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a b s t r a c t

Let λ denote any one of the classical spaces `∞, c , c0 and `p of bounded, convergent,
null and absolutely p-summable sequences, respectively, and λ̂ also be the domain of the
generalized difference matrix B(r, s) in the sequence space λ, where 1 ≤ p < ∞. The
present paper is devoted to studying on the sequence space λ̂. Furthermore, the β- and
γ -duals of the space λ̂ are determined, and the Schauder bases for the spaces ĉ , ĉ0 and̂̀p are given, and some topological properties of the spaces ĉ0, ̂̀1 and ̂̀p are examined.
Finally, the classes (̂λ1 : λ2) and (̂λ1 : λ̂2) of infinite matrices are characterized, where
λ1 ∈ {`∞, c, c0, `p, `1} and λ2 ∈ {`∞, c, c0, `1}.

Published by Elsevier Ltd

1. Preliminaries, background and notation

By a sequence space, we understand a linear subspace of the space ω = CN of all complex sequences which contains φ,
the set of all finitely non-zero sequences, where C denotes the complex field and N = {0, 1, 2, . . .}. We write `∞, c, c0 and
`p for the classical sequence spaces of all bounded, convergent, null and absolutely p-summable sequences, respectively,
where 1 ≤ p < ∞. Also by bs and cs, we denote the spaces of all bounded and convergent series, respectively. bv is the
space consisting of all sequences (xk) such that (xk − xk+1) in `1 and bv0 is the intersection of the spaces bv and c0. We
assume throughout unless stated otherwise that p, q > 1 with p−1 + q−1 = 1 and use the convention that any term with
negative subscript is equal to zero.
Let A = (ank) be an infinite matrix of complex numbers ank, where n, k ∈ N, and write

(Ax)n :=
∑
k

ankxk, (n ∈ N, x ∈ D00(A)), (1.1)

where D00(A) denotes the subspace of ω consisting of x ∈ ω for which the sum exists as a finite sum. For simplicity in
notation, here and in what follows, the summation without limits runs from 0 to ∞. More generally, if µ is a normed
sequence space, we can write Dµ(A) for x ∈ ω for which the sum in (1.1) converges in the norm of µ. We write

(λ : µ) := {A : λ ⊆ Dµ(A)}

for the space of those matrices which send the whole of the sequence space λ into the sequence space µ in this sense.
A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all n ∈ N. It is trivial that A(Bx) = (AB)x holds

for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely has an inverse U−1 = V which is also
a triangle matrix. Then, x = U(Vx) = V (Ux) holds for all x ∈ ω.
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Let us give the definition of some triangle limitation matrices which are needed in the text. Let t = (tk) be a sequence of
positive reals and write

Tn :=
n∑
k=0

tk, (n ∈ N).

Then the Cesàro mean of order one, Riesz mean with respect to the sequence t = (tk) and Euler mean of order r are
respectively defined by the matrices C = (cnk), Rt = (r tnk) and E

r
= (ernk); where

cnk :=

{ 1
n+ 1

, (0 ≤ k ≤ n),

0, (k > n),
r tnk :=

{ tk
Tn
, (0 ≤ k ≤ n),

0, (k > n)

and

ernk :=

{(n
k

)
(1− r)n−krk, (0 ≤ k ≤ n),

0, (k > n),

for all k, n ∈ N. We writeU for the set of all sequences u = (uk) such that uk 6= 0 for all k ∈ N. For u ∈ U, let 1/u = (1/uk).
Let z, u, v ∈ U and define the summation matrix S = (snk), the difference matrix ∆ = (δnk), the generalized weighted
mean or factorable matrix G(u, v) = (gnk),∆(m) = (∆

(m)
nk ), A

r
u = {ank(r)} and A

z
= (aznk) by

snk :=
{
1, (0 ≤ k ≤ n),
0, (k > n), δnk :=

{
(−1)n−k, (n− 1 ≤ k ≤ n),
0, (0 ≤ k < n− 1 or k > n),

gnk :=
{
unvk, (0 ≤ k ≤ n),
0, (k > n), ∆

(m)
nk :=

(−1)n−k
(
m
n− k

)
, (max{0, n−m} ≤ k ≤ n),

0, (0 ≤ k < max{0, n−m} or k > n),

ank(r) :=

1+ r
k

n+ 1
uk, (0 ≤ k ≤ n),

0, (k > n)
and aznk :=

{
(−1)n−kzk, (n− 1 ≤ k ≤ n),
0, (0 ≤ k < n− 1 or k > n),

for all k,m, n ∈ N; where un depends only on n and vk only on k.
The domain λA of an infinite matrix A in a sequence space λ is defined by

λA := {x = (xk) ∈ ω : Ax ∈ λ} , (1.2)

which is a sequence space. If A is triangle, then one can easily observe that the sequence spaces λA and λ are linearly
isomorphic, i.e., λA ∼= λ. If λ is a sequence space, then the continuous dual λ∗A of the space λA is defined by

λ∗A := {f : f = g ◦ A, g ∈ λ
∗
}.

Although in most cases the new sequence space λA generated by the limitation matrix A from a sequence space λ is the
expansion or the contraction of the original space λ, it may be observed in some cases that those spaces overlap. Indeed,
one can easily see that the inclusion λS ⊂ λ strictly holds for λ ∈ {`∞, c, c0}. As this, one can deduce that the inclusion
λ ⊂ λ∆(1) also strictly holds for λ ∈

{
`∞, c, c0, `p

}
. However, if we define λ := c0 ⊕ span{z} with z = ((−1)k), i.e. x ∈ λ

if and only if x := s + αz for some s ∈ c0 and some α ∈ C, and consider the matrix A with the rows An defined by
An := (−1)ne(n) for all n ∈ N, we have Ae = z ∈ λ but Az = e 6∈ λ which lead us to the consequences that z ∈ λ \ λA
and e ∈ λA \ λ, where e = (1, 1, 1, . . .) and e(n) is a sequence whose only non-zero term is a 1 in nth place for each n ∈ N.
That is to say that the sequence spaces λA and λ overlap but neither contains the other. The approach constructing a new
sequence space by means of the matrix domain of a particular limitation method has recently been employed by Wang [1],
Ng and Lee [2], Malkowsky [3], Altay and Başar [4–9], Malkowsky and Savaş [10], Başarır [11], Aydın and Başar [12–16],
Başar et al. [17], Şengönül and Başar [18], Altay [19], Polat and Başar [20] and, Malkowsky et al. [21]. In Table 1;∆,∆2 and
∆m are the transpose of the matrices ∆(1), ∆(2) and ∆(m), respectively, and c0(u, p) and c(u, p) are the spaces consisting of
the sequences x = (xk) such that ux = (ukxk) in the spaces c0(p) and c(p) for u ∈ U, respectively, and studied by Başarır
[11]. Finally, the new technique for deducing certain topological properties, for example AB-, KB-, AD-properties, solidity
and monotonicity etc., and determining the β- and γ -duals of the domain of a triangle matrix in a sequence space is given
by Altay and Başar [8].
Let r, s ∈ R \ {0} and define the generalized difference matrix B(r, s) = {bnk(r, s)} by

bnk(r, s) :=

{r, (k = n),
s, (k = n− 1),
0, (0 ≤ k < n− 1 or k > n),

for all k, n ∈ N. We should record here that the matrix B(r, s) can be reduced to the difference matrix ∆(1) in case
r = 1, s = −1. So, the results related to the matrix domain of the matrix B(r, s) are more general and more comprehensive
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Table 1
The domains of some triangle matrices in certain sequence spaces.

λ A λA Refer to:

c Nq cNq [1]
`p, (1 ≤ p ≤ ∞) C Xp, X∞ [2]
Xp, (1 ≤ p ≤ ∞) ∆m Cp(∆m), C∞(∆m) [22]
c0, c, `∞ Rq (N, q)0, (N, q), (N, q)∞ [3]
c0, c, `∞ ∆(1) c0(∆), c(∆), `∞(∆) [23]
c0, c, `∞ ∆2 c0(∆2), c(∆2), `∞(∆2) [24]
c0, c, `∞ u∆2 c0(u;∆2), c(u;∆2), `∞(u;∆2) [25]
c0, c, `∞ ∆2 c0(∆2), c(∆2), `∞(∆2) [24]
c0, c, `p G(u, v) Z(u, v; c0), Z(u, v; c), Z(u, v; `p) [10]
c0, c C c̃0, c̃ [18]
c0, c Er er0, e

r
c [4]

c0, c G(u, v) (c0)G(u,v), cG(u,v) [26]
c0, c Ar1 ar0, a

r
c [12]

`p, (1 ≤ p ≤ ∞) Ar1 arp, a
r
∞

[15]
`p, (1 ≤ p ≤ ∞) Er erp, e

r
∞

[27,28]
ar0, a

r
c ∆(1) ar0(∆), a

r
c(∆) [14]

`p, (1 ≤ p <∞) G(u, v) `
p
A [29]

`p, (1 ≤ p <∞) ∆(1) bvp [30,31]
`p, (0 < p < 1) ∆(1) bvp [9]
c0, c, `∞ ∆m c0(∆m), c(∆m), `∞(∆m) [32,33]
`p, (1 ≤ p <∞) ∆(m) `p(∆

(m)) [19]
c0, c, `∞ ∆(m) c0(∆(m)), c(∆(m)), `∞(∆(m)) [34]
er0, e

r
c ∆(m) er0(∆

(m)), erc(∆
(m)) [20]

w
p
0, w

p, w
p
∞ ∆ w

p
0(∆), w

p(∆), w
p
∞(∆) [35]

w
p
0, w

p, w
p
∞ T w

p
0(T ), w

p(T ), wp∞(T ) [36]
`∞(p) S bs(p) [37,38]
`(p) Aru ar (u, p) [16]
`(p) B(r, s) ̂̀(p) [39]
`(p) S `(p) [40]
c0(p), c(p), `∞(p) ∆ ∆c0(p), ∆c(p), ∆`∞(p) [41]
c0(p), c(p), `∞(p) u∆ c0(u,∆, p), c(u,∆, p), `∞(u,∆, p) [42]
c0(p), c(p), `∞(p) u∆2 c0(u,∆2, p), c(u,∆2, p), `∞(u,∆2, p) [43]
c0(p), c(p), `∞(p) G(u, v) c0(u, v; p), c(u, v; p), `∞(u, v; p) [6]
`(p) G(u, v) `(u, v; p) [7]
`(p), `∞(p) Az bv(z, p), bv∞(z, p) [17]
c0(u, p), c(u, p) Ar1 ar0(u, p), a

r
c(u, p) [13]

`(p) Rt r t (p) [44]
c0(p), c(p), `∞(p) Rt r t0(p), r

t
c (p), r

t
∞
(p) [5]

c0(p), c(p), `∞(p) ∆m ∆mc0(p), ∆mc(p), ∆m`∞(p) [45]
c0(p), c(p), `∞(p) u∆(m) ∆

(m)
u c0(p), ∆

(m)
u c(p), ∆

(m)
u `∞(p) [21]

than the corresponding consequences of the matrix domain of ∆(1), and include them. For the literature concerning with
the domain λA of the infinite matrix A in the sequence space λ, the following table may be useful:
The main purpose of the present paper is to introduce the sequence space λB(r,s), and to determine the β- and γ -duals

of the space, where λ denotes the any one of the spaces `∞, c, c0 or `p. Furthermore, the Schauder bases for the spaces ĉ, ĉ0
and̂̀p are given, and some topological properties of the spaces ĉ0,̂̀1 and̂̀p are examined. Finally, some classes of matrix
mappings on the space λB(r,s) are characterized.
The paper is organized as follows: In Section 2, we summarize the studies on the difference sequence spaces. In Section 3,

we introduce the domain λB(r,s) of the generalized difference matrix B(r, s) in the sequence space λwith λ ∈ {`∞, c, c0, `p}
and determine the β-, and γ -duals of λB(r,s). After proving the fact that under which conditions the inclusion λ ⊂ λB(r,s) and
the equality λ = λB(r,s) hold, we give the Schauder basis of the spaces (c0)B(r,s), cB(r,s) and (`p)B(r,s). Finally, we investigate
some topological properties of the spaces (c0)B(r,s), (`1)B(r,s) and (`p)B(r,s) with p > 1. In Section 4 we state and prove a
general theorem characterizing the matrix transformations from the domain of a triangle matrix to any sequence space.
As an application of this basic theorem, we make a table which gives the necessary and sufficient conditions of the matrix
transformations from λB(r,s) to µ, where λ ∈ {`∞, c, c0, `p} and µ ∈ {`∞, c, c0, `1}. In the final section of the paper, we
mention the significance of working on the space f of almost convergent sequences and note further suggestions.

2. Difference sequence spaces

In this section, we give some knowledge about the literature concerning with the spaces of difference sequences.
Let λ denote any one of the classical sequence spaces `∞, c or c0. Then, λ(∆) consisting of the sequences x = (xk) such

that 1x = (xk − xk+1) ∈ λ is called as the difference sequence spaces which were introduced by Kızmaz [23]. Kızmaz [23]
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proved that λ(∆) is a Banach space with the norm

‖x‖∆ = |x1| + ‖1x‖∞; x = (xk) ∈ λ(∆)

and the inclusion relation λ ⊂ λ(∆) strictly holds. He also determined the α-, β- and γ -duals of the difference spaces and
characterized the classes (λ(∆) : µ) and (µ : λ(∆)) of infinite matrices, where λ,µ ∈ {`∞, c}. Following Kızmaz [23],
Sarıgöl [46] extended the difference spaces λ(∆) to the spaces λ(∆r) defined by

λ(∆r) :=
{
x = (xk) ∈ ω : ∆rx =

{
kr (xk − xk+1)

}
∈ λ for r < 1

}
and computed theα-,β-, γ -duals of the space λ(∆r), where λ ∈ {`∞, c, c0}. It is easily seen that λ(∆r) ⊂ λ(∆), if 0 < r < 1
and λ(∆) ⊂ λ(∆r), if r < 0.
In the same year, Ahmad and Mursaleen [41] extended these spaces to λ(p,∆) and studied related problems.

Malkowsky [47] determined the Köthe–Toeplitz duals of the sets `∞(p,∆) and c0(p,∆), and give new proofs of the
characterization of the matrix transformations considered in [41]. In 1993, Choudhary and Mishra [48] studied some
properties of the sequence space c0 (∆r), for r ≥ 1. The same year, Mishra [49] gave a characterization of BK -spaces which
contain subspace isomorphic to sc0(∆) in terms of matrix maps and sufficient condition for a matrix map from s`∞(∆) into
a BK -space to be a compact operator. He showed that any matrix from s`∞(∆) into a BK -space which does not contain any
subspace isomorphic to s`∞(∆) is compact, where

sλ(∆) = {x = (xk) ∈ ω : (∆xk) ∈ λ, x1 = 0 for λ = `∞ or c0} .

In 1996, Mursaleen et al. [50] defined and studied the sequence space

`∞ (p,∆r) = {x = (xk) ∈ ω : ∆rx ∈ `∞(p)} , (r > 0).

Gnanaseelan and Srivastava [51] defined and studied the spaces λ(u,∆) for a sequence u = (uk) of non-complex numbers
such that

(i) |uk|
|uk+1|

= 1+ O(1/k) for each k ∈ N1 = {1, 2, 3, . . .}.

(ii) k−1 |uk|
∑k
i=0 |ui|

−1
= O(1).

(iii)
(
k
∣∣u−1k ∣∣) is a sequence of positive numbers increasing monotonically to infinity.

The same year, Malkowsky [52] defined the spaces λ(u,∆) for an arbitrary fixed sequence u = (uk)without any restrictions
on u. He proved that the sequence spaces λ(u,∆) are BK -spaces with the norm defined by

‖x‖ = sup
k∈N
|uk−1 (xk−1 − xk) | with u0 = x0 = 1.

Later, Gaur and Mursaleen [53] extended the space Sr(∆) to the space Sr (p,∆), where

Sr(p,∆) =
{
x = (xk) ∈ ω :

(
kr |∆xk|

)
∈ c0(p)

}
, (r ≥ 1)

and characterized the matrix classes (Sr (p,∆) : `∞) and (Sr (p,∆) : `1). Malkowsky et al. [54], and independently, Asma
and Çolak [42] extended the space λ(u,∆) to the space λ(p, u,∆) and gave Köthe–Toeplitz duals of this spaces, for
λ = `∞, c or c0. Recently Malkowsky and Mursaleen [55] characterized the matrix classes (1λ : µ) and (1λ : 1µ)
for λ = c0(p), c(p), `∞(p) and µ = c0(q), c(q), `∞(q).
Recently, the difference spaces bvp consisting of the sequences x = (xk) such that (xk − xk−1) ∈ `p have been studied in

the case 0 < p < 1 by Altay and Başar [9], and in the case 1 ≤ p ≤ ∞ by Başar and Altay [30], and Çolak et al. [31].

3. Some new sequence spaces derived by the domain of the matrix B(r, s)

In this section, we define the sequence spaceŝ̀∞, ĉ, ĉ0 and̂̀p, and determine the β- and γ -duals of the spaces.
We introduce the sequence spaceŝ̀∞, ĉ, ĉ0 and̂̀p as the set of all sequences whose B(r, s)-transforms are in the spaces

`∞, c, c0 and `p, respectively, that is

̂̀
∞ :=

{
x = (xk) ∈ ω : sup

k∈N
|sxk−1 + rxk| <∞

}
,

ĉ :=
{
x = (xk) ∈ ω : ∃l ∈ C 3 lim

k→∞
|sxk−1 + rxk − l| = 0

}
,

ĉ0 :=
{
x = (xk) ∈ ω : lim

k→∞
|sxk−1 + rxk| = 0

}
,

̂̀p := {x = (xk) ∈ ω :∑
k

|sxk−1 + rxk|p <∞

}
.
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With the notation of (1.2), we can redefine the spaceŝ̀∞, ĉ, ĉ0 and̂̀p bŷ̀
∞ := {`∞}B(r,s), ĉ := cB(r,s), ĉ0 := {c0}B(r,s), ̂̀p := {`p}B(r,s).

Define the sequence y = (yk) by the B(r, s)-transform of a sequence x = (xk), i.e.

yk := sxk−1 + rxk, (k ∈ N). (3.1)

Since the spaces λ and λB(r,s) are linearly isomorphic one can easily observe that x = (xk) ∈ λB(r,s) if and only if y = (yk) ∈ λ,
where the sequences x = (xk) and y = (yk) are connected with the relation (3.1).
Prior to quoting the lemmas which are needed for deriving some consequences given in Corollary 3.4 below, we give an

inclusion theorem related with these new spaces.

Theorem 3.1. Let λ ∈ {`∞, c, c0, `p} and B = B(r, s). Then,
(i) λ = λB, if |s/r| < 1.
(ii) λ ⊂ λB is strict, if |s/r| ≥ 1.

Proof. Let λ ∈ {`∞, c, c0, `1} and B = B(r, s). Since the matrix B satisfies the conditions;

sup
n∈N

∑
k

|bnk| = |r| + |s|,

lim
n→∞

bnk = 0,

lim
n→∞

∑
k

bnk = r + s

and

sup
k∈N

∑
n

|bnk| = |r| + |s|,

B ∈ (λ : λ). For any sequence x ∈ λ, Bx ∈ λ hence x ∈ λB. This shows that λ ⊂ λB.
(i) Let |s/r| < 1. Since the inverse matrix B−1 = (b−1nk ) of the matrix B also satisfies the conditions;

sup
n∈N

∑
k

∣∣b−1nk ∣∣ = ∣∣∣∣1r
∣∣∣∣∑
k

∣∣∣ s
r

∣∣∣k <∞,
lim
n→∞

b−1nk = limn→∞
1
r

(
−s
r

)n
= 0,

lim
n→∞

∑
k

b−1nk = limn→∞

n∑
k=0

(
−s
r

)k
exists

and

sup
n∈N

∑
k

∣∣b−1nk ∣∣ = ∣∣∣∣1r
∣∣∣∣∑
k

∣∣∣ s
r

∣∣∣k <∞,
B−1 ∈ (λ : λ). Therefore, if x ∈ λB then y = Bx ∈ λ and x = B−1y ∈ λ. Thus the opposite inclusion λB ⊂ λ is just proved.
This completes the proof of the part (i).
(ii) Let us consider the sequences u1 := {(−s/r)n/r}, u2 := (n/r), u3 := {(−1)n(n+ 1)} and u4 := {[1+ (−1)n]/2}.
If |s/r| > 1, then Bu1 = e(0) = (1, 0, 0, . . .) ∈ λ. Hence u1 ∈ λB \ λ.
Suppose that |s/r| = 1.
(a) If λ = c0, `p, then u1 ∈ λB \ λ.
(b) Let λ = `∞, c. If s = −r , then Bu2 = e ∈ λ. Hence u2 ∈ λB \ λ. If s = r , then Bu3 = {r(−1)n} ∈ `∞, Bu4 =

(r, r, r, . . .) ∈ c. Hence u3 ∈ (`∞)B \ `∞ and u4 ∈ cB \ c .
This step completes the proof. �

The set S(λ, µ) defined by

S(λ, µ) := {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (3.2)

is called the multiplier space of the spaces λ and µ. One can easily observe for a sequence space ν with λ ⊃ ν ⊃ µ that the
inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (3.2), the α-, β- and γ -duals of a sequence space λ, which are respectively denoted by λα, λβ and
λγ , are defined by

λα := S(λ, `1), λβ := S(λ, cs) and λγ := S(λ, bs).
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Table 2
The characterization of the class (λ1 : λ2)with λ1 ∈ {`∞, c, c0, `p, `1} and λ2 ∈ {`∞, c}.

From `∞ c c0 `p `1

To

`∞ 1. 1. 1. 2. 3.
c 4. 5. 6. 7. 8.

Lemma 3.2 ([56, p. 52, Exercise 2.5(i)]). Let λ,µ be the sequence spaces and ξ ∈ {α, β, γ }. If λ ⊂ µ, then µξ ⊂ λξ .

We read the following useful results from Stieglitz and Tietz [57]:

sup
n∈N

∑
k

|ank|q <∞. (3.3)

sup
k,n∈N
|ank| <∞. (3.4)

lim
n→∞

ank = αk, (k ∈ N). (3.5)

lim
n→∞

∑
k

|ank| =
∑
k

|αk|. (3.6)

lim
n→∞

∑
k

ank = α. (3.7)

Lemma 3.3. The necessary and sufficient conditions for A ∈ (λ : µ) when λ ∈ {`∞, c, c0, `1, `p} and µ ∈ {`∞, c} can be read
from Table 2: where

1. (3.3) with q = 1. 2. (3.3).
3. (3.4). 4. (3.5) and (3.6).
5. (3.3) with q = 1, (3.5) and (3.7). 6. (3.3) with q = 1 and (3.5).
7. (3.3) and (3.5). 8. (3.4) and (3.5).

Basic Lemma ([8, Theorem 3.1]). Let C = (cnk) be defined via a sequence a = (ak) ∈ ω and the inverse matrix V = (vnk) of
the triangle matrix U = (unk) by

cnk :=


n∑
j=k

ajvjk, (0 ≤ k ≤ n),

0, (k > n),

for all k, n ∈ N. Then,

{λU }
γ
:= {a = (ak) ∈ ω : C ∈ (λ : `∞)}

and

{λU }
β
:= {a = (ak) ∈ ω : C ∈ (λ : c)}.

Combining Lemma 3.3 with Basic Lemma, we have:

Corollary 3.4. Define the sets d1(r, s), d2(r, s), d3(r, s), d4(r, s) and d5(r, s) by

d1(r, s) :=

{
a = (ak) ∈ ω : sup

n∈N

n∑
k=0

∣∣∣∣∣1r
n∑
j=k

(
−s
r

)j−k
aj

∣∣∣∣∣
q

<∞

}
,

d2(r, s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
j=k

(
−s
r

)j−k
aj exists

}
,

d3(r, s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=0

∣∣∣∣∣1r
n∑
j=k

(
−s
r

)j−k
aj

∣∣∣∣∣ = ∞∑
k=0

∣∣∣∣∣ limn→∞ 1r
n∑
j=k

(
−s
r

)j−k
aj

∣∣∣∣∣
}
,

d4(r, s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=0

[
1−

(
−s
r

)k+1
1+ s

r

]
ak exists

}
,



M. Kirişçi, F. Başar / Computers and Mathematics with Applications 60 (2010) 1299–1309 1305

and

d5(r, s) :=

{
a = (ak) ∈ ω : sup

k,n∈N

∣∣∣∣∣ n∑
j=k

(
−s
r

)j−k
aj

∣∣∣∣∣ <∞
}
.

Then,

(i) {̂`∞}γ := ĉγ := {̂c0}γ := d1(r, s) with q = 1.
(ii) {̂`p}γ := d1(r, s).
(iii) {̂`1}γ := d5(r, s).
(iv) {̂`∞}β := d2(r, s) ∩ d3(r, s).
(v) ĉβ := d1(r, s) ∩ d2(r, s) ∩ d4(r, s) with q = 1.
(vi) {̂c0}β := d1(r, s) ∩ d2(r, s) with q = 1.
(vii) {̂`p}β := d1(r, s) ∩ d2(r, s).
(viii) {̂`1}β := d2(r, s) ∩ d5(r, s).

A sequence space λwith a linear topology is called a K -space provided each of the maps pi : λ→ C defined by pi(x) = xi
is continuous for all i ∈ N. A K -space λ is called an FK -space provided λ is a complete linearmetric space. An FK -spacewhose
topology is normable is called a BK -space. If a normed sequence space λ contains a sequence (bn)with the property that for
every x ∈ λ there is a unique sequence of scalars (αn) such that

lim
n→∞
‖x− (α0b0 + α1b1 + · · · + αnbn)‖ = 0

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑
αkbk which has the sum x is then called the expansion

of xwith respect to (bn), and written as x =
∑
αkbk.

Since, it is known that thematrix domainλA of a normed sequence spaceλ has a basis if and only ifλ has a basiswhenever
A = (ank) is a triangle (cf. [58, Remark 2.4]), we have:

Corollary 3.5. Define the sequences z = (zn) and b(k)(r, s) =
{
b(k)n (r, s)

}
n∈N
for every fixed k ∈ N by

zn :=
1
r

n∑
k=0

(
−s
r

)k
and b(k)n (r, s) :=


0, (n < k),
1
r

(
−s
r

)n
, (n ≥ k).

Then,

(a) The sequence {b(k)(r, s)}k∈N is a basis for the spaces ĉ0 and̂̀p, and any x in ĉ0 or in̂̀p has a unique representation of the form
x :=

∑
k

αk(r)b(k)(r, s),

where αk(r) := {B(r, s)x}k for all k ∈ N.
(b) The set

{
z, b(k)(r, s)

}
is a basis for the space ĉ, and any x in ĉ has a unique representation of the form

x := lz +
∑
k

[αk(r)− l]b(k)(r, s),

where l := limk→∞{B(r, s)x}k.

By λµ, we mean the set

λµ := {z = (zk) ∈ ω : zk = xkyk ∀k ∈ N, x = (xk) ∈ λ, y = (yk) ∈ µ}

for the sequence spaces λ and µ.
Given a BK -space λ ⊃ φ, we denote the nth section of a sequence x = (xk) ∈ λ by x[n] :=

∑n
k=0 xke

(k), and we say that x
has the property

AK if lim
n→∞
‖x− x[n]‖λ = 0 (abschnittskonvergenz),

AB if sup
n∈N
‖x[n]‖λ <∞ (abschnittsbeschränktheit),

AD if x ∈ φ( closure of φ ⊂ λ) (abschnittsdichte),
KB if the set {xke(k)} is bounded in λ (koordinatenweise beschränkt).

If one of these properties holds for every x ∈ λ then we say that the space λ has that property, (cf. [59]). It is trivial that
AK implies AD and AK iff AB and AD. For example, c0 and `p are AK -spaces and, c and `∞ are not AD-spaces.
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The sequence space λ is said to be solid if and only if

λ̃ := {(uk) ∈ ω : ∃(xk) ∈ λ such that |uk| ≤ |xk| for all k ∈ N} ⊂ λ.

For a sequence J of N and a sequence space λ, we define λJ by

λJ :=
{
x = (xi) : there is a y = (yi) ∈ λwith xi = yni ,∀ni ∈ J

}
and call λJ the J-stepspace or J-sectional subspace of λ. If xJ ∈ λJ , then the canonical preimage of xJ is the sequence x̄J
which agrees with xJ on the indices in J and is zero elsewhere. Then, λ is calledmonotone provided λ contains the canonical
preimages of all its stepspaces.

Lemma 3.6 ([8, Theorem 2.1 and Lemma 4.1]). Let λ,µ be the BK-spaces and CUµ = (cnk) be defined via the sequence
α = (αk) ∈ µ and the triangle matrix U = (unk) by

cnk :=
n∑
j=k

αjunjvjk

for all k, n ∈ N. Then, the domain of the matrix U in the sequence space λ has the property

(i) KB if and only if CU`1 ∈ (λ : λ).
(ii) AB if and only if CUbv0 ∈ (λ : λ).
(iii) Monotone if and only if CUm0 ∈ (λ : λ).
(iv) Solid if and only if CU`∞ ∈ (λ : λ).

From Lemma 3.6, we have

Corollary 3.7. If |s/r| = 1, then̂̀1 has the KB- and AB-properties.
Lemma 3.8 ([8, Theorem 2.2]). Let λ be a BK-space which has AK-property, U be a triangle matrix and λU ⊃ φ. Then, the
sequence space λU has the AD-property if and only if the fact tU = θ for t ∈ λβ implies the fact t = θ .

Since c0 and `p have the AK -property, we can employ Lemma 3.8 for the matrix U = B(r, s). Then, we have:

Corollary 3.9. ĉ0 and̂̀p (p > 1) have the AD-property if and only if |s/r| ≤ 1.
4. Some matrix transformations related to the sequence spaceŝ̀∞, ĉ, ĉ0 and̂̀1

In the present section, we characterize some classes of infinite matrices related with new sequence spaces.

Theorem 4.1. Let λ be an FK-space, U be a triangle, V be its inverse and µ be arbitrary subset of ω. Then we have A = (ank) ∈
(λU : µ) if and only if

C (n) =
(
c(n)mk
)
∈ (λ : c) for all n ∈ N (4.1)

and

C = (cnk) ∈ (λ : µ), (4.2)

where c(n)mk :=
{∑m

j=k anjvjk, (0 ≤ k ≤ m),
0, (k > m)

and cnk :=
∑
∞

j=k anjvjk for all k,m, n ∈ N.

Proof. Let A = (ank) ∈ (λU : µ) and take x ∈ λU . Then, we obtain the equality
m∑
k=0

ankxk =
m∑
k=0

ank

(
k∑
j=0

vkjyj

)

=

m∑
k=0

(
m∑
j=k

anjvjk

)
yk =

m∑
k=0

c(n)nk yk (4.3)

for allm, n ∈ N. Since Ax exists, C (n) must belong to the class (λ : c). Lettingm→∞ in the equality (4.3) we have Ax = Cy.
Since Ax ∈ µ, then Cy ∈ µ, i.e. C ∈ (λ : µ).
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Table 3
The characterization of the class (̂λ : µ)with λ ∈ {`∞, c, c0, `p, `1} and µ ∈ {`∞, c, c0, `1}.

From ̂̀
∞ ĉ ĉ0 ̂̀p ̂̀1

To

`∞ 1. 2. 3. 4. 5.
c 6. 7. 8. 9. 10.
c0 11. 12. 13. 14. 15.
`1 16. 17. 18. 19. 20.

Conversely, let (4.1), (4.2) hold and take x ∈ λU . Then, we have (cnk)k∈N ∈ λ
β which gives together with (4.1) that

(ank)k∈N ∈ λ
β

U for all n ∈ N. Hence Ax exists. Therefore, we obtain from the equality (4.3) as m→∞ that Ax = Cy and this
shows that A ∈ (λU : µ). �

Now, we list the following conditions:

sup
m∈N

m∑
k=0

∣∣∣∣∣1r
m∑
j=k

(
−s
r

)j−k
anj

∣∣∣∣∣
q

<∞ (4.4)

lim
m→∞

1
r

m∑
j=k

(
−s
r

)j−k
anj = cnk (4.5)

lim
m→∞

m∑
k=0

∣∣∣∣∣1r
m∑
j=k

(
−s
r

)j−k
anj

∣∣∣∣∣ =∑
k

|cnk| for each n ∈ N (4.6)

lim
m→∞

m∑
k=0

1
r

[
1−

(
−s
r

)k+1
1+ s

r

]
ank = αn for each n ∈ N (4.7)

sup
k,m∈N

∣∣∣∣∣1r
m∑
j=k

(
−s
r

)j−k
anj

∣∣∣∣∣ <∞ (4.8)

sup
n∈N

∑
k

|cnk|q <∞ (4.9)

lim
n→∞

cnk = βk (4.10)

lim
n→∞

∑
k

|cnk| =
∑
k

|βk| (4.11)

lim
n→∞

∑
k

cnk = β (4.12)

sup
k,n∈N
|cnk| <∞ (4.13)

sup
k∈N

∑
n

|cnk| <∞ (4.14)

lim
n→∞

∑
k

cnk = 0 (4.15)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

cnk

∣∣∣∣∣ <∞ (4.16)

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

cnk

∣∣∣∣∣
q

<∞, (4.17)

where F denotes the collection of all finite subsets of N.
We have from Theorem 4.1:

Corollary 4.2. The necessary and sufficient conditions for A ∈ (λ : µ)when λ ∈ {̂`∞, ĉ, ĉ0,̂̀p,̂̀1} andµ ∈ {`∞, c, c0, `1} can
be read from the following Table 3: where
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1. (4.5), (4.6) and (4.9) with q = 1.
2. (4.5), (4.7) and (4.4), (4.9) with q = 1.
3. (4.5) and (4.4), (4.9) with q = 1.
4. (4.4), (4.5) and (4.9).
5. (4.5), (4.8) and (4.13).
6. (4.5), (4.6), (4.10) and (4.11).
7. (4.5), (4.7), (4.10), (4.12) and (4.4) ,(4.9) with q = 1.
8. (4.5), (4.10) and (4.4), (4.9) with q = 1.
9. (4.4), (4.5), (4.9) and (4.10).
10. (4.5), (4.8), (4.10) and (4.13).
11. (4.5), (4.6) and (4.15).
12. (4.5), (4.7), (4.10)withβk = 0 and (4.12)withβ = 0, and (4.4), (4.9)with q = 1.
13. (4.5), (4.10) with βk = 0 and (4.4), (4.9) with q = 1.
14. (4.4), (4.5), (4.9) and (4.10) with βk = 0.
15. (4.5), (4.8), (4.10) with βk = 0 and (4.13).
16. (4.5), (4.6) and (4.16).
17. (4.4) with q = 1, (4.5), (4.7) and (4.16).
18. (4.4) with q = 1, (4.5) and (4.16).
19. (4.4), (4.5) and (4.17).
20. (4.5), (4.8) and (4.14).

Now, we may present our final lemma given by Başar and Altay [30, Lemma 5.3] which is useful for obtaining the
characterization of some new matrix classes from Corollary 4.2.

Lemma 4.3. Let λ,µ be any two sequence spaces, A be an infinite matrix and U a triangle matrix. Then, A ∈ (λ : µU) if and only
if UA ∈ (λ : µ).

We should finally note that, if ank is replaced by rank + san−1,k for all k, n ∈ N in Corollary 4.2, then one can derive the
characterization of the class (̂λ : µ̂) from Lemma 4.3 with U = B(r, s).

5. Conclusion

Although the concept of almost convergence was defined by Lorentz [60], in 1948, neither the algebraic structure nor
the topological structure of the space f was studied, until now. So, working the domain of generalized difference matrix
B(r, s) in the space f and deriving the β- and γ -duals of the space f̂ are meaningful which are filling up a gap in the existing
literature as well as the domain of generalized difference matrix B(r, s) in the classical sequence spaces `∞, c, c0 and `p,
with 1 ≤ p < ∞. So, we should note from now on that the domain of generalized difference matrix B(r, s) in the space f
will be examined in the next paper. Since we employ a different technique for determining the dual spaces than Kızmaz [23]
and the other authors following him, we are able to determine β- and γ -duals of the generalized difference spaceŝ̀∞, ĉ, ĉ0
and̂̀p. It is natural that the investigation of the existence of the Schauder basis both for the space f and for the space derived
as the domain of an infinite matrix in the space f will lead us to the significant topological results concerning with these
spaces.
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