group: 1.72±0.82 vs. 1.56 (p=0.05) and 31.82±21.82 vs. 35.67±16.96 (p<0.01), respectively. At 4-months rates of TLF (2.1% vs 4.9%; p=0.44), TVF (2.1% vs 4.9%; p=0.44) and stent thrombosis (0.0% vs 1.0%; p=0.63) were low and similar in Ultimaster and Xience arms respectively. The 9-month primary outcome details will be provided at presentation.

Conclusions: The short term clinical outcomes in bifurcations with the new Ultimaster LIM demonstrates potential. The planned 5-year follow-up of patients will allow more clear assessment.

TCT-182
Randomized Comparison Of Proximal Side Branch Stenting Versus A Two-Stent Strategy For Treatment Of True Coronary Bifurcation Lesions Involving A Large Side Branch. The Nordic-Baltic Bifurcation Study IV – OCT Substudy
Trine Ørhøj1, Niels R. Holm1, Troels M. Nielsen2, Shengxian Tü1, Michael Maeng2, Jouke Dijkstra3, Jakob Hjort6, Jens F. Lassen3, Evald H. Christiansen7
1Aarhus University Hospital, Skejby, Aarhus N, Denmark, 2Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Aarhus, 3Leiden University Medical Center, Leiden, Netherlands, 4Aarhus University Hospital, Aarhus, Denmark, 5Leiden University Medical Center, Leiden, The Netherlands, 6Aarhus University Hospital, Skejby, Aarhus, Denmark, 7Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark

Background: Optimal treatment of coronary bifurcations with lesions involving a major side branch (>2.75mm) is unsettled. The randomized Nordic Baltic bifurcation study IV was first to show favorable mid-term results for two-stent techniques compared to proximal side branch stenting. Two-stent techniques have been associated with less stent strut malapposition compared to main vessel only stenting. Here we present the Nordic Baltic IV OCT substudy.

Methods: Patients included in the Nordic Bifurcation Study IV were offered participation in the OCT substudy before randomization. The study stent was Cypher (Cordis, US) in first half of the main study and then Xience (Abbott Vascular, US). Patients underwent OCT scan post-PCT and at 8 months follow-up. Analysis involved stent strut malapposition (primary endpoint), strut coverage and ostial side branch minimal luminal area (MLA) at 8 months follow-up.

Results: A total of 85 patients were included and 79 patients had matched main vessel follow-up OCT acceptable for analysis. Cypher stent was used in 43 % vs. 31 % (p=0.52) in the one-stent vs. two-stent group. Malapposition in the proximal main vessel after 8 months was 0.12 % vs. 1.10 % (p=0.10), in the bifurcation segment towards the side branch 0 % vs. 0.57 % (p=0.90) and opposite to the side branch; 1.58 % vs. 2.40 % (p=0.72) for one- and two-stent techniques, respectively. Ostial side branch MLA was measured using QAngioOCT Cut-plane analysis (Medis Specials, NL). MLA at baseline was 2.6±1.1 mm2 in the one-stent group, vs. 4.6±1.5 mm2 (p=0.002) in the two-stent group and at 8-month follow-up; 3.3±5.0mm2 vs. 3.8±1.5 mm2 (p=0.64) in the one-stent, vs. two-stent group respectively.

Conclusions: In a randomized comparison of one- and two-stent techniques for treatment of bifurcation lesions with a large side branch, no significant differences in malapposition were detected. The increased ostial side branch MLA at baseline for two-stent techniques was not significantly different from one-stent techniques at 8-month follow-up. The OCT findings support the beneficial mid-term results of two-stent techniques in bifurcation lesions involving a major side branch.

TCT-183
Regular Drug-Eluting Stent Versus Dedicated Bifurcation Sirolimus-Eluting BioSS LIM® Stent In Coronary Bifurcation Treatment – Randomized POLBOS II Study
Jacek Bil1, Robert J. Gil2, Dobrin Vassilev3, Adam Kern4, Luis A. Iñigo-García5, Tomasz Piotrowski6, Robert J. Van Geuns1, Evelyn Regar2
1Thoraxcenter, Erasmus MC, Rotterdam, Zuid Holland, 2Erasmus University Medical Center, Rotterdam, Zuid Holland, 3Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, 4Erasmus MC Rotterdam, Rotterdam, Netherlands, 5Thoraxcenter, Erasmus Medical Center, Rotterdam, Zuid Holland, 6Erasmus University Medical Center, Rotterdam, Netherlands, 7Erasmus MC, Rotterdam, Netherlands, 8Thoraxcenter, Rotterdam, Netherlands

Background: Expert strategy for coronary bifurcation treatment, however results are not optimal. POLBOS II study is a randomized comparison of two-stent strategy with regular DES and dedicated bifurcation sirolimus eluting stent (BiOSS LIM). Results of this study will be presented.

Methods: Patients included in the POLBOS II study were randomized to group where dedicated bifurcation sirolimus-eluting BiOSS LIM stent was implanted or to group where regular DES was used. The enrollment lasted between November 2012 and December 2013 in five centers in Poland and Spain. 

Results: A total of 136 patients were included and 109 patients were matched. According to Medina classification true bifurcations were present in 65% of included lesions. In DES group 20% of stents eluted sirolimus, 24% - paclitaxel and 45% - everolimus. There were following nominal stent parameters: in BiOSS group 3.73±0.43 mm (proximal diameter) x 3.03±0.4 mm (diameter x length) x 17.4±2.9 mm (length) and in DES group: 3.29±0.52 mm x 20.1±6.9 mm. Except for 1 (1%) case in DES group and 1 (0.9%) in BiOSS group all stents were implanted successfully without any serious peri-procedural complications. Regular DES in side branch was implanted in BiOSS group and DES group, in 5.7% and 2% of cases, respectively. At six months in BiOSS group there were 2 TLR and in DES group - 1 TLR and 1 TVR.

Conclusions: Collected data demonstrate comparable immediate and short-term clinical results for both groups. Full data enable to answer the question if BioSS LIM is comparable to regular DES and if it is superior to BioSS Expert stent assessed in POLBOS I study.

TCT-184
Natural History Of Side-Branch Jailing 5 Years After Implantation Of The Everolimus-Eluting Bioresorbable Vascular Scaffold. A 3D Optical Coherence Tomography Assessment
Antonios Karamanos1, Raphael Freire1, Nienke S. van Ditzhuijzen2, Shengxian Tü1, Janek N. Wilberg3, Jouke Dijkstra3, Felix Zijlstra3, Robert J. Van Geuns4, Evelyn Regar2
1Thoraxcenter, Erasmus MC, Rotterdam, Zuid Holland, 2Erasmus University Medical Center, Rotterdam, Zuid Holland, 3Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, 4Erasmus MC Rotterdam, Rotterdam, Netherlands, 5Thoraxcenter, Erasmus Medical Center, Rotterdam, Zuid Holland, 6Leiden University Medical Center, Leiden, The Netherlands, 7Erasmus University Medical Center, Rotterdam, Netherlands, 8Erasmus MC, Rotterdam, Netherlands, 9Thoraxcenter, Rotterdam, Netherlands

Background: The observation of tissue bridge growth after bioresorbable scaffold (BVS) implantation, together with the high strut thickness raises questions about the long-term patency of side-branches jailed by BVS. We investigated by optical coherence tomography (OCT), the fate of side-branches jailed by elective BVS implantation at a 5-years follow-up.

Methods: 8/14 living patients enrolled in the Thoraxcenter cohort of ABSORB B, underwent additional OCT follow-up 5 years post BVS implantation. Side-branches jailed by BVS were identified. For assessing side-branch jailing over time, three-dimensional images of side-branch ostia were obtained by dedicated rendering software. No struts were identifyable in OCT pullbacks, but neoointimal bridges had developed in their place. Neoointimal bridges were classified based on their relative location to the ostium as proximal, distal, proximal and distal, or crossing. Mean and minimal thickness was measured in matched frames at 2- and 5-year follow-up using QCU-CMS. Side-branch ostium area assessment was performed using dedicated software. Following three-dimensional reconstruction, a cut-plane perpendicular to the side-branch centerline was selected and side-branch ostium platinometry was performed.

Results: All side branches were patent with TIMI III flow. Overall, 14 side-branches were associated with incompletely apposed struts at previous examinations. Neo-ontimal bridges at 5 years were identified in 13 side-branches, whereas in one no bridges were visible (Table). Cross-sectional and mean thickness of neoointimal bridges overlying side-branches were respectively reduced from 241±92μm and 341±106μm at 2 years to 161±107μm and 227±119 at 5 years (p<0.01).

Conclusions: At long-term after BVS implantation, jailed side-branch ostia are preserved, while side-branch related struts have been replaced by thin tissue bridges.