
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 169, 92-l 10 (1992) 

Finite-Dimensional Compensators for Linear Distributed 
Control Systems with Delays in Outputs* 

HERNAN R. HENR~QUEZ 

Universidad de Santiago de Chile, Santiago, Chile 

Submitted by George Leitmann 

Received November 26, 1990 

In this paper we are concerned with linear control systems of infinite dimension 
with delays in outputs. An asymptotic compensator of finite order is proposed. The 
compensator provides a control law that stabilizes a wide class of distributed 
systems. Moreover, the compensator is invariant with respect to small bounded 
perturbations of the system parameters. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

The problem of stabilizing a linear invariant control system by a 
dynamic output feedback has a very extensive literature. Today, the theory 
for control systems of finite dimension is well established (see O’Reilly [6] 
and Wonham [12]), while the theory for infinite-dimensional control 
systems has been the subject of much activity recently. Several methods 
have been proposed for the design of stabilizing compensators. In par- 
ticular, for a wide class of infinite-dimensional systems, which includes 
many systems of practical interest, it is possible to construct a finite order 
compensator. We refer to the works of Curtain [2], Schumacher [8], and 
Sakawa [7] and also to their references. 

The question of stabilizing a finite-dimensional control system with delay 
in controls and outputs was discussed by Klamka [4] and Watanabe and 
Ito [ 111. In these papers the existence and implementation of a reduced 
order observer were studied. 

The purpose of this paper is to extend these results to infinite-dimen- 
sional control systems with delay in output and bounded observation. 

First we begin by reviewing the results for finite-dimensional systems and 
introducing the notations that we will need in the next sections. 

*This work was supported in part by FONDECYT, Project 89-0749, and by DICYT, 
Project 04-8433 HM. 
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Let us consider the following linear invariant systems 

i(t) = Ax(t) + Bu(t), t>O (1.1) 

Y(f) = ax,) (1.2) 

XOE C(C-h, 01; R*), (1.3) 

where x(t) E [w” denotes the state of the system, u(t) G [w” and y(t) E Iwy 
represent the input and output of the system, respectively, and A and B are 
n x n and n x m matrices, respectively. The constant h > 0 represents the 
time delay of the observation and /i is a bounded linear operator from 
C( [ --A, 01; IV) into UV. Furthermore, as usual in the theory of functional 
equations, X, denotes the function defined by X,(O) := x(t + O), for 
-h < 0 < 0. In the sequel we shall abbreviate our notations and we use I 
to denote the interval C-h, 01. 

We assume that the input u(t) and the output y(t) are known but the 
state x(t) and the initial function x0 are unknown. 

By the Riesz representation theorem there exists a normalized bounded 
variation matricial function q: I -+ M,, ,J [w) such that 

A(v) = J” CM@)1 d@) (1.4) 
-h 

for every cp E C(t KY). We shall denote by C the matrix 

and by K: L’(Z; KY) -+ Iwp the operator 

K(I)) = jr, [dv(O)] eAe j” eC’“$(z) dz. 
8 

(1.5) 

(1.6) 

It is clear from this expression that K is a bounded linear operator. 
Let u( .) be a locally integrable function. Henceforth we will assume that 

U(S) = 0, for s < 0. Since the solution of Eq. (1.1) is given by the formula 

x(t) = eAfx(0) + I’ eA(‘-s)Bu(s) ds, tao, (1.7) 
0 

then we obtain for OEZ and t+ 0 20, 

-’ x( t + 0) = eAex( t) - eAe 
J eA(‘-J)Bu(s) ds 
r+8 

(1.8) 

409.‘169.1-7 



94 HERNANR.HENRiQUEZ 

and substituting (1.8) into (1.2), we obtain that 

y(t) = C-et) - K(BO u,) + q(t), t20, (1.9) 

where q(t) is a continuous function that depends on x0 and that it vanishes 
for t > h. Furthermore, in the expression (1.9), and thereafter, we have used 
the symbol B@q to denote the function defined by (B@q)(O)= Z&(O), 
for 0 E Z. 

The dynamical system 

i(t)=Az(t)+GCz(t)-Gy(t)-GK(B@u,)+Bu(t) 

with the control function given by 

u(t) = Fz(t) 

(1.10) 

(1.11) 

was considered in Klamka [4] and Watanabe and Ito [ 111. Combining 
the equations of the control system with the equations (l.lO)-(1.11) of the 
compensator we obtain a non-homogeneous augmented system 

d x(t) 
z z(t) = [ I[ A 

-GC A+::+BF][:I:;]+[ -:q(t)]’ 

The next result is clear. 

THEOREM 1. Zf the pair (A, B) is stabh’zable and the pair (C, A) is detec- 
table, then there exist matrices F and G for which the control systems (l.lOt 
(1.11) is an asymptotic compensator of system (l.l)-( 1.2). Furthermore, if 
the pair (A, B) is controllable and the pair (C, A) is observable then it is 
possible to choose F and G such that the eigenvalues of the matrix of the 
augmented system ( 1.1 )-( 1.10) can be arbitrarily assigned. 

Jn the next section we generalize these ideas to construct an asymptotic 
compensator of finite order for a wide class of distributed control systems. 
In Section 3 we study some robustness properties of this compensator. 

The terminology and notations are those generally used in functional 
analysis. If X and Y denote Banach spaces, we indicate by @(X, Y) the 
Banach space of bounded linear operators from X into Y. Moreover, W(X) 
denotes &?(X, X). If A: D(A) cX+ X is a closed linear operator we 
indicate by o(A) and p(A) the spectrum and resolvent set of A, respec- 
tively. If A E p(A) then R(I, A) denotes the resolvent operator (AZ- A)-‘. 
If T is a strongly continuous operator semigroup with infinitesimal 
generator A then 

o(T) = lim In II Wll 
,+ +m t 
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is called the growth bound of T and 

s(A) = sup{Re(l) : i E a(A)) 

is called the spectral bound of A. 
Moreover, in the sequel we consider the product X, x X, x ... x X, of n 

Banach spaces Xi, . . . . X, endowed with the norm 

Il(x 13 ...9 xn)ll = i /Ixi/l X; 

i=l 

2. COMPENSATORS FOR DISTRIBUTED CONTROL SYSTEMS 

In this section we consider a first order infinite-dimensional control 
system described by equations 

i(t) = Ax(t) + Bu( t), t>,O (2.1) 

v(t) = ax,) (2.2) 

with states x(t) in a Banach space X, controls u(t) in a Banach space U, 
and outputs y(t) in a Banach space Y (see Curtain and Pritchard [ 11). We 
assume that A is the infinitesimal generator of a strongly continuous semi- 
group T defined on the Banach space X, B is a bounded linear operator 
from the Banach space U into X, and .4 is a bounded linear operator from 
C(Z; X) into Y. The initial function x0 belongs to C(I; X) and it is 
unknown. Moreover, we assume that U and Y are finite-dimensional 
spaces. 

Next we introduce some notations. Let 0 < o! < fl be constants such that 
the spectral sets 

and 

ul = {d~u(A): Re(ll)> -a} 

u2= (1~a(A): -/3<Re(A)Q -U} 

are finite. 
If we set cr3 = (A E a(A) : Re(l) < -fl} then the space X can be decom- 

posed in the form X = X, 0 X, @ X3 corresponding to the decomposition of 
a(A) into the spectral sets pi, cr2, and fl’3 (Nagel [S, Theorem A-III, 3.3.1). 

In this decomposition each Xi is an invariant space under A. We will 
denote by Pi the projection associated to tri and by Ai the restriction of A 
to Xi, i= 1,2, 3. Then each operator Ai is the infinitesimal generator of a 
strongly continuous semigroup Ti on Xi. 
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Clearly, we may consider the space C(I; ,Y,) as a closed subspace of 
C(Z; X), i= 1,2, 3, and, from the decomposition of X it follows that 

C(I; X) = C(Z; A-,) 0 C(I; X2) @ C(Z; X,). 

We will represent by ni the restriction of /i to C(I; Xi), i= 1, 2, 3. 
Since we want to construct a finite order compensator, we restrict our 

focus to a class of systems already studied by several authors. Specifically 
we consider control systems which satisfy the following hypotheses. 

Assumption I. (a) Th ere exists a constant a >O such that the set 
rr, = (2 E a(A) : Re(1) > -a} is finite. 

(b) For every E >O, there exists /I > 01 such that the set g2 = 
(A E o(A) : -p < Re(l) < -a) is finite and the following conditions hold: 

(bl) The spaces X, and X, have finite dimension. 
(b2) The operator A, satisfies the Spectrum Determined Growth 

Assumption. This means that the growth bound o(T3) and the spectral 
bound s(A~) coincide (see Curtain and Pritchard [ 1 ] and Triggiani [lo]). 

(b3) The operator A satisfies Iln,(( GE. 

There exists a large class of systems that satisfy the assumptions (a), 
(bl), and (b2). This class includes the systems described by parabolic par- 
tial differential equations on bounded domains and the systems described 
by retarded functional differential equations. The condition (b3) will allow 
us to design a compensator in which the component A, of the observation 
does not appear (this is known as the spillover observation). 

An example is provided by any compact self-adjoint semigroup T defined 
on an infinite-dimensional Hilbert space X, endowed with an inner product 
( , ). We know that T has the representation 

T(t)x= f eik*<x, xk>xk, 
k=l 

where {xk : k E N } is an orthonormal basis of X and 1, are real numbers 
such that Ak + -co, as k 4 co. We assume that (&)k is a sequence strictly 
decreasing. Furthermore, each ill, iS an eigeIIValUe Of A with eigenVeCtOr xk 
and the spectrum a(A) coincides with the point spectrum o,(A)= 

(1, : k E N }. Let P: X-r CP be a bounded linear operator and let us define 
A: C(Z;X)-,V by 

A(q)= f pk<(P(-h), xk>pxk, 

k=l 

where (&)k is a sequence convergent to zero. 
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Let us fix M>O. We choose n, E N such that J,, < -a, for nan, (the 
number n, must be chosen so that the hypotheses of Theorem 2 hold). For 
each E > 0, let n2 be a natural number such that 1~~1 GE, for k an,. We 
choose /? = )A,,(. Then Xi, X2, and X3 are the subspaces generated (in the 
sense of orthonormal basis) by {x,, . . . . x,, ), {x,, + , , . . . . x,,?.. ,}, and 
{ xk : k 2 n,}, respectively. Therefore, 

for each cp E C(I; X,). Thus 1l/13l1 < E IIPII, which shows that this system 
satisfies Assumption I. 

In the sequel we consider a system that satisfies Assumption I. From 
these assumptions it follows that the control system (2.1 t(2.2) can be 
decomposed as 

ii(t) = AiXi(f) + B$4(t), (2.3) 

Y(f) = n,tx,, ,) + cab*, ,I + n,(x,* ,I (2.4) 

xi, 0 = pixO, (2.5 1 
where x,(t) = P,x(t); Bj= P,B, and xi,, denotes the function xi, ,(@) = 
xi(t + O), i = 1, 2, 3. 

Since the spaces X, and Y have finite dimension, according to Eq. (1.9) 
we may write 

A 1(x1, ,I = C, xl(t) - K,(B, 0 u,) + q1(t), (2.6) 

where C, E g(X, , Y), K, E B(L’(Z; X, ); Y) and q, is a continuous function 
that vanishes for t 2 h. 

In order to design an asymptotic compensator of system (2.1)-(2.2) we 
choose two finite-dimensional spaces Zi, i = 1,2, such that dim Zi = 
dim Xi. Let R, : X, -+ Zi be an isomorphism. We introduce the following 
finite-dimensional systems 

i~(t)=R,A,R;'zl(f)+GC,R;'zl(r)-Gy(t) 

- GK,(B, 0 u,) + G&W;’ 0 ~2, ,I + R, B,u(t) (2.7) 
i2(?)=R2A,R;'z2(?)+R2B2u(t) (2.8) 

with variables zi(t) E Zi, i= 1, 2, and initial function z,,,E C(Z; Z,). We 
define the control law u in the form 

u(t)=F.z,(t). (2.9) 
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In these expressions, FE @(Z,, U) and GE B( Y, Z,) are unknown 
operators that we must determine so that the closed-loop system, 
constituted by the control system interconnected with the dynamical 
observer (2.7)-(2.8) through the control law (2.9), is uniformly stable. If we 
write ej(t) for 

e,(t) =z,(t) - Rixi(t) (2.10) 

for i= 1,2, then we obtain the following closed-loop system in the product 
space W=X,xZ,xX,xZ,xX, 

i*(t) = (A, + B,FR,) x,(t) + B*Fe,(t) (2.11) 

~,(t)=(R,AIRI’+GCIR;‘)e,(t)+GA,(R;’Oez,) 

- GA,@,, ,) - ccl,(t) (2.12) 

&(f) =A2x2(t) + BZFRIx,(r) + B,Fe,(t) (2.13) 

iz(t) = RZA2R;‘e2(t) (2.14) 

i3(t) = A3x,(t) + B,FR,xl(t) + B,Fe,(t). (2.15) 

From (2.14) it is clear that 

ez(t) = R2eA2rR;‘e2(0), t>o, (2.16) 

and since A2 is a bounded operator then 

t 2 0. (2.17) 

On the other hand, defining the vector W, = (xi, e,, .Q)~, Eqs. (2.11), 
(2.12), and (2.15) may be rewritten in the space W, =X, x Z, xX, as 

‘+1(t) = Dw,(t) + uw,, ,I +f(t), t>O (2.18) 

w,,o=cPEW WI), (2.19) 

where the operators D and L have the block form 

D= 

L= 

A,+B,FR, B,F 0 

0 R,(AI + R;‘GCI) R,’ 0 (2.20) 

BP, BJ A3 1 [ 00 0 00 0 -GA3 0 0 1 (2.21) 
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and 

f(t) = (0, GMR;’ Oe,, ,I - N,(t), OIT. (2.22) 

It is clear that L is a bounded linear operator from C(Z; IV,) into W, 
and that D is the infinitesimal generator of a strongly continuous semi- 
group. We refer to Travis and Webb [9] for the properties of abstract 
Cauchy problems of type (2.18)-( 2.19). Furthermore, in the Appendix we 
state other stability properties of these systems, which we shall need later. 

THEOREM 2. Suppose that the control system (2.1)-(2.2) satisfies 
Assumption I. Zf the pair (A,, B,) is controllable and the pair (C,, A,) is 
observable then there exist operators F and G so that the dynamical system 
(2.7~(2.9) is a finite-dimensional asymptotic compensator of system 
(2.1)-(2.2). 

ProoJ Let X= X, OX, be the decomposition of X associated to the 
decomposition of o(A) in the sets 

o,= {Lea(A) :Re(A)> -cc}, 

go= {~EQ(A): Re(L)& -a). 

Since the semigroup T, = T lx0 satisfies the spectrum determined growth 
assumption then 

IIT(t)ll < Moepa’, tao (2.23) 

for some constant MO > 1. 
On the other hand, as the finite-dimensional pairs (A,, B,) and (C,, A,) 

are controllable and observable, respectively, then there exist linear 
operators F and G for which the spectrum of matrix 

D = A,+B,f’R, B,F 
0 0 R,(A, + R;‘GCJ R;’ I 

(2.24) 

is included in the set {i E @ : Re(A) < -p}, for some constant ,U > a. 
Therefore, there exists No 2 1 such that 

t 2 0. (2.25) 

Let E > 0 and /I > a be constants such that 

(2.26) 
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where we introduce the constant 

iV= max IV,, M,, 
1 

No.Mo lIC&FR,, 4PllI 
P--a 1. 

(2.27) 

Let X=X, OX, OX, be the decomposition of X associated to the 
decomposition of the spectrum set of A in the sets g1 = (,? E a(A) : 
Re(n)> ---a}, a,={~~o(A): -a<Re(l)g -IX}, and a,=(n~o(A): 
Re(A) < -p}. Now using that X, E X0 and the inequality (2.23) we obtain 
that 

II 7-3(t)ll G Moe-“‘, t 2 0. (2.28) 

On the other hand, from Schumacher [S, Proposition 4.71, it is known 
that the semigroup S(t) generated by D has the following block triangular 
form 

(2.29) 

where the operator S,,(t) : X, x 2, + X, is defined by 

S,,(t) 
x1(t) f 

[ lj zl(t) = 0 
T3(t-s)[B3FRI, B,F] eDos i 1 xl(t) ds 

Zl(f) 
(2.30) 

and the growth bound w(S) < -a. Actually, from (2.29) and (2.30) we 
obtain that 

IlS(t)ll ,< Ne-“‘, t > 0. (2.31) 

Since gl(t) vanishes for t>sh and the function e2(t) satisfies (2.17) then 
the function f(t) defined in Eq. (2.22) also verifies an inequality of type 

Ilf(tNl < ae-“‘, t 2 0. 

As I(L(I < (IGI( .E, from (2.26), (2.31), and Lemma 1 in the Appendix we 
obtain that the solution of problem (2.18), (2.19) satisfies an inequality of 
type 

Ilw,(t)ll G be+, 

for some constants b > 0 and y > 0. Finally, from (2.13) and the variation 
of constants formula we may write that 

x2(t) = e A2’~2(0) + j: e az”-s)[B2FR1 B,F 0] w,(s) ds 

which implies that Ilx2(t)ll also decreases exponentially. 
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3. ROBUSTNESS OF THE COMPENSATOR 

In this section we will study two properties of robustness of the 
compensator constructed in Theorem 2. 

Initially we consider the control systems described by the equation 

i(t)=Ax(t)+Bu(t)+v(t) (3.1) 

Y(l) = &,h (3.2) 

where A, B, and ,4 are operators that satisfy all the assumptions of 
Section 2 and u is an unknown perturbation. 

We say that a locally integrable function u: [0, +co) -+ X vanishes at 
infinity in the Stepanov sense if 

/+I 
lim I Ilu(s ds = 0. 

,-++a: , 

Next we will assume that the perturbation v vanishes at infinity in the 
Stepanov sense. Under this assumption we can show the following 
property. 

PR~PoSI-I-ION 1. If the function v: [0, +oo) -+ X vanishes at infinity in 
the Stepanov sense and p > 0 then the function 

g(t) = ji e-pc(r-s) Ilu(s ds 

converges to zero as t -+ + 00. 

Proof: Let n be the greatest integer dt, then 

ep’” Ilu(s ds+ I’ epS Ilu(s ds) 
n 

fe-v’ C eAk+‘) 

k=O 

j;+’ Ilu(s ds+[“+’ Ilu(s ds. 
,Z 

For each E > 0, let no E N be such that 

I 
k+l 

llvts)ll ds < e k 

for every k > no. Then, if t > n,, we obtain that 
no- I 

I 

k+l 
g(r)<epp’ 1 epck+‘) IIv(sNl ds + 

k=O k 
&(&.,> 

which completes the proof. 
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THEOREM 3. Assume that the hypotheses of Theorem 1 hold and suppose 
that v vanishes at infinity in the Stepanov sense. Then the dynamical system 
(2.7t(2.9) is a finite-dimensional asymptotic compensator of system 
(3.1~(3.2). 

Proof The demonstration of this result is similar to the proof of 
Theorem 2. With the notations introduced in Section 2, we obtain the 
following closed-loop system 

k,(t) = Dw,(t) + L(h, ,I +f(t) + g(t) 

iAt) = A2x2(t) + BzFRlxl(t) + B,Fe,(t) + Pzv(t) 

tiz(t)=R,A,R;‘e,(t)-R,P,v(t), 

(3.3) 

(3.4) 

(3.5) 

where D, L, and f are defined by (2.20), (2.21), and (2.22), respectively, 
and 

g(t) = (PI v(t), -R, P, v(t), f’+W)=, (3.6) 

From (2.17) and Proposition 1 we infer that e,(t) -0, as t + +co. 
Hence, it follows that f(t) + 0, t + co and since g vanishes at infinity in the 
Stepanov sense, a slight extension of Lemma 1 in the Appendix allows us 
to conclude that w,(l) + 0, as t + co. Finally, proceeding in the same way 
we obtain that x*(t) converges to zero when t + +co. 

Next we consider the problem of robustness of the stability of the 
augmented system that results from the interconnection of the control 
system (2.1)-(2.2) with the compensator (2.7)-(2.9), when there exist small 
perturbations of the system parameters A, B, and /i. 

In the sequel we assume that the operators A, B, and A satisfy all 
the conditions established in Section 2. Let us consider A, Ed, 
B, E$?( U; X), and /i, E B(C(I; X); Y) as perturbations of operators A, B, 
and /1, respectively. In order to reduce the notations we shall write 
A”=A+A,, B=B+B,, and ;i=A+A,. 

It is well know that A” generates a strongly continuous semigroup (Nagel 
[S, Theorem A -11, 1.291) that we will denote by !? Consequently the 
control system 

is well defined. 

f(A)=A”x(t)+Bu(t) (3.7) 

y(t) =4x,) (3.8) 

Next we will show that if the norms of the perturbations are sufficiently 
small then the compensator constructed in Theorem 2 also serves to 
stabilize the perturbed system (3.7)-(3.8). 
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Let us begin by observing that if o(A) = cI u o2 u e3 is the descomposi- 
tion of the spectrum set of A considered in the proof of Theorem 2 and that 
if rl,, i = 1,2, are rectifiable closed curves which contain oi in their interior, 
then there exists 6 > 0 with the following properties: if llA,l\ < 6 then the 
spectrum ~(1) can be decomposed into parts ii,, ij2, and 6, where ci, 
i= 1, 2, is contained in the interior of c (Kato [3, Theorem 3.161). 
Moreover, in the decomposition X= w,@ ii;, @ 2, associated to 2, 
dim(X,) = dim(W,), i= 1,2, and if we denote by pi, i= 1, 2, 3, the projec- 
tions induced by this decomposition of X then llP,- pi[l -+ 0, as 6 -+ 0. 
Therefore, we may conclude that the restrictions Pi 1 F, : g, + X,, i = 1,2, 3, 
which we shall designate with the same symbol Pi, are isomorphisms. 

Proceeding as in Section 2, we will denote Aj to the restriction of 2 to 
wj and d, to the restriction of ;i to C(I; wj), i = 1, 2, 3. Also we shall write 
Bi for pii?, i = 1,2,3, and we define R,= RiPi, i = 1,2. It is clear that 8, 
is an isomorphism from pi on Zi. 

Therefore, the control system (3.7 )-(3.8) can be decomposed in the form 

ii(t) = 2,x,(t) + B,u(t), i= 1, 2, 3. (3.9) 

Y(l) = Ah, ,I + J2(%, ,I + 23(x3, ,). (3.10) 

We introduce the auxiliary system defined by Eqs. (2.7)-(2.8) and we 
close the system with the feedback control law u(t) = Fz,(t). Now, we 
define the states reconstruction errors 

e,(t) = z,(t) - Rixi(t), i= 1, 2. (3.11) 

Proceeding as in Section 2, we obtain the following equations for the 
composed system 

~l(t)=(A,+B,FR,)ji-,(t)+B,Fe,(t) 

+(P,A”,P;‘-A,)%,(Z) 

+ P,(B, -B,) FRlx,(t)+ P,(B, -B,) Fe,(t) (3.12) 

kl(t)=(R,A,R;‘+GC,R;‘)e,(t)+Gn,(R,’Oe2,,)-Gn,(x3,,) 

+ CR,A, - R,PIA”,P,‘+GC,-Gc’,P,’ 

+ R,P,(Bl -k) FR,l xl(t) 

+ RIPl(Bl - B,) Fel(t) + H&RI OXI, ,I - Q(R1 O-f,, ,)I 

+ GCt%e,, ,) - Q(e,, ,)I + Gt~d%, ,I - &(P;’ 0 22, ,)I 

+ GC~~(X~,O -&(x3, ,)I - Gq,(r) (3.13) 
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-&(t) = A*&(l) + B,FR,.%,(t) + B,Fe,(t) 

+ P*(& - B,) FR,.f,(t) + PJ& -B,) Fe,(t) 

+(P,&P;‘-A2)X# 

6*(t) = R,A,R;‘e,(t) + RZPz(Bz -&) FRI.?,(t) 

+ R*P,(B, - 8,) Fe,(t) + R,(A, - P2A”2P;‘) iI 

a,(t)=A”,x,(t)+B,FR,f,(t)+B,Fe,(t). 

(3.14) 

(3.15) 

(3.16) 

In these equations we have introduced the notations zi = Pixi, i = 1,2, and 
we use Q and Q to designate the operators defined on L’(Z; Z,) by 

Defining the vector w=(Xi, e,, X,, e,, x,), Eqs. (3.12~(3.16) may be 
rewritten in the space W= X, x Z, x X, x Z, x X, as 

qt)=Bw(t)+L(w,)+D,w(t)+L,(w,)+f(t), (3.17) 

where the operators b and L have the following block form 

Al+B,FR, B,F 0 0 0 
0 (R,A,+GC,)R;’ 0 0 0 

fi= M-R, B,F A, 0 0 (3.18) 
0 0 0 R2A,P;’ 0 

M-R, 4F 0 0 2, 

1 
0 [ 0 

0 0 0 0 
0 0 0 GA,(R;‘@ .) 0 

L= 0 0 0 0 . 
0 0 0 0 0 
0 0 0 0 0 

1 (3.19) 

The function f is given by 

f(t) = (0, -W,(t), 0, 0, O)= (3.20) 

and so D, as well as L, are bounded linear operators such that //D,1/ + 0, 
as 6 + 0, and jJL,(( + 0, as 6 + 0. 
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THEOREM 4. Assume that the hypotheses of Theorem 1 hold and that the 
semigroup T is continuous in the operator norm on (0, +a). Then for 6 suf- 
ficiently small the dynamical system (2.7)-(2.9) is a j?nite-dimensional 
asymptotic compensator of system (3.9)-(3.10). 

Proof: We must prove that the solutions of Eq. (3.17) converge to zero 
as t -+ +co. But this is a straightforward consequence of Lemma 2 in the 
Appendix. In fact, it is clear from (3.18) that b has block triangular form 

and that the semigroups generated by bii are uniformly stable. Moreover, 
if the semigroup T generated by A is continuous in the operator norm then 
so is the semigroup p generated by A” (Nagel [S, Theorem A-II, 1.30]), 
which in turn implies that the semigroup generated by d,, = A3 is 
continuous in the operator norm. Since X, and X, are finite-dimensional 
spaces we may conclude that the semigroups si generated by bi,, i = 1,2, 3, 
are continuous in the operator norm on (0, +co). We complete the proof 
observing that 

L,;.R(A D,,) 4, = 0 

R, R(E., A,) R; ’ 1 
x c”T’ BFl 

= 0. 

4. CONCLUSION 

In this paper a method to design a dynamical compensator for a linear 
distributed control system with retarded bounded observation is studied. 
The method is an extension of the design previously proposed by Klamka 
[4] and Watanabe and Ito [ 1 l] for linear finite-dimensional control 
systems. It is proved that for a large class of distributed control systems, 
there exists a compensator of finite order. This class of systems has been 
previously studied by Schumacher [IS], Curtain [2], and Sakawa [7]. 
Moreover, the proposed compensator is invariant with respect to small 
parameter perturbations. 
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APPENDIX 

In this Appendix we collect some stability properties of abstract retarded 
differential equations. 

Let T be a strongly continuous semigroup defined on a Banach space X 
and let A be its infinitesimal generator. Let L be a bounded linear operator 
from Y = C( [ -h, 01; X), h > 0, into X and let f be a continuous function 
with values in X The initial value problem 

i(t) = Ax(t) + L(x,) +f(t), t>O (A.11 

xo=rp (A.2) 

has been studied by several authors (see Nagel [S] and Travis and Webb 
[9]). It is known that there exists a unique continuous solution x(t) of 
(A.l)-(A.2) on [O, co), in the sense that x solves 

x(t)=T(t)q(O)+j; T(t-s)L(x,)ds+I; T(t-s)f(s)ds (A.3) 

for t>O and x0=+ 
If x(t, cp) denotes the solution to this equation with f z 0 (homogeneous 

equation), then the operator U(t): Y + Y, U(t)cp = x[(., cp) defines a 
strongly continuous semigroup on Y. We will denote by A, the 
infinitesimal generator of this semigroup. 

LEMMA 1. Suppose that there exist constants N 2 1 and p > 0 such that 

II T(t)11 < Ne-“‘, t>O (A-4) 

and 

v=p-NIILII e”lh>O. (A.5) 

If f is a continuous function that vanishes at infinity then x(t, cp) -+ 0, 
t+co, for every rpEC([-h,O];X). 

Furthermore, if jlf(t)ll < ae-=‘, t 2 0, for some constants a 2 0 and u > 0 
then 

Ilx(t, (p)ll < Neph JltplJe-“‘+ aNeflhe-B’ (A.61 

for every constant /3 such that 0 < /? < min{cr, v ). 

ProoJ This result is a straightforward consequence of the Gronwall- 
Bellman theorem. In fact, it follows from (A.3) that 

~(t)=T(t)cp(O)+j~ T(t-s)L(x,)ds+j’T(t-s)f(s)ds, 
0 0 
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where we shall abbreviate x(t) instead of x(t, cp). Hence, 

for every t >, 0. Since 11x( r + @)(I < llrpll for all t + 0 d 0, from the last 
inequality we infer that 

IIx,ll = sup Il--dt + ONI 
BEI 

= NePh - P’I llcpll + IM 1: eps Il~,Il ds + ji eps Ilfb)ll ds] 

and the Gronwall-Bellman theorem implies that 

.c , llxfll < Neph IjpJ[ e(“pA’)r + Neph e-@“-“I IIf(s)ll ds 
0 

* + vNewh 1 
e(y-“)(‘-s) 

0 s 
s ,-@L-T, Ilf(~)ll d? ds. (A.7) 

0 

On the other hand, if g is a scalar function which vanishes at infinity it 
is well known that the function v defined by 

v(t) =I’ ecc(rps)g(s) ds 
0 

also vanishes at infinity, for every E > 0. Therefore the second and third 
terms of (A.7) converge to zero, as t -+ +co, which proves the first asser- 
tion. Finally if Ilf( t) (I < ae -‘I and we substitute this inequality into (A.7) 
we obtain (A.6). 

LEMMA 2. Zf the semigroup T is uniformly continuous on (0, $03) then U 
is a uniformly continuous semigroup on (h, +a~). 

ProoJ: Arguing as in the proof of Proposition 2.1 in Travis and Webb 
[9], for each cp E Y we consider the sequence of functions (u~),>~ defined 
by u”(O)=cp(Q) for -h<O<O and n>O, u”(t)=T(t)cp(O) for t>O and 

u”(t)=T(t)cp(O)+ f T(t-s)A(u)J-‘)ds. (A.8) 

for t>O and nEN. 
Let the operator functions U,: [IO, co) + a( Y) be defined by 

U,(t)cp = u:, t>O, DDE Y, and n>O. (A.9) 
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It is easy to verify that U,, are strongly continuous and continuous in the 
operator norm on (h, +co). Moreover the sequence (U,(t)), converges in 
the operator norm uniformly on bounded intervals to U(t). This proves the 
assertion 

For 2 E C, we use the notation 

L,x = L(e”o x), x E x. (A.10) 

Clearly L1 is a bounded linear operator on X and 11 LA// < I( L(I elRe(‘)l .h. 
When the space X has product form X= X1 x X, x X, and the operators 

A and L have an approximately triangular block matrix representation, we 
obtain the following result of stability. 

LEMMA 3. Suppose that A, are infinitesimal generators of semigroups T. 
on the Banach spaces Xi, i = 1,2, 3, respectively, and that A,,: X, +X,, 
A3,: X, +X,, and L,,: C( [ -h, 01; X,) + X, are bounded linear operators 
such that the following conditions hold: 

(a) The semigroups Ti, i= 1,2, 3, are untformly stable and continuous 
in the operator norm on (0, + co). 

(b) Let 

(c) For every A E p(A,,), 

L,, i.R(5 A,,) A,,= 0. (A.ll) 

(d) The function J [0, co) + X is continuous and it vanishes for t > h. 

Then there exists E > 0 such that the solution to the problem 

i(t) = Ax(t) + A,x(t) + L(x,) + L,(x,) + f(t) (A.12) 

xo=(P (A.13) 

converges to zero, for every A,EW(X) and L,E.%( Y, X) such that jlA,ll <E 
and IJL,(J < E. 

Proof First we observe that by virtue of the hypotheses and Theorem 
A-II, 1.30 in Nagel [S] the semigroup generated by A + A, is continuous 
in the operator norm on (0, +co). Applying Lemma 2 we infer that the 
semigroup U associated to Eq. (A.12) is continuous in the operator norm 
on (h, +co). Therefore U satisfies the spectrum determined growth assump- 
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tion (Nagel [S, Corollary A-III, 6.61). Thus in order to show that U is 
uniformly stable it is sufficient to prove that sup{Re(A) : I E a(A.)} < 0. 

Since the semigroups &, i= 1,2,3, are uniformly stable there exist 
constants ~(~2 0 and constants Ni> 1, i= 1,2,3, such that 

II Ti(t)ll d NiFugr, t 2 0. (A.14) 

Letcc=min~a,,or,,cr,}.WewillprovethatforO<6<cxthereexist&>O 
SO that ((A,(( <E and \1~5,[1 <E imply that sup Re a(A U) < --CI + 6. In fact, it 
follows from Nagel [S, Proposition B-IV, 3.41 that 2” E a(A (,,) if, and only 
if, 2 E fl(A + A, + Ln + L, J. 

For ;C E @, Re(l) > --GI + 6, we define the operators 

D(I)=Diag(,?Z-A,,,IZZ-A,,,IZ-A,,) (A.15) 

and 

-L 12, iRtb Aa1 0 
Z 0 

I 

(A.16) 
0 I 

It is clear from the semigroup properties that E(A) is well defined. 
Moreover, using condition (c) it follows that E(A) has bounded inverse and 

Therefore, we may write 

lJ-A-A,-L;.-Lr,;~=E(/Z)D(~)-A,-L,,j, 

=E(13)[Z-E(~~)-’ (A, + L,, ;) o(n)-‘] D(I). 

(A.18) 

But, from the semigroup theory we deduce that the operator functions 
J-,r>(n)-’ and I -+ E(i)-’ are bounded for Re(l)Z -a +6. Hence we 
infer that there exists E > 0 such that l/A,\/ <E and IJL,Jl 4 E imply that 
IIE(n)-’ (A,+L,,) Z)(n)-‘11 < 1. Thus 2$r~(A.) and a(AU)c (ICC : 
Re(A)< -a-t-S>. 

Now, since the function f vanishes for t Y h, Eq. (A.12) is reduced to a 
homogeneous equation for t >h. In view of the fact that U is uniformly 
stable then the solution to (A.12)-(A.13) converges to zero as t-+ +or~. 
This completes the proof. 

409/169/l-8 
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