On the number of unique expansions in non-integer bases

Martijn de Vries ${ }^{1}$
Delft University of Technology, EEMCS Faculty, Mekelweg 4, 2628 CD Delft, The Netherlands

A R T I C L E I N F O

Article history:

Received 29 April 2008
Received in revised form 27 August 2008

MSC:

primary 11A63
secondary 11B83

Keywords:

Thue-Morse sequence
Greedy expansion
Quasi-greedy expansion
Unique expansion
Univoque sequence
Univoque number

Abstract

Let $q>1$ be a real number and let $m=m(q)$ be the largest integer smaller than q. It is well known that each number $x \in J_{q}:=\left[0, \sum_{i=1}^{\infty} m q^{-i}\right]$ can be written as $x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ with integer coefficients $0 \leqslant c_{i}<q$. If q is a non-integer, then almost every $x \in J_{q}$ has continuum many expansions of this form. In this note we consider some properties of the set \mathcal{U}_{q} consisting of numbers $x \in J_{q}$ having a unique representation of this form. More specifically, we compare the size of the sets \mathcal{U}_{q} and \mathcal{U}_{r} for values q and r satisfying $1<q<r$ and $m(q)=m(r)$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Beginning with the pioneering works of Rényi [13] and Parry [12], expansions of real numbers in non-integer bases have been widely studied during the last fifty years.

In this paper we consider only sequences of nonnegative integers. Given a real number $q>1$, an expansion in base q (or simply expansion) of a real number x is a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of integers satisfying

$$
0 \leqslant c_{i}<q \text { for each } i \geqslant 1 \text { and } x=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}
$$

Note that this definition is only meaningful if x belongs to the interval

$$
J_{q}:=\left[0, \frac{\lceil q\rceil-1}{q-1}\right]
$$

where $\lceil q\rceil$ is the smallest integer larger than or equal to q. Note that $[0,1] \subset J_{q}$.
The greedy expansion of a number $x \in J_{q}$, denoted by $\left(b_{i}(x)\right)$ or $\left(b_{i}\right)$, can be obtained by performing the greedy algorithm [13]: if for some $n \in \mathbb{N}:=\mathbb{Z} \geqslant 1, b_{i}=b_{i}(x)$ is already defined for $1 \leqslant i<n$ (no condition if $n=1$), then $b_{n}=b_{n}(x)$ is the largest integer smaller than q such that

$$
\sum_{i=1}^{n} \frac{b_{i}}{q^{i}} \leqslant x
$$

[^0]If $x \in J_{q} \backslash\{0\}$, then the quasi-greedy expansion, denoted by $\left(a_{i}(x)\right)$ or $\left(a_{i}\right)$, is obtained by applying the quasi-greedy algorithm [4,11,1]: if for some $n \in \mathbb{N}, a_{i}=a_{i}(x)$ is already defined for $1 \leqslant i<n$ (no condition if $n=1$), then $a_{n}=a_{n}(x)$ is the largest integer smaller than q such that

$$
\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}<x .
$$

The quasi-greedy expansion of $x \in J_{q} \backslash\{0\}$ is always infinite (we call an expansion infinite if it contains infinitely many nonzero elements; otherwise it is called finite) and coincides with the greedy expansion ($b_{i}(x)$) if and only if the latter is infinite. If the greedy expansion of $x \in J_{q} \backslash\{0\}$ is finite and b_{n} is its last nonzero element, then $\left(a_{i}(x)\right)=b_{1} \ldots b_{n-1} b_{n}^{-} \alpha_{1} \alpha_{2} \ldots$, where $b_{n}^{-}:=b_{n}-1$ and $\alpha_{i}=\alpha_{i}(q):=a_{i}(1), i \geqslant 1$. For convenience, we set $\left(a_{i}(0)\right):=0^{\infty}$ and refer to it as the quasi-greedy expansion of 0 in base q. We will also write $q \sim\left(\alpha_{i}\right)$ if the quasi-greedy expansion of 1 in base q is given by (α_{i}).

If $q>1$ is an integer, then the greedy expansion of a number $x \in J_{q}=[0,1]$ is in fact the only expansion of x in base q, except when $x=i / q^{n}$, where $1 \leqslant i \leqslant q^{n}-1$ is an integer and $n \in \mathbb{N}$. However, if $q>1$ is a non-integer, then almost every $x \in J_{q}$ has continuum many expansions in base q, see [2,14]. Starting with a discovery of Erdős, Horváth and Joó [6], many works during the last fifteen years were devoted to the study of the exceptional set \mathcal{U}_{q} consisting of those numbers $x \in J_{q}$ with a unique expansion in base q. For instance, it was shown in [7] that if $1<q<(1+\sqrt{5}) / 2$, then each number in the interior of J_{q} has continuum many expansions. Hence, in this case, $\mathcal{U}_{q}=\{0,1 /(q-1)\}$. However, if $q>(1+\sqrt{5}) / 2$, then the set \mathcal{U}_{q} is infinite [3].

In order to mention some more sophisticated properties of the set \mathcal{U}_{q} for various values of q, we introduce the set of univoque numbers \mathcal{U}, defined by

$$
\mathcal{U}:=\{q>1: 1 \text { has a unique expansion in base } q\} .
$$

It was shown in [6] that the set $\mathcal{U} \cap(1,2)$ has continuum many elements. Subsequently, the set \mathcal{U} was characterized lexicographically in $[7,8,11]$, its smallest element $q_{1} \approx 1.787$ was determined in [10], and its topological structure was described in [11]. It was also shown in [10] that the unique expansion of 1 in base q_{1} is given by the truncated Thue-Morse sequence $\left(\tau_{i}\right)=11010011 \ldots$, which can be defined recursively by setting $\tau_{2^{N}}=1$ for $N=0,1,2, \ldots$ and

$$
\tau_{2^{N}+i}=1-\tau_{i} \quad \text { for } 1 \leqslant i<2^{N}, N=1,2, \ldots
$$

Using the structure of this expansion, Glendinning and Sidorov [9] proved that \mathcal{U}_{q} is countable if $1<q<q_{1}$ and has the cardinality of the continuum if $q_{1} \leqslant q<2$ (see also [5]). They also proved that if $1<q<q_{1}$, then the (unique) expansion in base q of a number $x \in \mathcal{U}_{q}$ is ultimately periodic. Finally, the topological structure of the sets $\mathcal{U}_{q}(q>1)$ was established in [5].

Let us call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ with integers $0 \leqslant c_{i}<q$ univoque in base q (or simply univoque if q is understood) if

$$
x=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}
$$

belongs to \mathcal{U}_{q}. Let \mathcal{U}_{q}^{\prime} denote the set of all univoque sequences in base q. Clearly, there is a natural bijection between \mathcal{U}_{q} and \mathcal{U}_{q}^{\prime}. In what follows we use systematically the lexicographical order between sequences: we write $\left(a_{i}\right)<\left(b_{i}\right)$ or $a_{1} a_{2} \ldots<b_{1} b_{2} \ldots$ if there is an integer $n \in \mathbb{N}$ such that $a_{i}=b_{i}$ for $i<n$ and $a_{n}<b_{n}$. We recall the following theorem which is essentially due to Parry [12]:

Theorem 1.1. Let $q>1$ be a real number and let m be the largest integer smaller than q.
(i) A sequence $\left(b_{i}\right)=b_{1} b_{2} \ldots \in\{0, \ldots, m\}^{\mathbb{N}}$ is the greedy expansion of a number $x \in J_{q}$ if and only if

$$
b_{n+1} b_{n+2} \ldots<\alpha_{1} \alpha_{2} \ldots \quad \text { whenever } b_{n}<m
$$

(ii) A sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots \in\{0, \ldots, m\}^{\mathbb{N}}$ is univoque if and only if

$$
c_{n+1} c_{n+2} \ldots<\alpha_{1} \alpha_{2} \ldots \quad \text { whenever } c_{n}<m
$$

and

$$
\overline{c_{n+1} c_{n+2} \ldots}<\alpha_{1} \alpha_{2} \ldots \quad \text { whenever } c_{n}>0
$$

where $\overline{c_{i}}:=m-c_{1}=\alpha_{1}-c_{1}, i \in \mathbb{N}$, and $\overline{c_{1} c_{2} \ldots}=\overline{c_{1}} \overline{c_{2}} \ldots$
Using the fact that the map $q \mapsto\left(\alpha_{i}(q)\right)$ is strictly increasing, it follows at once from this theorem that $\mathcal{U}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ if $1<q<r$ and $\lceil q\rceil=\lceil r\rceil$. It is the aim of this note to generalize the above mentioned result of Glendinning and Sidorov [9] by considering the difference of the sets \mathcal{U}_{q}^{\prime} and $\mathcal{U}_{r}^{\prime}, 1<q<r,\lceil q\rceil=\lceil r\rceil$:

Theorem 1.2. Let $1<q<r$ be real numbers such that $\lceil q\rceil=\lceil r\rceil$. The following statements are equivalent.
(i) $(q, r] \cap \mathcal{U}=\emptyset$.
(ii) $(q, r] \cap \overline{\mathcal{U}}=\emptyset$.
(iii) Each sequence $\left(c_{i}\right) \in \mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is ultimately periodic.
(iv) $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is countable.

Incidentally, we will also obtain new characterizations of the set of univoque numbers \mathcal{U} and its closure $\overline{\mathcal{U}}$ (for other characterizations, see [5,11]).

2. Proof of Theorem 1.2

Recently, Baiocchi and Komornik [1] reformulated and extended some classical results of Rényi, Parry, Daróczy and Kátai $[13,12,4]$ by characterizing the quasi-greedy expansions of numbers $x \in J_{q} \backslash\{0\}$ in a fixed base $q>1$ (see Proposition 2.2 below).

Proposition 2.1. The map $q \mapsto\left(\alpha_{i}(q)\right)$ is a strictly increasing bijection from the open interval $(1, \infty)$ onto the set of all infinite sequences (α_{i}) satisfying

$$
\alpha_{k+1} \alpha_{k+2} \ldots \leqslant \alpha_{1} \alpha_{2} \ldots \quad \text { for all } k \geqslant 1
$$

Proposition 2.2. For each $q>1$, the map $x \mapsto\left(a_{i}(x)\right)$ is a strictly increasing bijection from $\left(0, \alpha_{1} /(q-1)\right.$] onto the set of all infinite sequences (a_{i}), satisfying

$$
0 \leqslant a_{n} \leqslant \alpha_{1} \quad \text { for all } n \geqslant 1
$$

and

$$
a_{n+1} a_{n+2} \ldots \leqslant \alpha_{1} \alpha_{2} \ldots \quad \text { whenever } a_{n}<\alpha_{1}
$$

For any fixed $q>1$, we introduce the sets

$$
\mathcal{V}_{q}:=\left\{x \in J_{q}: \overline{a_{n+1}(x) a_{n+2}(x) \ldots} \leqslant \alpha_{1}(q) \alpha_{2}(q) \ldots \text { whenever } a_{n}>0\right\}
$$

and

$$
\mathcal{V}_{q}^{\prime}:=\left\{\left(a_{i}(x)\right): x \in \mathcal{V}_{q}\right\} .
$$

It follows from Theorem 1.1 that $\mathcal{U}_{q} \subset \mathcal{V}_{q}$ for each $q>1$. Moreover, $\mathcal{V}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ if $1<q<r$ and $\lceil q\rceil=\lceil r\rceil$. The precise relationship between the sets \mathcal{U}_{q}, its closure $\overline{\mathcal{U}_{q}}$ and \mathcal{V}_{q} for each $q>1$ was described in [5]. For instance, it was shown that \mathcal{U}_{q} is closed if and only if $q \notin \overline{\mathcal{U}}$. Moreover, $\mathcal{U}_{q}=\overline{\mathcal{U}_{q}}=\mathcal{V}_{q}$, except when q belongs to the closed null set \mathcal{V} consisting of those bases $q>1$ such that

$$
\overline{\alpha_{k+1}(q) \alpha_{k+2}(q) \ldots} \leqslant \alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { for each } k \geqslant 1 .
$$

If $q \in \mathcal{V}$, then the set $\mathcal{V}_{q} \backslash \mathcal{U}_{q}$ is countably infinite.
The relationship between the sets $\mathcal{U}, \overline{\mathcal{U}}$, and \mathcal{V} has been investigated in [11]. In particular it was shown that

- $\mathcal{U} \subsetneq \overline{\mathcal{U}} \subsetneq \mathcal{V}$.
- $\overline{\mathcal{U}} \backslash \mathcal{U}$ is countable and dense in $\overline{\mathcal{U}}$.
- $\mathcal{V} \backslash \overline{\mathcal{U}}$ is a discrete set, dense in \mathcal{V}.
- $q \in \overline{\mathcal{U}}$ if and only if $\overline{\alpha_{k+1}(q) \alpha_{k+2}(q) \ldots}<\alpha_{1}(q) \alpha_{2}(q) \ldots$ for each $k \geqslant 1$.

Applying the above mentioned results, one can easily verify the statements in the following examples.

Examples.

- The smallest element of \mathcal{V} is given by $G:=(1+\sqrt{5}) / 2$. Moreover, $G \sim(10)^{\infty}$ and \mathcal{V}_{G}^{\prime} is the set of all sequences in $\{0,1\}^{\mathbb{N}}$ such that a one is never followed by two zeros and a zero is never followed by two ones. Hence \mathcal{U}_{q} is infinite if $G<q \leqslant 2$.
- Define the numbers $q_{n}(n \in \mathbb{N})$ by setting $q_{n} \sim(110)^{n}(10)^{\infty}$. It follows from Theorem 1.1 that all these numbers belong to \mathcal{U}. However, if we set $q^{*}:=\lim _{n \rightarrow \infty} q_{n}$, then $q^{*} \sim(110)^{\infty}$. Note that $q^{*} \notin \mathcal{U}$ because $111(0)^{\infty}$ is another expansion of 1 in base q^{*}. Hence $q^{*} \in \overline{\mathcal{U}} \backslash \mathcal{U}$.

Without further comment, we use frequently in the proof below some of the main results in [5], and in particular the analysis of one of the final remarks at the end of [5] which is concerned with the endpoints of the connected components of $(1, \infty) \backslash \overline{\mathcal{U}}$: if we write $(1, \infty) \backslash \overline{\mathcal{U}}$ as the union of countably many disjoint open intervals (its connected components), then the set L of left endpoints of these intervals is given by $L=\mathbb{N} \cup(\overline{\mathcal{U}} \backslash \mathcal{U})$ and the set R of right endpoints of these intervals satisfies the relationship $R \subset \mathcal{U}$.

Proof of Theorem 1.2. (i) \Rightarrow (ii). Suppose that $(q, r] \cap \mathcal{U}=\emptyset$. Then $(q, r+\delta) \cap \mathcal{U}=\emptyset$ for some $\delta>0$ because \mathcal{U} is closed from above [11] and (ii) follows.
(ii) \Rightarrow (iii). If $(q, r] \cap \overline{\mathcal{U}}=\emptyset$, then $(q, r]$ is a subset of a connected component of $(1, \infty) \backslash \overline{\mathcal{U}}$. Moreover, $[q, r) \cap \mathcal{V}$ is a finite subset $\left\{r_{1}, \ldots, r_{m}\right\}$ of $\mathcal{V} \backslash \mathcal{U}$, where $r_{1}<\cdots<r_{m}$. Although it is not important in the remainder of the proof, we recall from [5] that $r_{2}, \ldots, r_{m} \in \mathcal{V} \backslash \overline{\mathcal{U}}$, but r_{1} might belong to $\overline{\mathcal{U}} \backslash \mathcal{U}$. We may write

$$
\begin{equation*}
\mathcal{U}_{r}^{\prime}=\mathcal{U}_{q}^{\prime} \cup \bigcup_{\ell=1}^{m}\left(\mathcal{V}_{r_{\ell}}^{\prime} \backslash \mathcal{U}_{r_{\ell}}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

Fix $\ell \in\{1, \ldots, m\}$ and let $x \in \mathcal{V}_{r_{\ell}} \backslash \mathcal{U}_{r_{\ell}}$. If the greedy expansion $\left(b_{i}\right)$ of x in base r_{ℓ} is finite, then $\left(a_{i}(x)\right)$ ends with $\alpha_{1} \alpha_{2} \ldots$ Suppose now that $\left(b_{i}\right)$ is infinite. Since $x \notin \mathcal{U}_{r_{\ell}}$, there exists an index n such that $b_{n}>0$, and $\overline{b_{n+1} b_{n+2} \ldots} \geqslant \alpha_{1} \alpha_{2} \ldots$. Since $x \in \mathcal{V}_{r_{\ell}}$ and $\left(a_{i}(x)\right)=\left(b_{i}(x)\right)$, the last inequality is in fact an equality. Hence the quasi-greedy expansion $\left(a_{i}(x)\right)$ of x in base r_{ℓ} either ends with $\left(\alpha_{i}\right)$ or $\left(\overline{\alpha_{i}}\right)$. Since $\left(\alpha_{i}(q)\right)$ is periodic if $q \in \mathcal{V} \backslash \mathcal{U}$ [11], the implication follows from (2.1).
(iii) \Rightarrow (iv) is clear.
(iv) \Rightarrow (i). We prove the contraposition. Suppose that $(q, r] \cap \mathcal{U} \neq \emptyset$. We distinguish between two cases.

If $(q, r) \cap \mathcal{U} \neq \emptyset$, then $|(q, r) \cap \overline{\mathcal{U}}|=2^{\aleph_{0}}$ because $\overline{\mathcal{U}}$ is a nonempty perfect set [11] and thus each neighborhood of a number $t \in \overline{\mathcal{U}}$ contains uncountably many elements of $\overline{\mathcal{U}}$. Now

$$
\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime} \supset \bigcup_{t \in(q, r) \cap \overline{\mathcal{U}}}\left(\mathcal{V}_{t}^{\prime} \backslash \mathcal{U}_{t}^{\prime}\right)
$$

Hence $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ contains an uncountable union of nonempty disjoint sets and is therefore uncountable.
If $(q, r] \cap \mathcal{U}=\{r\}$, then $(q, r) \cap \overline{\mathcal{U}}=\emptyset$. Hence by enlarging q if necessary, we may assume that $q \notin \overline{\mathcal{U}}$. Let

$$
\mathcal{W}_{r}=\left\{x \in \mathcal{U}_{r}: \text { the unique expansion of } x \text { in base } r \text { belongs to } \mathcal{U}_{q}^{\prime}\right\}
$$

We claim that \mathcal{W}_{r} is closed. The set \mathcal{W}_{r} is a symmetric subset of J_{r}, so it suffices to show that \mathcal{W}_{r} is closed from below. Let $x_{i} \in \mathcal{W}_{r}(i \geqslant 1)$, and suppose that $x_{i} \uparrow x$. Let $\left(c_{j}^{i}\right)$ be the unique expansion of x_{i} in base r, and let

$$
y_{i}=\sum_{j=1}^{\infty} \frac{c_{j}^{i}}{q^{j}} .
$$

Then the increasing sequence $\left(y_{i}\right)$ converges to some $y \in \mathcal{U}_{q}$ because \mathcal{U}_{q} is a compact set. Since $\left(c_{j}^{1}\right) \leqslant\left(c_{j}^{2}\right) \leqslant \cdots,\left(c_{j}^{i}\right)$ converges coordinate-wise to the unique expansion $\left(d_{j}\right)$ of y in base q as $i \rightarrow \infty$, and

$$
x=\sum_{j=1}^{\infty} \frac{d_{j}}{r^{j}} .
$$

Since $\mathcal{U}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ we have $x \in \mathcal{U}_{r}$, and thus $x \in \mathcal{W}_{r}$. Now suppose that $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is countable. Then $\mathcal{U}_{r} \backslash \mathcal{W}_{r}$ is countable. Note that $\mathcal{W}_{r} \subsetneq \mathcal{U}_{r}$ because \mathcal{W}_{r} is closed and \mathcal{U}_{r} is not. Let $x \in \mathcal{U}_{r} \backslash \mathcal{W}_{r}$. Since $\overline{\mathcal{U}_{r}} \backslash \mathcal{U}_{r}$ is a countable dense subset of $\overline{\mathcal{U}_{r}}$ (Theorem 1.3 in [5]), the latter set is perfect, and each neighborhood of x contains uncountably many elements of \mathcal{U}_{r} and thus of \mathcal{W}_{r}. This contradicts the fact that \mathcal{W}_{r} is closed.

The above result yields new characterizations of \mathcal{U} and $\overline{\mathcal{U}}$:

Corollary 2.3. A real number $q>1$ belongs to \mathcal{U} if and only if $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is uncountable for each $r>q$ such that $\lceil q\rceil=\lceil r\rceil$.
Proof. Note that the integers $2,3, \ldots$ belong to \mathcal{U}. For these values of q the condition in the statement is also vacuously satisfied. Hence we may assume that $q \notin \mathbb{N}$. Suppose that $q \in \mathcal{U} \backslash \mathbb{N}$. For each $r>q,(q, r) \cap \mathcal{U} \neq \emptyset$ because elements of $\mathcal{U} \backslash \mathbb{N}$ do not belong to the set of left endpoints of the connected components of $(1, \infty) \backslash \overline{\mathcal{U}}$. Hence if, in addition, $\lceil q\rceil=\lceil r\rceil$, then $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is uncountable by Theorem 1.2. Conversely, if the latter set is uncountable for each $r>q$ such that $\lceil q\rceil=\lceil r\rceil$, then $(q, r] \cap \mathcal{U} \neq \emptyset$ for each $r>q$ by Theorem 1.2, and the result follows because \mathcal{U} is closed from above.

For a fixed $r>1$, let $\mathcal{F}_{r}^{\prime}=\bigcup \mathcal{U}_{q}^{\prime}$, where the union runs over all $q<r$ for which $\lceil q\rceil=\lceil r\rceil$.

Corollary 2.4. Let $r>1$ be a real number. The following statements are equivalent.
(i) $r \in \overline{\mathcal{U}}$.
(ii) $\mathcal{U}_{r}^{\prime} \backslash \mathcal{F}_{r}^{\prime}$ is uncountable.
(iii) $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is uncountable for each $q<r$ such that $\lceil q\rceil=\lceil r\rceil$.
(iv) $\mathcal{U}_{r}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is nonempty for each $q<r$ such that $\lceil q\rceil=\lceil r\rceil$.

Proof. It is clear that (ii) \Rightarrow (iii) \Rightarrow (iv). It remains to show that (i) \Rightarrow (ii) and (iv) \Rightarrow (i).
(i) \Rightarrow (ii). Suppose $r \in \overline{\mathcal{U}}$. Let $\left(q_{n}\right)_{n \geqslant 1}$ be an increasing sequence that converges to r, such that $q_{n} \notin \overline{\mathcal{U}}$ and $\left\lceil q_{n}\right\rceil=\lceil r\rceil$, $n \in \mathbb{N}$. This can be done, since $\overline{\mathcal{U}}$ is a null set. Let

$$
\mathcal{W}_{r}^{n}=\left\{x \in \mathcal{U}_{r}: \text { the unique expansion of } x \text { in base } r \text { belongs to } \mathcal{U}_{q_{n}}^{\prime}\right\}
$$

and

$$
\mathcal{W}_{r}=\bigcup_{n=1}^{\infty} \mathcal{W}_{r}^{n}
$$

It follows from the proof of Theorem 1.2 that \mathcal{W}_{r}^{n} is closed for each $n \in \mathbb{N}$. Moreover, $\left|\mathcal{U}_{r} \backslash \mathcal{W}_{r}\right|=\left|\mathcal{U}_{r}^{\prime} \backslash \mathcal{F}_{r}^{\prime}\right|$. We know that $\overline{\mathcal{U}_{r}} \backslash \mathcal{U}_{r}$ is countable. If $\mathcal{U}_{r} \backslash \mathcal{W}_{r}$ were countable, then $\overline{\mathcal{U}_{r}}$ would be an F_{σ}-set:

$$
\begin{equation*}
\overline{\mathcal{U}_{r}}=\bigcup_{n=1}^{\infty} \mathcal{W}_{r}^{n} \cup\left(\bigcup_{x \in \overline{\mathcal{U}_{r} \backslash \mathcal{W}_{r}}}\{x\}\right) \tag{2.2}
\end{equation*}
$$

Note that $\overline{\mathcal{U}_{r}}$ is a complete metric space. By Baire's theorem, one of the sets on the right-hand side of (2.2) has a nonempty interior. Since $\overline{\mathcal{U}_{r}}$ is a perfect set, each singleton belonging to it is not open. Hence one of the sets $\mathcal{W}_{r}^{n} \subset \mathcal{U}_{r}$ has an interior point. But this contradicts the fact that $\overline{\mathcal{U}_{r}} \backslash \mathcal{U}_{r}$ is dense in $\overline{\mathcal{U}_{r}}$ (Theorem 1.3 in [5]).
(iv) \Rightarrow (i). We prove the contraposition. Suppose $r \notin \overline{\mathcal{U}}$. We can choose $q \in(1, r)$ close enough to r such that $[q, r) \cap \mathcal{V}=\emptyset$. It follows from (2.1) that $\mathcal{U}_{q}^{\prime}=\mathcal{U}_{r}^{\prime}$.

Let $q>1$ be a non-integer, and let $\mathcal{G}_{q}^{\prime}=\bigcap \mathcal{U}_{r}^{\prime}$, where the intersection runs over all $r>q$ for which $\lceil q\rceil=\lceil r\rceil$. In view of Corollary 2.4 it is natural to ask whether the following variant of Corollary 2.3 holds: the number $q>1$ belongs to \mathcal{U} if and only if $\mathcal{G}_{q}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is uncountable. In order to show that this is not true, it is sufficient to prove that $\mathcal{G}_{q}^{\prime}=\mathcal{V}_{q}^{\prime}$, since $\mathcal{V}_{q}^{\prime} \backslash \mathcal{U}_{q}^{\prime}$ is known to be countable [5]. Let us recall Lemma 3.2 from [11]:

Lemma 2.5. Let $q>1$ be a non-integer, and let $\left(\beta_{i}\right)=\beta_{1} \beta_{2} \ldots$ be the greedy expansion of 1 in base q. For each $n \in \mathbb{N}$, there exists a number $r=r_{n}>q$ such that the greedy expansion of 1 in base r starts with $\beta_{1} \ldots \beta_{n}$.

If $q \in \mathcal{U} \backslash \mathbb{N}$, then 1 has an infinite greedy expansion in base q, i.e., $\left(\alpha_{i}\right)=\left(\alpha_{i}(q)\right)=\left(\beta_{i}(q)\right)$. If a sequence $\left(a_{i}\right) \in$ $\left\{0, \ldots, \alpha_{1}\right\}^{\mathbb{N}}$ belonged to $\mathcal{G}_{q}^{\prime} \backslash \mathcal{V}_{q}^{\prime}$, then either there would exist indices n and m, such that

$$
a_{n}<\alpha_{1} \quad \text { and } \quad a_{n+1} \ldots a_{n+m}>\alpha_{1} \ldots \alpha_{m}
$$

or there would exist indices n and m, such that

$$
a_{n}>0 \quad \text { and } \quad \overline{a_{n+1} \ldots a_{n+m}}>\alpha_{1} \ldots \alpha_{m}
$$

If $r_{m}>q$ is the number that is defined in Lemma 2.5, then $\alpha_{i}(q)=\alpha_{i}\left(r_{m}\right)$ for $1 \leqslant i \leqslant m$, and thus $\left(a_{i}\right) \notin \mathcal{U}_{r_{m}}^{\prime}$ which is a contradiction. On the other hand, $\mathcal{V}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ for each $r>q$ such that $\lceil q\rceil=\lceil r\rceil$, and therefore $\mathcal{G}_{q}^{\prime}=\mathcal{V}_{q}^{\prime}$.

If $q \in(1, \infty) \backslash \mathcal{U}$, then the equality $\mathcal{G}_{q}^{\prime}=\mathcal{V}_{q}^{\prime}$ easily follows from Theorem 1.7 in [5].

Acknowledgement

The author is indebted to Vilmos Komornik for his valuable suggestions and for a careful reading of the manuscript.

References

[1] C. Baiocchi, V. Komornik, Greedy and quasi-greedy expansions in non-integer bases, arXiv: math/0710.3001.
[2] K. Dajani, M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (1) (2007) 157-176.
[3] Z. Daróczy, I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (3-4) (1993) 397-407.
[4] Z. Daróczy, I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (3-4) (1995) 385-408.
[5] M. de Vries, V. Komornik, Unique expansions of real numbers, arXiv: math/0609708v3.
[6] P. Erdős, M. Horváth, I. Joó, On the uniqueness of the expansions $1=\sum q^{-n_{i}}$, Acta Math. Hungar. 58 (3-4) (1991) 333-342.
[7] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions $1=\sum q^{-n_{i}}$ and related problems, Bull. Soc. Math. France 118 (3) (1990) 377-390.
[8] P. Erdős, I. Joó, V. Komornik, On the number of q-expansions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 37 (1994) 109-118.
[9] P. Glendinning, N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett. 8 (4) (2001) 535-543.
[10] V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (7) (1998) 636-639.
[11] V. Komornik, P. Loreti, On the topological structure of univoque sets, J. Number Theory 122 (1) (2007) 157-183.
[12] W. Parry, On the β-expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[13] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493.
[14] N. Sidorov, Almost every number has a continuum of β-expansions, Amer. Math. Monthly 110 (9) (2003) 838-842.

[^0]: E-mail address: w.m.devries@ewi.tudelft.nl.
 1 The author has been supported by NWO, Project Nr. ISK04G.

