,_,. Noting that

1

Mivl(qu,i):O’ Jj=0,1, Mi~1(¢2,i)=1a M—l(¢3,i)= —h,
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and following the arguments given in Davis [9, pp. 35-36], we obtain

$0,(0) = Ty (Lioa(o0) = 81, (0).
) = 22 o)
42,09 = 3y |0 () + L (6,)
+ L1 (1) ( Ry, (x) + 65, (x))].
42,00 = 3y L0 L (91 + 0, () L (0,

While on each subinterval [x,_;, x;], i =1(1)N, s(x) coincides with s5,(x), now in order to
ensure that x%’ € C[0, 1], the continuity conditions (7) must be satisfied. With the formula for
5;(x), and the corresponding formula for s, ,(x), given by (8) the continuity conditions (7)
become

Zi(‘abl,i)Li—l()’)+(Zi(’abo,i)_Zi(%.iﬂ))Lf()’)_Zi(4/0,i+1)L1+1(J’)
= _Zi(\I’S,i)Mi—l(y) + (Zi(¢3,i+1) - Zi(Hbz,i))Mi(J’)
+Zf(‘[’2,f+1)Mi+1(J’)a i=1(1)N —1. (10)

These conditions ensure the continuity of x%’ at the nodes.
In the following it will be convenient to set

J=(x""=x;7¢)/(1—a), i=1(1)N. (11)

il H

Since Z,(¢;;) =1 and Z,(¢,,,,) =1, with the help of (9) it is easy to see that
Z (o) =1/J,, Zi(‘l’l,i): -1/,

Z[(‘xbo,iﬂ):l/-]iﬂv Zi(‘l/l,iﬂ): —1/Ji44. (12)
Now, with the help of (12), the conditions of continuity (10) can be written as:
1 1 1 1
- jiL,-_1(J/) + (71 + T )Li(y) - HLi+](y)
+ ki,i—lMi—l(y) + ki,iMi(y) + ki,i+1Mi+1(y) =0, i=1(1)N-1, (13)

where we have set

kii-y =Zi(4’3,t)a ki,i=Zf(¢2,i) "Zi(\l/3,i+1)a kijv1= _Zi(‘l/z.iﬂ)- (14)
It may be interesting to note here that for the case a =0, J,=h, k,;,, = gh, k;, = th and the
conditions (13) reduce to those for the usual cubic spline solution ensuring the continuity of p’
across the interior nodes for the two-point boundary-value problem y” =f(x, y), y(0) =4,
y(1) = B; see Ahlberg et al. [1].
From the boundary conditions for the problem (1) we obtain
Mo()’) =f(0’ A)’ MN(y) =f(1’ B)’ (15)
while from the differential equation we obtain

M(y)=/(x;. y), i=1(1)N -1 (16)
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As pointed out in the Introduction in Section 1, Bickley’s [2] main idea was to use the conditions
of continuity as discretization equations for the solution of the two-point boundary-value
problem. Now, following Bickley for the solution of the two-point boundary-value problem (1),
we substitute (16) and (15) in equation (13) which results in the following system giving
approximate values 7,,..., jy_;:

1. 1 1 3. 1 ~
AT (7 + K)yi Tt kii—1fioa

+ ki,if;+ ki,i+1f:+l =0, i=1()N-1, (17)
where j, =y, = A, Jy =yy =B, and we have set f, = f(x,, Ji), i =0(1)N. Once the j,..., Jy_;
have been computed from (17), the corresponding approximate M,(y) are found from (16). With
these values of J,,..., #y_; and M(y),..., My_,(y), the corresponding spline solution of the

two-point boundary-value problem (1) is given by §,(x), where

5i(x) = ‘Po,i(x)fi + ‘Pl,i(x)fi-l + ‘Pz,i(x)Mi(J’) + ¢3,i(X)Mi~1()’)’

Xi_1<x<x;, i=1(1)N. (18)
The approximate spline solution thus obtained over [0, 1] will be denoted by §(x).

i

3. Error analysis of the first spline method

In this section we show that the spline method for the solution of the singular two-point
boundary-value problem (1) discussed in Section 2 gives order A® uniformly convergent ap-
proximations over [0, 1].

For the spline approximation §(x) to the solution y(x) of the boundary-value problem (1), let
the error be denoted by

é(x)=y(x)—5(x), 0<x<l. (19)
It is clear that we may write

é(x) =e(x)+ep(x), (20)
where

e1(x) =y(x) —s(x), (21)
is the error due to spline interpolation, and

ep(x) =s(x) - 5(x), (22)

is the error due to the use of the ‘conditions of continuity’ (13) as discretization equations (17).
In the following we estimate these two errors separately.

We first estimate the error e;(x). For this purpose calculating L,_,(y) and M,_,(y) from the
representation for y(x) in equation (4) and substituting these in equation (8) and simplifying,
from (21) we finally obtain for x,_, < x < x;,

ev(x) = 716" (s w) () . 23)
where ’
G*(x; u) = {G(x; u) =y, ()G (x;p5 u) =3 (%) (> —u), x<u<x,
’ =1, (X)G(x, 15 u) = s, (x)(x,., —u), X1 SUS X,
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It can be shown that G*(x; u) is nonnegative for x,_; <u < x,;, and therefore with the
mean-value theorem, we obtain the following bound for e;(x):

|€I(X)| < 3h4‘f”($x)[9 xi~1 <x’ gxsxi' (25)
We assume that
If71<N,, 0<x<l, (26)

for a suitable positive constant N,. Then from (25) we obtain
lerll o < 3RN,. (27)

Next, for the error ep(x), we first note that we may write
f(xi v) = f(xi, §) =u(y,—3), i=11)N-1, (28)

for some u,;. (Note that u, > 0). Now, from (8) and the definition of §(x) following (18), and
making use of (26) we obtain

ep(x) = (IPOJ(X) + ui‘Pz.i(x))(yi — 7))+ (Hbl,i(x) + “i~1¢3,i(x))(yz'—1 —¥i1),

X

i—

(29)

Let Y=(y,..., yy_1)" and Y=(§,..., x_1)". (Here, and in the following, for a vector
V=(vy,...,v5_,)", we shall denote ||V || , = maxy_; .y ]0;])- Since for x,_; < x < x,,

|4/0,i(x)|<1’ |¢1,i(x)|<1a
| ¥2,:(x) | < 6ah?, | ¥3.:(x) | <3ah?,
and using the fact that j,=y,, #5 =y, from (29) we obtain for N > 2,
lepllw < (24 3au) [ Y= Y|, (30)

1 <X < x;.

7

where we have set
u= sup 0df/dy.

O<xxl

We next estimate || Y — ¥ || .. For this purpose, we first write the system (17) in matrix form.
Let D =(d,;) denote the symmetric tridiagonal matrix with

dy=1/J,+1/J,y, i=1(1)N-1,
dijsr1= —1/Jiyy, i= 1(1)N_2’ diy=—1/J, i=2(1)N_ 1,

Let K=(k;;) denote the tridiagonal matrix with k;;, k,;,, as defined in (14), F(Y)=
(f1,---» fy—;) " and let C denote the vector (cy, 0,...,0, cy_;)", where

1= Yo/ _kl,Of:)’ CN—1=)7N/JN_kN—1,Nf;v-
Then the system (17) can be written as:
DY+ KF(Y)=C. (31)
Let the discretization for the exact solution corresponding to (31) be written as:

DY+ KF(Y)+ T(h)=C. (32)
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Let T(h) = (f,(h)...., Ix_1(h))". By definition,

- 1 1 1 1
ti(h) = 7{)’;‘—1 - (71 + H))&' + 7i+—1J’i+1 - ki,i—l -1~ ki,ifi - ki,i+1fi+1’
i=1(1)N —1. (33)

Now, substituting in (33) for y,_,, y,,; and M,_,, M, , as obtained from the representation (4)
for y(x), and simplifying we obtain

(k) = f(ﬁj—l—“) ey (u— x,._l))f"(u) du

X; i

xv1{ G i1 ,
A R P P (34)
X Ji+1 '

Since the part of the integrands multiplying f”'(u) in the above integrals are nonnegative in their
respective ranges of integration, by the mean-value theorem and condition (26) we obtain the
following bound:

|7:(h)| < ch’x, (35)
where

Since K > 0, following arguments as given in Chawla and Katti [5, pp. 562-563], from (31),
(32) and (35) it follows that there exists a constant ¢* such that

Y= Y| <c*h® (36)
Substituting (36) in (30) we obtain
llepll o < (2+ 3au)c*h?. (37)

Finally, with the help of (27) and (37) from (20) we obtain the following resuit.

Theorem 3.1 Assume that f satisfies (A); further, let f’, f” € C[0, 1). Then, the method described
above provides order h* uniformly convergent spline approximations §(x) for the solution y(x) of
the two-point boundary-value problem (1); that is, for sufficiently small h,

| €]l < c**h?, (38)
where
c**= (24 3au)c* + 3N,.

The second-order convergence of the above spline method is illustrated in Section 5.

4. A fourth-order spline method

We next present a modification of the method discussed in Section 2 which provides
fourth-order uniformly convergent spline approximations for the solution of the two-point
boundary-value problem (1). The method is described as follows.
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Step 1
We compute the approximate solution at the nodal points y,,..., yy_; by the method of
Chawla [3] adapted for the two-point boundary-value problem (1) as described in the following:

1 1 1 1 1 1
- J_kyk—l + (']_k T ))’k Jk+1yk+1 + ﬁ(‘Bl.k+ ZBZ,k Jeoa
1 1
+ (BO,k zk)fk (Bl P th k)fk+l k= 1(1)N_ 1, (39)
where
Bi,k:A:k/Jk+l+AiTk/Jk’ i=0,1,2,
and
A'ik: ! i(—l)j(i)u +2xk+l(+h) -
b 1—a /2o Jlr
1 xl—a xl a
4 _1 i+ a+ti+1 k+1 _ k , -:O, 1, 2’
(=1 (at+1)- - (atitl) i+ '
where
_ 1 _ 1
B la+1) - (at)) G+
Step 2

With y,,..., yy_, we compute M*(y),..., My_,(y) using the ‘conditions of continuity’ (13):

___1_‘ + 1.4.# ‘_L_
J.yi—l ']1 Ji+1 yi Ji+1yi+1

+k, 1Mit1(y)+ki,iMi*( )+k11+1 z+1(J’)=0a i=1(1)N—1, (40)
with

Mg (y)=My(y), M¥(y)=My(y).

Step 3
With y,,..., yy_, and M*,..., My_,, from (8) we construct the spline approximation for the
solution of the nonlinear two-point boundary-value problem (1):

sX(x)= ‘PO.i(X)yi + ’*Pl,i(x)yifl + ¢2,i(x)Mi*(y) + ¢3,i(x)Mitl(y)’

X,_; <X <Xx;. (41)
The approximate spline solution thus obtained over [0, 1] will be denoted by s*( x). Note that s*
and x “(x%*’)" are continuous at the nodes by construction, and (40) ensures continuity of
x%*’ at the nodes. It follows that s*, x%s*’ and x *(x%*’)" € C[0, 1].

We next show that our method described above provides fourth-order approximations for the

solution of the nonlinear two-point boundary-value problem (1). Let e¢*(x) denote the error

e*(x)=y(x)—s*(x), x<]0,1]. (42)
Define

]—\Z()’) =f(xi’ )-)i)’ i=0(1)N’ (43)
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with A_lo(y) = M,(y), ]\_JN(y)_= My (y). Let 5,(x) denote the spline constructed using the values
Vis-os Py—r and My(p), ..., My_y(y):

5(x)=vg,(x)y+,,(x)y_ + Hbz,i(x)M(Y) + ‘[’3,:‘()‘)]‘_41'—1()/)’ X1 S XX,
(44)

The approximate spline thus constructed over [0, 1] will be denoted by 5(x).
Now, we may write:

e*(x) = (y(x)=s(x)) + (s(x) =5(x)) + (5(x) —s*(x))
=e;(x) +ep(x) +es(x), (45)

where e (x) is the error due to spline interpolation given by (21), e(x) is the error due to the
discretization of the differential equation and eg(x) is the error due to the smoothing of M,(y)
needed for the construction of the solution. In the following we shall estimate these errors
separately. For fixed « € (0, 1), let 8 be chosen such that « + 8 < 1. In this section we shall
assume that

xBTS Ny, xR Y <N, 0<x<l, (46)

for suitable positive constants N, and N,.
To estimate the error e (x), we note that ep(x) is the same as the error €(x) defined in (22)
with §(x) replaced by s(x). Following arguments precisely similar to those following equation

(22), as in (30) we can show that
121l < (2+3au) | Y=Y (47)

Now, following arguments similar to those given in Chawla [3, eqn. (27)] it can be shown for the
finite-difference method described in Step 1 that there exists a constant ¢ such that

o0

1Y =Y ||, < ch®. (48)
From (47) and (48) it follows that
llenll o < (2+ 3au)ch®. (49)

We next estimate the error eg(x). From (41) and (42) we obtain
es(x) = 1Pz,i(x)(]‘_li()’) - M*(J’)) + 4’3,1‘(3‘)(1\_’[1'—1()’) - Mitl(y))’
X, <X<X,. (50)
We may write the conditions of continuity (40) as
kf,fﬂ(]‘_’ft—l(J’) - Mi:()’)) + k,-,i(f\_’li(y) - M,-*()’)) + ki.i+1(]\7i+l(y) - M[t1(}’))
= %yi—l + (% + Jllﬂ ))_’1 - 71_1::_1'-#1 + ki,i—ljvi—l(y)

I

+ki,i1\_4i(y)+ki.i+11\—4—i+l(y)’
i=1(1)N—1. (51)
Let M= (M{(y),..., My_((y)', M*=(M*(y),...., M¥ (y)" and M= (M(y),...,
MNA](y))T'
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Since M, = M,, My =M, 3,=Y,, ¥~ = Vn, and with the matrices D and K and the vector C
as defined in (31) we may write the system (51) as:

K(M—-M*)=DY +KM~—C. (52)
Again, with the help of (32) we may write (52) as:

K(M-M*)=~T(h)+D(Y-Y)+K(M—-M). (53)
We may write

M-M=UY-Y), (54)
for some U = diag{ u,,..., uy_;} and then (53) becomes

K(M-M*)=-T(h)+(D+KU)Y-Y),

=T*(h), say. (55)

We define R = diag{x{,..., x5_;} and set S=R7'K. Since for sufficiently small h, K is
irreducible and monotone, therefore S~ exists and (55) can be written in the equivalent form:

M-M*=S"YR'T*(h)). (56)
Now, from the definition of the matrix D, for fixed x;, and 4 — 0, we can show that
N-1 4
3y [dij | < 5 X7 i=1(1)N—1. (57)
Jj=1

Since || K || ,, < h, therefore with the help of (35) and (57), and from the definition of T*(4) in
(55) we obtain

IRTIT*(h) |l < c1h°, (58)

Il
where
c;=c+c(4+2°%u).

We next show that || S™!|| . =O(k ). For this purpose, let e =(1,...,1)T. Since S !(Se) =e,
therefore

N-1
2 S5 (Se),; =1, (59)
j=1

and hence
N-1 1

vl .
I st <(, min (se);) - (60)

Now, it can be seen that for sufficiently small 4,

(Se);=>x;%; ,, j=11)N-1,
and hence
_l . - 71
157 < (| min (k7)) (61)
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Since lim,_, o(1/h)x; %k, ;= %, it follows that for sufficiently small 4, x; %; ;> 1h, and

o

hence,

187!l <3/h. (62)
With (58) and (62), from (56) we obtain

| M—M*|, <3ch (63)

Now, since

lim (1/h%) 9o, (x) =5, lim (1/h%)4;,(x) = 4. (64)
and with the help of (63), from (50) we obtain for sufficiently small #,

les oo < Terh®. (65)

Finally, with the help of (27), (49) and (65), from (45) we obtain the following result.

Theorem 4.1. Assume that f satisfies (A) and let f', f” € C[0, 1]. Further, let f " and f satisfy
the conditions (46). Then the spline method described above in Steps 1-3 provides order h*
uniformly convergent approximations s*(x) for the solution y(x) of the two-point boundary-value
problem (1); that is, for sufficiently small h,

le* | . < dh?, (66)
where
d=3N,+ 3¢, + (2 + 3au)e.

5. Numerical illustrations

In this section we illustrate the second- and the fourth-order of the spline methods described
in Sections 2 and 4. For this purpose, we consider the following nonlinear singular two-point
boundary-value problem:

x (xy'Y=x"""Inx, 0<x<l1,
13 + 3« A

YO =1 =1 - (67)

with the exact solution

1-a T+a T+a
y(x)=1+Ax + a In x — (13 + 3a)x .
l—a = (6+2a)(7+a) (6 +2a)(7 +a)’

We solved the problem (67) with 4 =1 and a few selections of a by the second-order spline
method described by (18) and by the fourth-order spline method described by (41). For the
second-order spline approximations §(x) the corresponding errors &(x) at the nodal points as
well as at the mid-points are shown in Table 1 for a few values of N. The errors e*(x) in the
fourth-order spline approximation s*(x) are shown in Table 2 for a few values of N. Table 1
confirms the second order uniform convergence of the method in Section 2 and Table 2 confirms
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Table 1

N ||Y—)7||ao Order max |&(x;_q )| Order
l<igsN

(a=0.25)

32 217(-4) 443 (-4

64 5.85(—~5) 1.89 1.21(-4) 1.87
128 1.48 (—5) 1.98 3.08 (—5) 1.97
256 371 (—6) 2.00 7.70 (- 6) 2.00

(a=0.5)

32 432(-4%) 7.67(—4)

64 121(—4) 1.83 214 (-9 1.84
128 319 (-5 1.92 5.62(—5) 1.93
256 8.03(—6) 1.99 1.42 (-5) 1.98

(a=10.75)
64 374 (-4) 6.48 (—4)
128 9.67(—95) 1.87 1.70 (—4) 1.84
256 2.48 (—5) 1.94 4.67 (—5) 1.93
512 6.23(—6) 1.99 1.17(-95) 1.99
(a=0.9)
128 289(—-49) 372(-4)
256 774 (—=5) 1.85 9.74 (—-5) 1.87
512 1.99 (- 5) 1.95 250 (-5) 1.96
1024 498 (—6) 1.99 6.25(—6) 2.00
Table 2
N Y=Y, Order max |e*(x;_; ;)| Order
1<ig N
(a=0.25)

64 437(=7) 6.41(-7)

128 284 (—-8) 3.94 431(-8) 3.93
256 1.77(—9) 3.99 2.60(—9) 397
512 1.11 (- 10) 4.00 1.63 (—10) 3.99

(a=10.5)

64 5.07(=7 817(—=7)

128 3.47(-8) 3.87 5.67(—8) 3.85
256 227(-9) 3.92 3.82(—9) 392
512 1.44 (—10) 3.99 2.47 (—10) 3.97

(a=0.75)

128 9.84 (—8) 1.27(~=7)

256 6.82(—-9) 3.85 8.99 (-9 3.82
512 447 (—10) 3.93 5.98 (—10) 391

1024 2.85(—11) 3.97 378 (—11) 3.98
(a=10.9)

128 257(~-7) 3.88(—7)

256 1.79 (—8) 3.84 271 (-98) 3.84

512 1.19(-9) 3.90 1.80 (=9 391

1024 7.65(—11) 3.96 1.15 (—10) 3.96




202 M.M. Chawla et al. / Singular boundary-value problems

the fourth order uniform convergence of our modified method as described in Section 4.
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