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Abstract

Current learning methods for general causal networks are basically data-driven.

Exploration of the search space is made by resorting to some quality measure of

prospective solutions. This measure is usually based on statistical assumptions. We

discuss the interest of adopting a di�erent point of view closer to machine learning

techniques. Our main point is the convenience of using prior knowledge when it is

available. We identify several sources of prior knowledge and de®ne their role in the

learning process. Their relation to measures of quality used in the learning of

possibilistic networks are explained and some preliminary steps for adapting previous

algorithms under these new assumptions are presented. Ó 2000 Elsevier Science B.V. All

rights reserved.

1. Introduction

Current methods for learning causal networks have a strong orientation
towards relying exclusively on existing data [4,29]. However, the learning
process of any model can be seen also as something that develops through the
interaction of at least two sources of information: the data themselves and
prior knowledge.
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Prior knowledge is any information that can be fed by someone knowl-
edgeable about the domain. Assumptions about relevant variables, incomplete
descriptions of concepts that are supposed to underly a domain (as it is done in
some concept learning methods), incomplete logical theories (as in some ver-
sions of inductive logic learning) and expert's settings of learning parameters
are some of the usual prior constraints used for guiding learning methods.

If data-driven methods can be understood as one-shot techniques for ex-
tracting models from data, then any method that uses prior knowledge can be
seen as an iterative process where prior information restricts exploration of
possible models. Under this view, partial models in the process of being ex-
tracted supply evidence for revising prior assumptions. This has some impor-
tant implications in the design of learning methods.

Firstly, the role of the user in asserting prior knowledge imposes certain
requirements to the way knowledge can be expressed. Putting a human in the
loop of a machine learning method implies that attention has to be paid to
aspects of understandability [20] both for expressing prior knowledge and
explaining the results of the interaction of prior and extracted knowledge.

On the other hand, the use of prior knowledge also creates some new
problems. There is the question of priority. In case of con¯ict or contradiction
between a partial solution being built from data and the knowledge expressed
at the beginning of the learning process, which is the one that has to be trusted?
How are con¯icts detected and resolved? How we can ensure that prior
knowledge does not preclude the extraction of really useful models?

These problems have been treated in the literature of machine learning and
have received several alternative solutions [15].

In the case of causal networks little attention has been paid to the role of
prior knowledge, at least in the way that symbolic prior knowledge can be used
as it is in the Machine Learning community. The scarce proposals for inter-
action with the user that appear in the literature of belief and causal network
extraction from data often fail short on the above-mentioned requirement. For
example, Buntine [5], Geiger and Heckerman [18] ask the user to de®ne the
parameters of the assumed probability distribution over all possible types of
network. This kind of information is somewhat unnatural for most users. We
feel that some e�ort has to be made in order to facilitate the expression of
knowledge in a form that is closer to the user, and then study how to transform
it into sound parameterizations, into a de®nite search bias of the learning
process.

In the case of the extraction of possibilistic networks we felt this problem in
a more pressing way since some of the assumptions already used in probabi-
listic model extraction were not applicable. We feel that some of the formal-
izations and solutions that we propose may be of help also in creating
equivalent methods for the recovery of probabilistic networks, much in tune
with the work by Castelo and Siebes [8].
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The paper is organized as follows. In Section 2 we sketch learning as a
search process and identify several sources of prior knowledge for causal
networks. Section 3 describes alternate views of selecting possible networks,
introducing a measure of dependence. Section 4 shows how this measure is
related to information and how some of the previously identi®ed ways of ex-
pressing prior information relate to it. Section 6 sums up the contributions of
the paper and points to open questions and future work.

2. Sources of prior knowledge

In general, and following Siebes [20] we can depict a learning or data mining
method as a search procedure where the following components interact:
· A description of initial and solution states. In the case of causal networks, a

description of the initial network (usually an empty one or a network con-
sisting of just one node) and description on conditions for a network to
be considered a solution (usually in an indirect way, by measuring some
of its characteristics).

· A set of transformation operators that turn one state into another. In the case
of causal network learning methods these are operators for connecting a new
node into a partially built network and for changing the direction of one or
some of their links [3].

· An evaluation function that measures the quality of the alternative states at
any given moment and that aids in selecting the most promising one. In
the case of causal networks, measures of this kind usually re¯ect the degree
of closeness between the assumed distribution underlying the data and the
distribution implied by the structure of the partially built model. Usual mea-
sures of closeness are related to measures of information as cross-entropy
[22] or nonspeci®city [2,17].
The goal of any of these methods is to recover the most accurate and faithful

causal network, that is, the one that re¯ects the existing dependencies in the
domain with the maximum closeness between the involved distributions: the
one underlying the data and the one represented by the network. The way that
the search method proceeds is in¯uenced by how alternate partial solutions are
ranked and selected. In this sense, there are several ways for guiding the search,
each one representing a more de®nite and clear knowledge of the domain:
· Order. The order between variables to be considered by operators connect

then as father or children. It in¯uences the way networks are obtained as
is known from the development of the K2 algorithm [10]. Lower order
variables appear ``higher'' on the ®nal graph.

· Known dependencies and independencies. Known dependencies between vari-
ables could help in discarding some of the alternative graphs in a given point
in the problem space [12].
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· Known direction of causal dependencies. This information could be use to
override the directions implied by data.

· Partial structures. The previous kinds of prior information can be combined
into a partial network structure re¯ecting the partial knowledge of an expert
in the domain (see [24] for an initial use of these structures).
Just by exploiting ways of representing these possible sources of informa-

tion, a great number of causal network learning methods can be envisaged. In
some cases, this knowledge can be weighted in order to re¯ect the uncertainty
of the current state of knowledge of the user about it.

In the case of learning possibilistic causal networks we set out to modify our
previous learning methods [6,30] in order to take into account the quality of the
®nal network both in terms of the expressed dependencies and of its infor-
mativeness. In so doing, we developed a measure of dependence that quali®ed
the global degree of constraint between the dependences of a network and
related it to information measures so as to recover the most plausible and
informative networks. Then, we introduced the treatment of prior knowledge
in a temptative way. In the following section we discuss that measure of de-
pendence and its properties and later proceed to discuss the inclusion of some
type of prior knowledge.

3. Evaluating alternative networks

Measures for assessing the quality of a network fall into two categories:
those that evaluate the information of a given network and those that take
dependence between variables as the basis for measurement.

3.1. Information measures

These measures, in the case of possibilistic networks, are variations of
nonspeci®city. Klir [19] de®ned a measure called U -uncertainty for the non-
speci®city associated with a possibility distribution.

De®nition 3.1 (U-uncertainty). Given a variable X with domain fx1 . . . xng and
an associated possibility distribution px�xi� the U -uncertainty for p�x� is

U�p�x�� �
Z 1

0

lg2 card�Xq�dq;

where Xq is the q-cut for X. That is, Xq � fxi such that p�xi�P qg.

U -uncertainty can be extended for joint and conditional distributions in the
following way:
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De®nition 3.2 (Joint U-uncertainty). Given a set of variables fX1 . . . Xng
variables with associated possibility distributions pX1

. . . pXn their joint non-
speci®city measured as U -uncertainty is

U�pX1
. . . pXn� �

Z 1

0

lg2 card�X1q � � � � � Xnq�dq:

De®nition 3.3 (Conditional U-uncertainty). Given two variables X, Y with as-
sociated possibility distributions pX , pY their conditional nonspeci®city mea-
sured as conditional U -uncertainty is

U�pX �x�jpY �y�� �
Z 1

0

lg2

card�Xq � Yq�
card�Yq� dq:

We follow the convention of capitalizing variable names and using lower-
case, subscripted letters to denote the values of a given variable, i.e., xij is the
jth value that variable Xi can take.

Kruse [2] de®ned several other measures that may be of use in the case of
recovering possibilistic networks. They have some analogy to other measures
of dependence elaborated on probability [1].

Now, we are interested in ®nding the overall U -uncertainty of a given DAG.
That is, the U -uncertainty of the joint possibility distribution induced by the
DAG. Making use of the factorizing property of belief networks, we can de®ne
the Global nonspeci®city for a given DAG. First, we need a previous de®nition
for the nonspeci®city due to the conditional distribution of a variable and its
parents [27,30].

De®nition 3.4 (Parent±children nonspecificity). Let G be a DAG representing
the conditional independence relationships existing between the variables in a
domain D � fX1 . . . Xng. For any given variable Xi with values ranging from xi1

to xiq and parent set pai, the parent±children nonspeci®city is

U�pXi jpai� � U�pXi ; pai� ÿ U�ppai�
when pai � ; then U�pX jpai� � U�pXi�.

De®nition 3.5 (DAG nonspecificity). For a given DAG G de®ned on the same
domain as in the previous case the DAG nonspeci®city is

U�G� �
X
Xi2U

U�xijpai�:

Note that U�X jY � � U�X ; Y � ÿ U�Y �.
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DAG nonspeci®city allows us to evaluate the informational properties of the
possibility distribution underlying a given network. However, it is also inter-
esting to see how a network re¯ects the given set of independencies. For that
reason we developed another measure.

3.2. Dependence measures

In [30] we developed a measure of dependence that re¯ected the overall
mutual constraint of the variables involved in a causal network.

De®nition 3.6 (Conditional dependence degree). Given two variables X and Y
with joint possibility distribution p�X ; Y �, marginal possibility distributions pX

and pY , conditional possibility distribution pX jY and a real value a in [0,1] we
de®ne their conditional dependence degree as

Dep�X ; Y ; a� � 1ÿ
X
yi2Y

p�yi�
X

xi2aÿset

jp�xi� ÿ p�xijyi�j;

where a-set is de®ned as follows:

De®nition 3.7 (a-set). Given two possibility distributions p and p0 over a
variable X and a real number a 2 �0; 1� the a-set for p and p0 in the domain X is
de®ned as

a-set � fxi 2 X : jp�xi� ÿ p0�xi�jP ag:

cIn [27,30] we gave a rationale for developing such a measure of dependence
on similar grounds as [13,21] did in discussing possible ways of de®ning
possibilistic conditional dependence on similarity criteria. By extending the
idea of measuring conditional dependence, we de®ne a degree of dependence
for a whole graph which, in fact, measures the degree of mutual constraint
among the variables involved in a DAG [27]. This measure allows us to
select among possible graphs, those that have the greatest dependence de-
gree. The reason for that stems from the relationship between the dependence
degree of a graph and the informativeness of the corresponding underlying
distribution.

3.3. DAG dependence degrees

To have an idea of the global constraint among the variables in a DAG D
we can try to extract a measure of mutual dependence of all variables in the
graph by measuring the total dependence of the variables in the DAG. Given
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the factorization property of the joint distribution represented by a DAG and
assuming independent causes for each node, we can have an expression of the
dependence of each node in terms of its parents. First we will de®ne the concept
of local dependence of a node. The aim is to compare the degree of constraint
that a single group of parent±children variable has.

Let us suppose that a given variable Xi in a causal network has as a set of
parents pai � fYi . . . Yig.

The joint possibility distribution of the set pai; Xi is

p�pai;Xi� � pc�Xijpai�:

pc the possibility distribution resulting from the application of a possibilistic
conditioning operator.

Analogously, the joint possibility distribution de®ned on all variables in a
DAG G de®ned on domain D � fX1 . . . Xng can be factorized into

pD�X1 . . . Xn� � 
pc�Xijpai�;

where 
 denotes a combination operator for possibility distributions.
We can de®ne the local dependence of a node in a DAG by summing up the

dependences on their parents.

De®nition 3.8 (Local dependence of a node). Given a variable Xi, a node in a
DAG G, a real value a, if the set of parents of Xi is pai then the local depen-
dence of variable Xi is

da�Xi� �
X

Xj2pai

Dep�Xi;Xj; a�:

Note that da�Xi� � 0 if pai � ;. We can measure the global dependence of the
given DAG by

De®nition 3.9 (Global dependence of a DAG). In the same conditions as before,
the global dependence of a DAG G is

Da�G� �
X
Xi2D

da�Xi�: �1�

De®nition 3.10 (Maximally dependent DAG). A graph G de®ned on a domain of
variables D � fX1; . . . Xng is said to be maximally dependent if no other DAG
G0, de®ned on the same domain U has a dependency Da�G0� > Da�G�.
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The question know is how to ensure that we recover from data a graph that
re¯ects the strongest dependencies present in the data and, at the same time,
ensures that it conveys the maximum information, that is, that it guarantees
that its implicit possibility distribution is as close as possible to the one cor-
responding to the data set.

4. Dependence and information

First we will show that those graphs with greater dependency, that is, higher
constraint among their variables, show lower nonspeci®city values. That is,
they represent distributions that are more precise (i.e. more informative) given
the available data.

Theorem 4.1 (DAG global dependency and nonspeci®city). Given two equiva-
lent DAGs G and G0 such that D�G� > D�G0� then U�G� < U�G0�.

Proof. Let us suppose that G and G0 are identical.
Let us call D�G� � c and D�G0� � c0, if c > c0 then, for any variable in

U ; dlG > dlG0 , that is, for any variables X,Y in G Y in pa�X � and X 0, Y 0 in G0, Y 0

in pa�X 0� Depa�X ; Y � > Depa�X 0; Y 0� implies by Theorem 3.4 [27] that
U�p�X jY �� < U�p�X 0jY 0�. As U�G� �Pxi2U U�p�X jY �� and U�G0� �P

xi2U U�p�X jY ��, that is, U�G� � n� U 0�p�X jY ��, U�G� � n� U�p�X jY ��,
but we know that the terms of the second summation are lower that those of
the ®rst one, so U�G� < U�G0�. �

Two DAGs are said to be equivalent if they share the same dependence
model, i.e., they re¯ect the same independency assertions. In [27] we proved
several properties relating global dependence degrees and independence
properties of DAGs. This last relationship is important for learning because it
establishes that in looking for a DAG if we set a higher degree of dependency
we will obtain a more precise DAG.

4.1. Information closeness between a DAG and a possibility distribution

In learning problems, information about dependencies and uncertainty will
be extracted from a summarized form of knowledge as possibility distributions
are. In probabilistic settings, sampling theory can help us in approximating a
theoretical probability distribution by another one extracted from data in such
a way as to minimize some measure of distance between distributions. In the
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framework of belief network learning, what is usually done is measuring the
closeness between the probability distribution extracted from data and the
theoretical form the probability distribution would have, had the data been
generated by a Bayesian network distribution.

The Chow and Liu algorithm, for example, ensures the minimization of
Kulblack±Leiber cross-entropy [23], assuming that the approximating distri-
bution has a tree structure. In possibility theory we can follow a similar line of
work by trying to see which are the characteristics of information that ensure
that a given DAGs approximates better a supposed possibility distribution
extracted from data. We have shown in previous sections that if the simi-
larity-based dependency measure is maximized then, the nonspeci®city of the
resulting DAG is minimized. This can be understood, if not as a closeness
criterion, at least as a quality criterion. Now we will try to investigate other
possible criteria for assessing the adequacy of a network, given that a possi-
bility distribution exists.

Let us suppose that a database is de®ned on a domain U � fX1 . . . Xng. For
our purposes, a database is a collection cases. Each case is a tuple fxi1; . . . ; xing.
Each xij is interpreted as an occurrence of a value xi of the corresponding
variable Xj. We assume that variables X1 . . . Xn are independent and that the
realization of each case does not depend on the realization of any other case.
Note, that contrary to what is usual in probabilistic settings we do not assume
that all the possible realizations of xij appear in the database. For convenience
we will suppose that variables Xj take values in ®nite sets which are known
beforehand. We do not impose that the cardinality of all variables is the same.
From now on, we will suppose that the precision is uniform. That is each value
xij is measured up to the same level of imprecision.

Let us call the possibility distribution extracted from data pD. Remember
that pDXj � maxfpD�X1 . . . Xn�g. For now we will stick to this equality. How-
ever, further on, when we de®ne how we estimate possibilities from data we will
come back to this identi®cation and modify it according to the estimation
method. The task of constructing a DAG from this information can also be
seen as a method for recovering a DAG-structured distribution that is as close
as possible to the one implicit in the data. This is the basic assumption of in-
formation based learning methods and we will comment some possibilistic
variants in the next section. In order to do it we need to test the closeness
between the two distributions. We put forth here a variation of Ramer's cross-
nonspeci®city [26].

De®nition 4.1 (Distance between two possibility distributions). Given two pos-
sibility distributions p and p0, on the same domain X � fx1 . . . xng we de®ne
their distance, distance�p; p0�, as the nonspeci®city of the distribution di�erence

distance�p; p0� � jU�pÿ p0�j:
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In this way we can test the information distance between any two variables
X and Y. We can introduce a more precise de®nition.

De®nition 4.2 (Information distance between two variables). The information
distance between two variables X, Y with the same cardinality fx1; . . . ; xkg,
fy1; . . . ; ykg is

distance�X ; Y � �
Xk

1

�p�xi�
����� ÿ pi�xi�1�� ÿ

X
1k�p�yi� ÿ pi�yi�1��

����� log2 i;

where p�xi�; p�xi�1� (analogously for Yi values) are the ordered possibility dis-
tributions for X and Y.

The next natural step is to ®nd under which conditions the distance between
the distribution underlying a database and the distribution implied by a DAG
is minimal. In order to do so we will introduce some simpli®cations. The ®rst
one is to give full con®dence to the data and suppose that it is the true dis-
tribution. The second one is to test ®rst this condition on tree-structured dis-
tributions. In such a distribution, each variable has only one single parent that
precedes it. So, we can de®ne a numbering function L : �1 . . . n� ! �1 . . . n�,
with n being the variables in U such that for each variable Xi its parent is Xl�i�.

Let us see under which conditions a general possibility distribution (that is a
possibility distribution with no special constriant on its structure) is better
approximated by a tree-structured possibility distribution.

Note that in a DAG structured distribution:

p�X1; . . . ;Xn� � minfp�Xijpa�Xi��g

or

p�X1; . . . ;Xn� �
Yn

i

p�Xijpa�Xi��

depending on the combination operator used. In a tree structure we have

p�X1; . . . ;Xn� � minfp�XijXL�i�g

or

p�X1; . . . ;Xn� �
Yn

i

p�XijXL�i��

given that the parent set is made up of just only one variable.
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Moreover, for each variable in the DAG

p�Xi� � min
k<i
fp�Xkjpa�Xk�g

and respectively

p�Xi� �
Yi

k�1

p�Xkjpa�Xk��;

as Fonck [16] proved. This, in the case of trees, becomes

p�Xi� � min
k<i
fp�XkjXL�i��g

and respectively

p�Xi� �
Yi

k�1

p�XkjXL�i��:

Theorem 4.2 (Distance minimization). Given two possibility distributions p and
pD. If pt is a tree-structured distribution, then the distance between p and pt is
minimized for all tree-structured distributions when is a maximum weight tree of
the information distance between any two variables in U.

Proof. We will calculate the di�erence jU�pÿ pt�j

jU�pÿ pt�j �
X
Xi2U

X
xi2Xi

jp�xi� ÿ p�xi�1�j ÿ jpt�xi� ÿ pt�xi�1�j log2 i

P
X
Xi2U

X
xi2Xi

jp�xi� ÿ p�xi�1�j

ÿ
X

xi2Xi ; Xi2XL�i�

jp�XijXL�i�� ÿ p�Xi�1jXL�i�1��j log2 i �2�

�
X
Xi2U

X
xi2Xi

jp�xi� ÿ p�xi�1�j ÿ
X
Xi2U

U�XijXL�i��:

Note that the ®rst term of the last equation does not depend on the network
topology and the second term isX

Xi2U

U�Xi� ÿ
X

Yi2pa�Xi�
U�Yi� � U�Xi� ÿ U�XL�i��: �3�

The di�erence U�Xi� ÿ U�XL�i�� is minimized when the information gain
between those two variables is maximized. That is, when the tree is a maximum
spanning weight tree on information gain. �
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This is a similar result to the Chow and Liu [9] theorem on approximating
probability distributions by tree-structured distributions. Let us remark that,
as the information is maximized, it is due to the negative contribution of the
nonspeci®city of p�X jY �. That is, the lower this last quantity is for all variables
in the DAG the more information is gained on each pair and the closer is the
overall DAG distribution. Note that this last circumstance again relates non-
speci®city to dependency. Remember that nonspeci®city decreased with in-
creasing values of dependency, so if instead of using the information gain
approach the dependency value is calculated, obtaining the maximum weight
spanning tree on dependency values (based on similarity values) will also en-
sure that the distance between the distributions from the database and the
DAG will be minimized. Now we have two di�erent ways for evaluating the
quality of a given network and consequently for selecting the most promising
path to a solution in the learning search process. The natural thing to do is to
combine both measures in order to ensure that the most accurate (in the sense
of representing the dependencies in the domain) as well as the most informative
network (minimum nonspeci®city) can be recovered. However, it turns out that
it is enough to build networks with the aid of dependence measures in order to
obtain this goal.

5. Learning with and without prior knowledge

Now we will see how these results in the informational properties of our
dependence measure can be used in the construction of simple graphs.

We devised a greedy-search algorithm along the lines of K2 [11], POSS-K2
which takes as quality measure the global dependence de®ned in Section 4. At
any given step the algorithm tries to expand the partial DAG by connecting the
variable that maximizes global dependence of the graph.

See [7] for a discussion of the in¯uence of the similarity threshold in the
structure and quality of recovered DAGs. Note that a good initial order
among variables is critical (as is in the K2 algorithm). Now we will see how
this simple algorithm can take advantage of a limited form of prior knowledge
expression.

Algorithm 1 (POSS-K2 Algorithm).

Input: a database on the variables fX1; . . . ;Xng;
an order � among the variables;
a maximum number of parents per node, u;
similarity threshold a;
begin

Let pai � ;; OK � true;
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Depold � Dep�Xi; pai; a�;
while (OK and jpaij < u) do

Let Z � Xi; Z 62 pai such that Dep�Xi; pai [ Z; a� is maximum
Depnew � Dep�Xi; pi [ Z; a�
if Depnew > Depold then

Depold � Depnew

pai � pai [ fzg;
else

OK � false;
end if

end while

end

5.1. Expression of prior knowledge: partial structures

Remember that in Section 2 we identi®ed as a possible way of expressing
prior knowledge or preferences over the form of the networks to be recovered,
a collection of links, a partial structure. We also mentioned that the user may
have di�erent states of belief with respect to his or her prior knowledge. To
keep things simple, we start by supposing that the user is fully con®dent on his
or her knowledge. We collect that information in a sure links list.

De®nition 5.1 (Sure links list). A sure link list on a domain U is a list of pairs
�X ; Y � with X ; Y 2 U where each pair is interpreted as a link X ! Y .

Let us see how this information can be introduced in the POSS-K2 algo-
rithm in order to build the corresponding DAG.

5.2. Using the sure links list

We add a simple modi®cation to the previous algorithm. Each time a
variable is considered as a possible parent of the node being treated it ®rst has
to be seen if the

Algorithm 2 (POSS-K2 Algorithm).

Input: A complete sure links list lsure

A dependence threshold c
A dependence value a
A limit on the number of parents per variable, u
An order, �, de®ned on the variables of the domain
begin
Let pai � ;; OK � true;
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Select a variable not yet treated, Xi

Depold � Dep�Xi; pai; a�
while (OK and jpaij < u) do

Mark Xi as treated
Let Z � Xi, Z 62 pai

if �Z ! Xi� 2 lsure� then

if Dep�Z;Xi; a�P c then

remove X ! Xi from lsure

end if

else
Let Z � Xi, Z 62 pai such that Dep�Xi; pai [ Z; a� is maximum

end if

Depnew � Dep�Xi; pi [ Z; a�
if Depnew > Depold then

Depold � Depnew

pai � pai [ fZg;
else

OK � false;
end if

end while

end

The algorithm works by taking into account the user supplied prior
knowledge but trying not to give excessive importance. Notice that only links
in the sure links list that have a dependency degree higher than the one
speci®ed, (c), will be taken into consideration. If there is not enough support
from data, then the algorithm resort to using the dependence information
extracted from data in the usual way, i.e., selecting the variable that maximizes
dependence from the ones not yet treated.

How do this modi®cation a�ect the behaviour of the algorithm and the
resulting networks?

DOLO

FO BP

HB

Fig. 1. Musick's example network.
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6. Experimentation, discussion and further work

Let us see the e�ect on a simple example. In Fig. 1 [25] a simple DAG ex-
ample is presented. This is the DAG to be recovered. Each of the variables is a
binary one with two values: true, false. We used this network structure to
generate a database of 500 cases according to this structure.

The corresponding probability distribution for several of the conditional
independence relationship present in the network are shown in Table 1.

By using the maximum probability to possibility transformation [14] we
obtained the corresponding possibility distributions. In Table 1 the net-
work resulting from recovering the data with the sure links list
HB ! LO ! DO ! BP ! FO (cf. Fig. 2).

With no prior knowledge, the recovered network is the one that can be seen
in Fig. 1.

Table 1

Some of the conditional frequencies of the simple test example

FO BP FO :BP :FO BP :FO :BP

LO DO HB 4 10 0 1

LO DO :HB 0 1 0 0

LO :DO HB 0 1 0 0

LO :DO :HB 0 7 0 5

:LO DO HB 1 4 3 10

:LO DO :HB 0 1 0 1

:LO :DO HB 0 0 0 1

:LO :DO :HB 0 3 3 44

FO DO

BP

LO HB

Fig. 2. Network recovered with sure links list HB ! LO ! DO ! BP ! FO.
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The recovered structure has a nonspeci®city of 0.476494 which is better than
the one that results from recovering the network without using the sure list
links: 0.530121 (cf. Fig. 3).

In general, however, we cannot say that using a sure links list always im-
proves the nonspeci®city of the resulting network. Other tests done on our
previous algorithm, HCS [6,28] with and without order information shows that
this may be not the case. No surprise at all in that result: it all boils down to the
relationship between the order supplied by the user, the conditional indepen-
dence assertions underlying such information and the relationship between tese
assertions and the conditional dependency relationships supported by the data.

New developments will take into account the defeasible nature of previous
knowledge in order to distribute the credit given to prior knowledge as well as
to the knowledge coming out of data in the form of partially built models. In
order to take this into account we are devising new methods to incrementally
learn new networks that act as prior knowledge for further learning. In this
setting, networks proposed by the user and networks coming from a previous
learning step can be used in a uniform manner. Look for a preliminary dis-
cussion this idea on probabilistic networks in [31,32].
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