ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On the number of unique expansions in non-integer bases

Martijn de Vries ¹

Delft University of Technology, EEMCS Faculty, Mekelweg 4, 2628 CD Delft, The Netherlands

ARTICLE INFO

Article history: Received 29 April 2008 Received in revised form 27 August 2008

MSC: primary 11A63 secondary 11B83

Keywords:
Thue-Morse sequence
Greedy expansion
Quasi-greedy expansion
Unique expansion
Univoque sequence
Univoque number

ABSTRACT

Let q>1 be a real number and let m=m(q) be the largest integer smaller than q. It is well known that each number $x\in J_q:=[0,\sum_{i=1}^\infty mq^{-i}]$ can be written as $x=\sum_{i=1}^\infty c_iq^{-i}$ with integer coefficients $0\leqslant c_i< q$. If q is a non-integer, then almost every $x\in J_q$ has continuum many expansions of this form. In this note we consider some properties of the set \mathcal{U}_q consisting of numbers $x\in J_q$ having a unique representation of this form. More specifically, we compare the size of the sets \mathcal{U}_q and \mathcal{U}_r for values q and r satisfying 1< q< r and m(q)=m(r).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Beginning with the pioneering works of Rényi [13] and Parry [12], expansions of real numbers in non-integer bases have been widely studied during the last fifty years.

In this paper we consider only sequences of nonnegative integers. Given a real number q > 1, an expansion in base q (or simply expansion) of a real number x is a sequence $(c_i) = c_1 c_2 \dots$ of integers satisfying

$$0 \leqslant c_i < q$$
 for each $i \geqslant 1$ and $x = \sum_{i=1}^{\infty} \frac{c_i}{q^i}$.

Note that this definition is only meaningful if x belongs to the interval

$$J_q := \left[0, \frac{\lceil q \rceil - 1}{q - 1}\right],$$

where $\lceil q \rceil$ is the smallest integer larger than or equal to q. Note that $[0,1] \subset J_q$.

The *greedy* expansion of a number $x \in J_q$, denoted by $(b_i(x))$ or (b_i) , can be obtained by performing the greedy algorithm [13]: if for some $n \in \mathbb{N} := \mathbb{Z}_{\geqslant 1}$, $b_i = b_i(x)$ is already defined for $1 \leqslant i < n$ (no condition if n = 1), then $b_n = b_n(x)$ is the largest integer smaller than q such that

$$\sum_{i=1}^n \frac{b_i}{q^i} \leqslant x.$$

E-mail address: w.m.devries@ewi.tudelft.nl.

¹ The author has been supported by NWO, Project Nr. ISK04G.

If $x \in J_q \setminus \{0\}$, then the *quasi-greedy* expansion, denoted by $(a_i(x))$ or (a_i) , is obtained by applying the quasi-greedy algorithm [4,11,1]: if for some $n \in \mathbb{N}$, $a_i = a_i(x)$ is already defined for $1 \le i < n$ (no condition if n = 1), then $a_n = a_n(x)$ is the largest integer smaller than q such that

$$\sum_{i=1}^n \frac{a_i}{q^i} < x.$$

The quasi-greedy expansion of $x \in J_q \setminus \{0\}$ is always infinite (we call an expansion *infinite* if it contains infinitely many nonzero elements; otherwise it is called *finite*) and coincides with the greedy expansion $(b_i(x))$ if and only if the latter is infinite. If the greedy expansion of $x \in J_q \setminus \{0\}$ is finite and b_n is its last nonzero element, then $(a_i(x)) = b_1 \dots b_{n-1} b_n^- \alpha_1 \alpha_2 \dots$, where $b_n^- := b_n - 1$ and $\alpha_i = \alpha_i(q) := a_i(1)$, $i \ge 1$. For convenience, we set $(a_i(0)) := 0^\infty$ and refer to it as the quasi-greedy expansion of 0 in base q. We will also write $q \sim (\alpha_i)$ if the quasi-greedy expansion of 1 in base q is given by (α_i) .

If q>1 is an integer, then the greedy expansion of a number $x\in J_q=[0,1]$ is in fact the only expansion of x in base q, except when $x=i/q^n$, where $1\leqslant i\leqslant q^n-1$ is an integer and $n\in\mathbb{N}$. However, if q>1 is a non-integer, then almost every $x\in J_q$ has continuum many expansions in base q, see [2,14]. Starting with a discovery of Erdős, Horváth and Joó [6], many works during the last fifteen years were devoted to the study of the exceptional set \mathcal{U}_q consisting of those numbers $x\in J_q$ with a unique expansion in base q. For instance, it was shown in [7] that if $1< q<(1+\sqrt{5})/2$, then each number in the interior of J_q has continuum many expansions. Hence, in this case, $\mathcal{U}_q=\{0,1/(q-1)\}$. However, if $q>(1+\sqrt{5})/2$, then the set \mathcal{U}_q is infinite [3].

In order to mention some more sophisticated properties of the set \mathcal{U}_q for various values of q, we introduce the set of univoque numbers \mathcal{U} , defined by

$$\mathcal{U} := \{q > 1: 1 \text{ has a unique expansion in base } q\}.$$

It was shown in [6] that the set $\mathcal{U} \cap (1,2)$ has continuum many elements. Subsequently, the set \mathcal{U} was characterized lexicographically in [7,8,11], its smallest element $q_1 \approx 1.787$ was determined in [10], and its topological structure was described in [11]. It was also shown in [10] that the unique expansion of 1 in base q_1 is given by the truncated Thue–Morse sequence $(\tau_i) = 11010011\ldots$, which can be defined recursively by setting $\tau_{2^N} = 1$ for $N = 0, 1, 2, \ldots$ and

$$\tau_{2N+i} = 1 - \tau_i$$
 for $1 \le i < 2^N$, $N = 1, 2, ...$

Using the structure of this expansion, Glendinning and Sidorov [9] proved that \mathcal{U}_q is countable if $1 < q < q_1$ and has the cardinality of the continuum if $q_1 \leqslant q < 2$ (see also [5]). They also proved that if $1 < q < q_1$, then the (unique) expansion in base q of a number $x \in \mathcal{U}_q$ is ultimately periodic. Finally, the topological structure of the sets \mathcal{U}_q (q > 1) was established in [5].

Let us call a sequence $(c_i) = c_1 c_2 \dots$ with integers $0 \le c_i < q$ univoque in base q (or simply univoque if q is understood) if

$$x = \sum_{i=1}^{\infty} \frac{c_i}{q^i}$$

belongs to \mathcal{U}_q . Let \mathcal{U}_q' denote the set of all univoque sequences in base q. Clearly, there is a natural bijection between \mathcal{U}_q and \mathcal{U}_q' . In what follows we use systematically the lexicographical order between sequences: we write $(a_i) < (b_i)$ or $a_1 a_2 \ldots < b_1 b_2 \ldots$ if there is an integer $n \in \mathbb{N}$ such that $a_i = b_i$ for i < n and $a_n < b_n$. We recall the following theorem which is essentially due to Parry [12]:

Theorem 1.1. Let q > 1 be a real number and let m be the largest integer smaller than q.

(i) A sequence $(b_i) = b_1 b_2 \dots \in \{0, \dots, m\}^{\mathbb{N}}$ is the greedy expansion of a number $x \in J_q$ if and only if

$$b_{n+1}b_{n+2}\ldots < \alpha_1\alpha_2\ldots$$
 whenever $b_n < m$.

(ii) A sequence $(c_i) = c_1 c_2 ... \in \{0, ..., m\}^{\mathbb{N}}$ is univoque if and only if

$$c_{n+1}c_{n+2} \ldots < \alpha_1\alpha_2 \ldots$$
 whenever $c_n < m$

and

$$\overline{c_{n+1}c_{n+2}\ldots} < \alpha_1\alpha_2\ldots \quad \text{whenever } c_n > 0,$$

where
$$\overline{c_i} := m - c_1 = \alpha_1 - c_1$$
, $i \in \mathbb{N}$, and $\overline{c_1 c_2 \dots} = \overline{c_1} \overline{c_2} \dots$

Using the fact that the map $q \mapsto (\alpha_i(q))$ is strictly increasing, it follows at once from this theorem that $\mathcal{U}_q' \subset \mathcal{U}_r'$ if 1 < q < r and $\lceil q \rceil = \lceil r \rceil$. It is the aim of this note to generalize the above mentioned result of Glendinning and Sidorov [9] by considering the difference of the sets \mathcal{U}_q' and \mathcal{U}_r' , 1 < q < r, $\lceil q \rceil = \lceil r \rceil$:

Theorem 1.2. Let 1 < q < r be real numbers such that $\lceil q \rceil = \lceil r \rceil$. The following statements are equivalent.

- (i) $(q, r] \cap \mathcal{U} = \emptyset$.
- (ii) $(q, r] \cap \overline{\mathcal{U}} = \emptyset$.
- (iii) Each sequence $(c_i) \in \mathcal{U}'_r \setminus \mathcal{U}'_q$ is ultimately periodic.
- (iv) $\mathcal{U}'_r \setminus \mathcal{U}'_a$ is countable.

Incidentally, we will also obtain new characterizations of the set of univoque numbers \mathcal{U} and its closure $\overline{\mathcal{U}}$ (for other characterizations, see [5,11]).

2. Proof of Theorem 1.2

Recently, Baiocchi and Komornik [1] reformulated and extended some classical results of Rényi, Parry, Daróczy and Kátai [13,12,4] by characterizing the quasi-greedy expansions of numbers $x \in J_q \setminus \{0\}$ in a fixed base q > 1 (see Proposition 2.2 below).

Proposition 2.1. The map $q \mapsto (\alpha_i(q))$ is a strictly increasing bijection from the open interval $(1, \infty)$ onto the set of all infinite sequences (α_i) satisfying

$$\alpha_{k+1}\alpha_{k+2}\ldots\leqslant\alpha_1\alpha_2\ldots$$
 for all $k\geqslant 1$.

Proposition 2.2. For each q > 1, the map $x \mapsto (a_i(x))$ is a strictly increasing bijection from $(0, \alpha_1/(q-1)]$ onto the set of all infinite sequences (a_i) , satisfying

$$0 \le a_n \le \alpha_1$$
 for all $n \ge 1$

and

$$a_{n+1}a_{n+2}\ldots \leqslant \alpha_1\alpha_2\ldots$$
 whenever $a_n < \alpha_1$.

For any fixed q > 1, we introduce the sets

$$\mathcal{V}_a := \{x \in J_a: \overline{a_{n+1}(x)a_{n+2}(x)...} \leq \alpha_1(q)\alpha_2(q)... \text{ whenever } a_n > 0\}$$

and

$$\mathcal{V}_q' := \{ (a_i(x)) \colon x \in \mathcal{V}_q \}.$$

It follows from Theorem 1.1 that $\mathcal{U}_q \subset \mathcal{V}_q$ for each q > 1. Moreover, $\mathcal{V}_q' \subset \mathcal{U}_r'$ if 1 < q < r and $\lceil q \rceil = \lceil r \rceil$. The precise relationship between the sets \mathcal{U}_q , its closure $\overline{\mathcal{U}_q}$ and $\underline{\mathcal{V}_q}$ for each q > 1 was described in [5]. For instance, it was shown that \mathcal{U}_q is closed if and only if $q \notin \overline{\mathcal{U}}$. Moreover, $\mathcal{U}_q = \overline{\mathcal{U}_q} = \mathcal{V}_q$, except when q belongs to the closed null set \mathcal{V} consisting of those bases q > 1 such that

$$\overline{\alpha_{k+1}(q)\alpha_{k+2}(q)\dots} \leqslant \alpha_1(q)\alpha_2(q)\dots$$
 for each $k \geqslant 1$.

If $q \in \mathcal{V}$, then the set $\mathcal{V}_q \setminus \mathcal{U}_q$ is countably infinite.

The relationship between the sets \mathcal{U} , $\overline{\mathcal{U}}$, and \mathcal{V} has been investigated in [11]. In particular it was shown that

- $\mathcal{U} \subsetneq \overline{\mathcal{U}} \subsetneq \mathcal{V}$.
- $\overline{\mathcal{U}} \setminus \mathcal{U}$ is countable and dense in $\overline{\mathcal{U}}$.
- $V \setminus \overline{U}$ is a discrete set, dense in V.
- $q \in \overline{\mathcal{U}}$ if and only if $\overline{\alpha_{k+1}(q)\alpha_{k+2}(q)\dots} < \alpha_1(q)\alpha_2(q)\dots$ for each $k \geqslant 1$.

Applying the above mentioned results, one can easily verify the statements in the following examples.

Examples.

- The smallest element of \mathcal{V} is given by $G := (1 + \sqrt{5})/2$. Moreover, $G \sim (10)^{\infty}$ and \mathcal{V}'_G is the set of all sequences in $\{0,1\}^{\mathbb{N}}$ such that a one is never followed by two zeros and a zero is never followed by two ones. Hence \mathcal{U}_q is infinite if $G < q \leqslant 2$.
- Define the numbers q_n $(n \in \mathbb{N})$ by setting $q_n \sim (110)^n (10)^\infty$. It follows from Theorem 1.1 that all these numbers belong to \mathcal{U} . However, if we set $q^* := \lim_{n \to \infty} q_n$, then $q^* \sim (110)^\infty$. Note that $q^* \notin \mathcal{U}$ because $111(0)^\infty$ is another expansion of 1 in base q^* . Hence $q^* \in \overline{\mathcal{U}} \setminus \mathcal{U}$.

Without further comment, we use frequently in the proof below some of the main results in [5], and in particular the analysis of one of the final remarks at the end of [5] which is concerned with the endpoints of the connected components of $(1,\infty)\setminus \overline{\mathcal{U}}$: if we write $(1,\infty)\setminus \overline{\mathcal{U}}$ as the union of countably many disjoint open intervals (its connected components), then the set L of left endpoints of these intervals is given by $L=\mathbb{N}\cup(\overline{\mathcal{U}}\setminus\mathcal{U})$ and the set R of right endpoints of these intervals satisfies the relationship $R\subset\mathcal{U}$.

Proof of Theorem 1.2. (i) \Rightarrow (ii). Suppose that $(q, r] \cap \mathcal{U} = \emptyset$. Then $(q, r + \delta) \cap \mathcal{U} = \emptyset$ for some $\delta > 0$ because \mathcal{U} is closed from above [11] and (ii) follows.

(ii) \Rightarrow (iii). If $(q, r] \cap \overline{\mathcal{U}} = \emptyset$, then (q, r] is a subset of a connected component of $(1, \infty) \setminus \overline{\mathcal{U}}$. Moreover, $[q, r) \cap \mathcal{V}$ is a finite subset $\{r_1, \ldots, r_m\}$ of $\mathcal{V} \setminus \mathcal{U}$, where $r_1 < \cdots < r_m$. Although it is not important in the remainder of the proof, we recall from [5] that $r_2, \ldots, r_m \in \mathcal{V} \setminus \overline{\mathcal{U}}$, but r_1 might belong to $\overline{\mathcal{U}} \setminus \mathcal{U}$. We may write

$$\mathcal{U}'_{r} = \mathcal{U}'_{q} \cup \bigcup_{\ell=1}^{m} (\mathcal{V}'_{r_{\ell}} \setminus \mathcal{U}'_{r_{\ell}}). \tag{2.1}$$

Fix $\ell \in \{1, ..., m\}$ and let $x \in \mathcal{V}_{r_\ell} \setminus \mathcal{U}_{r_\ell}$. If the greedy expansion (b_i) of x in base r_ℓ is finite, then $(a_i(x))$ ends with $\alpha_1\alpha_2...$ Suppose now that (b_i) is infinite. Since $x \notin \mathcal{U}_{r_\ell}$, there exists an index n such that $b_n > 0$, and $\overline{b_{n+1}b_{n+2}...} \geqslant \alpha_1\alpha_2...$ Since $x \in \mathcal{V}_{r_\ell}$ and $(a_i(x)) = (b_i(x))$, the last inequality is in fact an equality. Hence the quasi-greedy expansion $(a_i(x))$ of x in base r_ℓ either ends with (α_i) or $(\overline{\alpha_i})$. Since $(\alpha_i(q))$ is periodic if $q \in \mathcal{V} \setminus \mathcal{U}$ [11], the implication follows from (2.1).

 $(iii) \Rightarrow (iv)$ is clear.

(iv) \Rightarrow (i). We prove the contraposition. Suppose that $(q,r] \cap \mathcal{U} \neq \emptyset$. We distinguish between two cases.

If $(q,r) \cap \mathcal{U} \neq \emptyset$, then $|(q,r) \cap \overline{\mathcal{U}}| = 2^{\aleph_0}$ because $\overline{\mathcal{U}}$ is a nonempty perfect set [11] and thus each neighborhood of a number $t \in \overline{\mathcal{U}}$ contains uncountably many elements of $\overline{\mathcal{U}}$. Now

$$\mathcal{U}'_r \setminus \mathcal{U}'_q \supset \bigcup_{t \in (q,r) \cap \overline{\mathcal{U}}} (\mathcal{V}'_t \setminus \mathcal{U}'_t).$$

Hence $\mathcal{U}'_r \setminus \mathcal{U}'_q$ contains an uncountable union of nonempty disjoint sets and is therefore uncountable.

If $(q, r] \cap \mathcal{U} = \{r\}$, then $(q, r) \cap \overline{\mathcal{U}} = \emptyset$. Hence by enlarging q if necessary, we may assume that $q \notin \overline{\mathcal{U}}$. Let

 $W_r = \{x \in \mathcal{U}_r : \text{ the unique expansion of } x \text{ in base } r \text{ belongs to } \mathcal{U}'_q \}.$

We claim that W_r is closed. The set W_r is a symmetric subset of J_r , so it suffices to show that W_r is closed from below. Let $x_i \in W_r$ $(i \ge 1)$, and suppose that $x_i \uparrow x$. Let (c_i^i) be the unique expansion of x_i in base r, and let

$$y_i = \sum_{j=1}^{\infty} \frac{c_j^i}{q^j}.$$

Then the increasing sequence (y_i) converges to some $y \in \mathcal{U}_q$ because \mathcal{U}_q is a compact set. Since $(c_j^1) \leqslant (c_j^2) \leqslant \cdots$, (c_j^i) converges coordinate-wise to the unique expansion (d_i) of y in base q as $i \to \infty$, and

$$x = \sum_{j=1}^{\infty} \frac{d_j}{r^j}.$$

Since $\mathcal{U}_q' \subset \mathcal{U}_r'$ we have $x \in \mathcal{U}_r$, and thus $x \in \mathcal{W}_r$. Now suppose that $\mathcal{U}_r' \setminus \mathcal{U}_q'$ is countable. Then $\mathcal{U}_r \setminus \mathcal{W}_r$ is countable. Note that $\mathcal{W}_r \subsetneq \mathcal{U}_r$ because \mathcal{W}_r is closed and \mathcal{U}_r is not. Let $x \in \mathcal{U}_r \setminus \mathcal{W}_r$. Since $\overline{\mathcal{U}_r} \setminus \mathcal{U}_r$ is a countable dense subset of $\overline{\mathcal{U}_r}$ (Theorem 1.3 in [5]), the latter set is perfect, and each neighborhood of x contains uncountably many elements of \mathcal{U}_r and thus of \mathcal{W}_r . This contradicts the fact that \mathcal{W}_r is closed. \square

The above result yields new characterizations of \mathcal{U} and $\overline{\mathcal{U}}$:

Corollary 2.3. A real number q > 1 belongs to \mathcal{U} if and only if $\mathcal{U}'_r \setminus \mathcal{U}'_q$ is uncountable for each r > q such that $\lceil q \rceil = \lceil r \rceil$.

Proof. Note that the integers $2,3,\ldots$ belong to \mathcal{U} . For these values of q the condition in the statement is also vacuously satisfied. Hence we may assume that $q \notin \mathbb{N}$. Suppose that $q \in \mathcal{U} \setminus \mathbb{N}$. For each r > q, $(q,r) \cap \mathcal{U} \neq \emptyset$ because elements of $\mathcal{U} \setminus \mathbb{N}$ do not belong to the set of left endpoints of the connected components of $(1,\infty) \setminus \overline{\mathcal{U}}$. Hence if, in addition, $\lceil q \rceil = \lceil r \rceil$, then $\mathcal{U}'_r \setminus \mathcal{U}'_q$ is uncountable by Theorem 1.2. Conversely, if the latter set is uncountable for each r > q such that $\lceil q \rceil = \lceil r \rceil$, then $(q,r) \cap \mathcal{U} \neq \emptyset$ for each r > q by Theorem 1.2, and the result follows because \mathcal{U} is closed from above. \square

For a fixed r > 1, let $\mathcal{F}'_r = \bigcup \mathcal{U}'_q$, where the union runs over all q < r for which $\lceil q \rceil = \lceil r \rceil$.

Corollary 2.4. Let r > 1 be a real number. The following statements are equivalent.

- (i) $r \in \overline{\mathcal{U}}$.
- (ii) $\mathcal{U}'_r \setminus \mathcal{F}'_r$ is uncountable.
- (iii) $\mathcal{U}'_r \setminus \mathcal{U}'_q$ is uncountable for each q < r such that $\lceil q \rceil = \lceil r \rceil$. (iv) $\mathcal{U}'_r \setminus \mathcal{U}'_q$ is nonempty for each q < r such that $\lceil q \rceil = \lceil r \rceil$.

Proof. It is clear that (ii) \Rightarrow (iii) \Rightarrow (iv). It remains to show that (i) \Rightarrow (ii) and (iv) \Rightarrow (i).

(i) \Rightarrow (ii). Suppose $r \in \overline{\mathcal{U}}$. Let $(q_n)_{n \geqslant 1}$ be an increasing sequence that converges to r, such that $q_n \notin \overline{\mathcal{U}}$ and $\lceil q_n \rceil = \lceil r \rceil$, $n \in \mathbb{N}$. This can be done, since $\overline{\mathcal{U}}$ is a null set. Let

 $\mathcal{W}_r^n = \{x \in \mathcal{U}_r : \text{ the unique expansion of } x \text{ in base } r \text{ belongs to } \mathcal{U}_{q_n}^r \}$

and

$$\mathcal{W}_r = \bigcup_{n=1}^{\infty} \mathcal{W}_r^n.$$

It follows from the proof of Theorem 1.2 that \mathcal{W}_r^n is closed for each $n \in \mathbb{N}$. Moreover, $|\mathcal{U}_r \setminus \mathcal{W}_r| = |\mathcal{U}_r' \setminus \mathcal{F}_r'|$. We know that $\overline{\mathcal{U}_r} \setminus \mathcal{U}_r$ is countable. If $\mathcal{U}_r \setminus \mathcal{W}_r$ were countable, then $\overline{\mathcal{U}_r}$ would be an F_{σ} -set:

$$\overline{\mathcal{U}_r} = \bigcup_{n=1}^{\infty} \mathcal{W}_r^n \cup \left(\bigcup_{x \in \overline{\mathcal{U}_r} \setminus \mathcal{W}_r} \{x\} \right). \tag{2.2}$$

Note that $\overline{U_r}$ is a complete metric space. By Baire's theorem, one of the sets on the right-hand side of (2.2) has a nonempty interior. Since $\overline{\mathcal{U}_r}$ is a perfect set, each singleton belonging to it is not open. Hence one of the sets $\mathcal{W}_r^n \subset \mathcal{U}_r$ has an interior point. But this contradicts the fact that $\overline{\mathcal{U}}_r \setminus \mathcal{U}_r$ is dense in $\overline{\mathcal{U}}_r$ (Theorem 1.3 in [5]).

(iv) \Rightarrow (i). We prove the contraposition. Suppose $r \notin \overline{\mathcal{U}}$. We can choose $q \in (1,r)$ close enough to r such that $[q,r) \cap \mathcal{V} = \emptyset$. It follows from (2.1) that $\mathcal{U}_q' = \mathcal{U}_r'$. \square

Let q>1 be a non-integer, and let $\mathcal{G}_q'=\bigcap\mathcal{U}_r'$, where the intersection runs over all r>q for which $\lceil q\rceil=\lceil r\rceil$. In view of Corollary 2.4 it is natural to ask whether the following variant of Corollary 2.3 holds: the number q>1 belongs to \mathcal{U} if and only if $\mathcal{G}_q'\setminus\mathcal{U}_q'$ is uncountable. In order to show that this is *not* true, it is sufficient to prove that $\mathcal{G}_q'=\mathcal{V}_q'$, since $\mathcal{V}_q'\setminus\mathcal{U}_q'$ is known to be countable [5]. Let us recall Lemma 3.2 from [11]:

Lemma 2.5. Let q > 1 be a non-integer, and let $(\beta_i) = \beta_1 \beta_2 \dots$ be the greedy expansion of 1 in base q. For each $n \in \mathbb{N}$, there exists a number $r = r_n > q$ such that the greedy expansion of 1 in base r starts with $\beta_1 \dots \beta_n$.

If $q \in \mathcal{U} \setminus \mathbb{N}$, then 1 has an infinite greedy expansion in base q, i.e., $(\alpha_i) = (\alpha_i(q)) = (\beta_i(q))$. If a sequence $(a_i) \in \mathcal{U} \setminus \mathbb{N}$, $\{0,\ldots,\alpha_1\}^{\mathbb{N}}$ belonged to $\mathcal{G}'_q\setminus\mathcal{V}'_q$, then either there would exist indices n and m, such that

$$a_n < \alpha_1$$
 and $a_{n+1} \dots a_{n+m} > \alpha_1 \dots \alpha_m$

or there would exist indices n and m, such that

$$a_n > 0$$
 and $\overline{a_{n+1} \dots a_{n+m}} > \alpha_1 \dots \alpha_m$.

If $r_m > q$ is the number that is defined in Lemma 2.5, then $\alpha_i(q) = \alpha_i(r_m)$ for $1 \leqslant i \leqslant m$, and thus $(a_i) \notin \mathcal{U}'_{r_m}$ which is a contradiction. On the other hand, $\mathcal{V}'_q \subset \mathcal{U}'_r$ for each r > q such that $\lceil q \rceil = \lceil r \rceil$, and therefore $\mathcal{G}'_q = \mathcal{V}'_q$.

If $q \in (1, \infty) \setminus \mathcal{U}$, then the equality $\mathcal{G}'_q = \mathcal{V}'_q$ easily follows from Theorem 1.7 in [5].

Acknowledgement

The author is indebted to Vilmos Komornik for his valuable suggestions and for a careful reading of the manuscript.

References

- [1] C. Baiocchi, V. Komornik, Greedy and quasi-greedy expansions in non-integer bases, arXiv: math/0710.3001.
- [2] K. Dajani, M. de Vries, Invariant densities for random β -expansions, J. Eur. Math. Soc. 9 (1) (2007) 157–176.
- [3] Z. Daróczy, I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (3-4) (1993) 397-407.
- [4] Z. Daróczy, I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (3-4) (1995) 385-408.
- [5] M. de Vries, V. Komornik, Unique expansions of real numbers, arXiv: math/0609708v3.
- [6] P. Erdős, M. Horváth, I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar. 58 (3-4) (1991) 333-342.

- [7] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions $1 = \sum q^{-n_i}$ and related problems, Bull. Soc. Math. France 118 (3) (1990) 377–390.
- [8] P. Erdős, I. Joó, V. Komornik, On the number of q-expansions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 37 (1994) 109-118.
- [9] P. Glendinning, N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett. 8 (4) (2001) 535-543.
- [10] V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (7) (1998) 636-639.
- [11] V. Komornik, P. Loreti, On the topological structure of univoque sets, J. Number Theory 122 (1) (2007) 157–183.
- [12] W. Parry, On the β -expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416.
- [13] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493.
- [14] N. Sidorov, Almost every number has a continuum of β -expansions, Amer. Math. Monthly 110 (9) (2003) 838–842.