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a b s t r a c t

A significant difference between the behavior in tension versus compression is obtained at the polycrystal
level if either twinning or non-Schmid effects are contributors to the plastic deformation at the single
crystal level. Examples of materials that exhibit tension–compression asymmetry include hexagonal
close-packed (HCP) polycrystals and intermetallics (e.g., molybdenum compounds). Despite recent pro-
gress in modeling their yield behavior in the absence of voids, the description of coupling between plas-
ticity and damage by void growth in these materials remains a challenge.

This paper is devoted to the development of a macroscopic anisotropic yield criterion for a porous
material when the matrix material is incompressible, anisotropic and displays tension–compression
asymmetry. The analytical yield criterion is obtained based on micromechanical considerations and
non-linear homogenization. The matrix plastic behavior is described by the Cazacu et al. (2006) aniso-
tropic yield criterion that is pressure-insensitive and accounts for strength–differential effects. Compar-
ison between finite element cell calculations and theory show the predictive capabilities of the developed
anisotropic model in terms of modeling the combined effects of anisotropy, tension–compression asym-
metry of the matrix and voids on the overall yielding of the porous aggregate. It is shown that if the
matrix material does not display tension–compression asymmetry, the developed criterion reduces to
that of Benzerga and Besson (2001). If the matrix is isotropic, it reduces to the isotropic criterion devel-
oped in Cazacu and Stewart (2009).

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ductile failure in metals occurs due to the nucleation, growth
and coalescence of voids (McClintock, 1968; Rousselier, 1987).
Voids are nucleated in metals mainly by decohesion at the parti-
cle–matrix interfaces or by micro-cracking of second-phase parti-
cles (see, for example, Tvergaard, 1981). Additionally, voids can
nucleate in single crystals that contain neither pre-existing voids
nor inclusions (see, for example, Cuitiño and Ortiz, 1996; Lubarda
et al., 2004 and the recent studies on cylindrical void growth in ri-
gid-ideally plastic single crystals of Kysar et al., 2005, 2006; Kysar
and Gan, 2007). Thus, the ability to accurately describe the evolu-
tion of voids in a ductile metal is crucial to being able to accurately
predict its failure.

Gurson (1977) developed widely used macroscopic yield crite-
ria for porous metals containing either spherical or cylindrical
voids and with the matrix obeying the von Mises isotropic yield
condition. The success of Gurson’s (1977) criterion lies in the fact
ll rights reserved.
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that it was deduced based on micromechanical considerations.
Several modifications of Gurson’s (1977) criterion were proposed
(see Tvergaard, 1981; Tvergaard and Needleman, 1984; Koplik
and Needleman, 1988) based on finite element calculations to ac-
count for void interaction and coalescence. Gologanu et al. (1993,
1994, 1997) generalized Gurson’s (1977) analysis by considering
a spheroidal volume containing a confocal spheroidal cavity. In
Garajeu (1995) and Garajeu et al. (2000) the overall response of a
porous metal with a viscous matrix was investigated. Gurson’s
analysis has also been extended to the case when the matrix mate-
rial is compressible and obeys a Drucker-Prager yield criterion (see
Jeong and Pan, 1995; Guo et al., 2008).

Most metallic alloys display plastic anisotropy as a result of
forming processes. Recent studies have been devoted to the exper-
imental characterization of the anisotropy of fracture in different
alloys (see, for example, Benzerga et al., 2004a, for an overview
of experimental evidence for anisotropic ductile fracture in steels).
Liao et al. (1997) extended Gurson’s (1977) cylindrical criterion to
account for transverse isotropy by using Hill’s (1948) yield crite-
rion for the matrix material; however, these authors assumed that
the anisotropy in the plane of the sheet is weak and can be de-
scribed by a single anisotropy coefficient. Benzerga and Besson
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(2001) extended Gurson’s (1977) criterion for fully orthotropic
metals. Upper-bound yield surfaces for both a hollow sphere and
cylinder were deduced by assuming that the matrix material can
be described using Hill’s (1948) criterion with six non-zero
anisotropy coefficients for three-dimensional stress conditions.
Assuming triaxial loading conditions aligned with the material
symmetry axes, closed-form approximate yield criteria were
obtained for both spherical and cylindrical voids.

Numerical studies have been conducted to verify and validate
these anisotropic Gurson-like criteria (e.g., Chien et al., 2001;
Wang and Pan, 2004). Generally, finite-element analyses of a cube
containing a spherical void, subjected to plane-stress conditions,
were performed for various initial porosities and different values
of the anisotropy parameters. More recently, these dilatational
anisotropic plastic models have been used to predict forming limits
for anisotropic sheets containing voids (see, for example, Brunet
et al., 2004).

Note that the anisotropic models cited previously can describe
the response of porous media only for particular void shapes
(spherical or cylindrical) and axisymmetric loading conditions. It
should be expected that void shape has a significant influence on
the behavior of porous anisotropic metals, yet there have been rel-
atively few studies on the combined effects of void shape and tex-
ture (see for example the experimental study of Benzerga et al.
(2004a)). Benzerga et al. (2004b) proposed a yield criterion which
combines properties from both Gologanu et al.’s (1993) criterion
and Benzerga and Besson’s (2001) criterion to account for both
void shape (elliptical) and orthotropy, respectively. Recently, Mon-
chiet et al. (2008) used a limit analysis approach to develop an ana-
lytical yield criterion for a matrix material obeying Hill’s (1948)
anisotropic yield criterion and containing elliptical voids. The limit
analysis was performed for arbitrary deformation of the represen-
tative volume element. Furthermore, it was shown that for the case
when the matrix is isotropic, Monchiet et al.’s (2008) criterion pro-
vides a rigorous generalization of the Gologanu et al. (1993) model.
In Keralavarma and Benzerga (2010) further investigation into the
evolution of the voids’ orientation was provided.

All the studies cited so far assume that the yield strengths in
tension and compression are equal in the void-free, or matrix,
material. However, in the absence of voids, some materials with
cubic crystal structure (see Benzerga et al., 2004a, for experimental
data on high strength steels) are pressure-insensitive but exhibit
tension–compression asymmetry in yielding. This shear related
strength–differential (S–D) effect can result from single crystal
plastic deformation due either to twinning or to slip that does
not obey the well-known Schmid law (see, for example, Vitek
et al., 2004; Hosford and Allen, 1973). Cazacu and Stewart (2009)
recently extended Gurson’s (1977) analysis to the case when the
matrix material is incompressible but displays tension–compres-
sion asymmetry and developed an isotropic plastic potential for a
porous aggregate that is sensitive to the third invariant of the
stress deviator.

Metals with hexagonal crystal structure exhibit both ten-
sion–compression asymmetry and pronounced anisotropy. Experi-
mental studies have shown that failure occurs by void growth and
coalescence (see Huez et al., 1998). A fundamental issue that arises
is how the texture and tension–compression asymmetry of the ma-
trix influences the void growth stage of the failure process. A key
ingredient in the development of a ductile failure model is an effec-
tive yield criterion. The aim of this paper is to develop a closed-
form macroscopic yield criterion for anisotropic porous aggregates
containing spherical voids using a micromechanical approach.

The structure of this article is as follows. In Section 2, the
homogenization approach due to Hill (1967) and Mandel (1972)
that is used in developing the macroscopic plastic potential for
the void-matrix aggregate is presented. Next, the anisotropic
Cazacu et al. (2006) yield criterion being used to model the rigid-
plastic behavior of the matrix material in the void-matrix aggre-
gate is recalled (see Section 3). Expressions for the macroscopic
stresses and overall plastic dissipation are derived in Section 4.
The main result of this paper, the expression of the analytical
anisotropic plastic potential, is presented in Section 5. Finally,
the accuracy of the developed criterion for plastic anisotropic med-
ia displaying strength–differential effects is assessed through com-
parison with numerical results obtained using finite element cell
calculations (see Section 6).
2. Kinematic homogenization approach of Hill and Mandel

Consider a representative volume element X, composed of a
homogeneous rigid-plastic matrix and a traction-free void. The
matrix material is described by a convex yield function u(r) in
the stress space and an associated flow rule

d ¼ _k
@u
@r

; ð1Þ

where r is the Cauchy stress tensor, _k P 0 denotes the plastic mul-
tiplier rate and d = (1/2)(rv +rvT) denotes the rate of deformation
tensor with v being the velocity field. The yield surface is defined as
u(r) = 0. Let C denote the convex domain delimited by the yield
surface such that

C ¼ rjuðrÞ 6 0f g: ð2Þ

The plastic dissipation potential of the matrix is defined as

wðdÞ ¼ sup
r2C
ðr : dÞ; ð3Þ

where ‘‘:” denotes the tensor double contraction. Uniform rate of
deformation boundary conditions are assumed on the boundary of
the RVE, oX, such that

v ¼ D � x for any x 2 @X ð4Þ

with D, the macroscopic rate of deformation tensor, being constant
and x being the Cartesian position vector. For the boundary condi-
tions given by Eq. (4), the Hill (1967), Mandel (1972) lemma ap-
plies; hence,

hr : diX ¼ R : D; ð5Þ

where hi denotes the average value over the representative volume
X, and R = hriX. Furthermore, there exists a macroscopic plastic
dissipation potential W(D) such that

R ¼ @WðDÞ
@D

ð6Þ

with

WðDÞ ¼ inf
d2KðDÞ

hwðdÞiX; ð7Þ

where K(D) is the set of incompressible velocity fields satisfying Eq.
(4) (for more details see Gologanu et al., 1997; Leblond, 2003). This
result will be further used to derive the plastic potential of the void-
matrix aggregate in the case of a random distribution of spherical
voids. To account simultaneously for anisotropy and tension–com-
pression asymmetry associated with directional shear mechanisms
at the single crystal level, the matrix material is assumed to obey
the Cazacu et al. (2006) anisotropic yield criterion. This yield crite-
rion and its dual in the strain rate space will be briefly presented
next.
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3. Anisotropic yield criterion for the matrix material

To account for both strength differential effects and anisotropy
in pressure-insensitive hexagonal metals, Cazacu et al. (2006) pro-
posed a 3-D orthotropic yield criterion (denoted in the following as
CPB06). This criterion is an extension to orthotropy of the follow-
ing isotropic yield function:

Gðs1; s2; s3; k; aÞ ¼ ðjs1j � ks1Þa þ ðjs2j � ks2Þa þ ðjs3j � ks3Þa ð8Þ

where s1, s2 and s3 are the principal values of the stress deviator. The
material parameter k captures strength differential effects while a is
the degree of homogeneity. Starting from the isotropic function gi-
ven by Eq. (8), anisotropy is then introduced through a linear trans-
formation operating on the Cauchy stress deviator r0. The general
form of the CPB06 anisotropic yield function is as follows:

Fðr̂1; r̂2; r̂3; k; aÞ ¼ ðjr̂1j � kr̂1Þa þ ðjr̂2j � kr̂2Þa þ ðjr̂3j � kr̂3Þa;
ð9Þ

where r̂1; r̂2 and r̂3 are the principal components of the trans-
formed stress tensor

r̂ ¼ L : r0: ð10Þ

In Eq. (10), r0 is the Cauchy stress deviator and L is a fourth-order
symmetric tensor invariant with respect to the orthotropy group.
Thus, the yield condition can be written as

re ¼ rT
1; ð11Þ

where re is the effective stress associated to the yield function of Eq.
(9) and rT

1 is the uniaxial tensile yield strength along an axis of
orthotropy (e.g., the rolling direction). In other words,

re ¼ ce jr̂1j � kr̂1ð Þa þ jr̂2j � kr̂2ð Þa þ jr̂3j � kr̂3ð Þa
� �1=a

; ð12Þ

where ce is a constant defined such that re reduces to the tensile
yield stress along an axis of orthotropy.

In Cazacu et al. (2006), the physical significance of the coeffi-
cients involved in the CPB06 yield function given by Eq. (8) was pre-
sented and an identification procedure based on the results of tensile
and compressive tests was outlined. It has been shown that the
orthotropic CPB06 yield function given by Eq. (9) describes with
accuracy the yield loci of various hexagonal materials (see, for exam-
ple, Cazacu et al., 2006; Plunkett et al., 2008; Khan et al., 2007). For
the magnesium alloys and zirconium materials, a value of the homo-
geneity parameter a = 2 (see Eq. (9)) approximates the plastic behav-
ior best. Thus, in this paper a = 2 will be used in Eq. (9) to describe the
yield behavior of the matrix. It is worth noting that if the material
does not display tension–compression asymmetry, then the
strength–differential parameter k is automatically equal to zero. If
k = 0, a = 2 and L is constrained to be deviatoric, the CPB06 yield cri-
terion reduces to that of Hill (1948).

3.1. Local stress potential

For a = 2, the effective stress of Eq. (12) becomes

re ¼ m̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

jr̂ij � kr̂ið Þ2
vuut : ð13Þ

The constant m̂ is defined such that re reduces to the tensile yield
stress along a specified axis of orthotropy. Due to the assumption
of associated plastic flow, the stress potential for the matrix can
be written as

uðr̂; m̂;rT
1Þ ¼ m̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

jr̂ij � kr̂ið Þ2
vuut � rT

1 ¼ 0 ð14Þ
with material parameters rT
1 and m̂. As previously stated, the

parameter rT
1 is the uniaxial tensile yield strength along an axis of

orthotropy while the constant m̂ is defined such that Eq. (14) is
identically satisfied for uniaxial tensile loading along this orthotro-
py axis.

Let (e1, e2, e3) be the reference frame associated with orthotro-
py. In the case of a plate, e1, e2 and e3 represent the rolling, trans-
verse and through-thickness directions, respectively. Relative to
the orthotropy axes, the fourth-order tensor L (see Eq. (10)) is rep-
resented in Voigt notation by

L ¼

L11 L12 L13 0 0 0
L12 L22 L23 0 0 0
L13 L23 L33 0 0 0
0 0 0 L44 0 0
0 0 0 0 L55 0
0 0 0 0 0 L66

2666666664

3777777775
: ð15Þ

The constant m̂ is expressible in terms of the anisotropy coeffi-
cients Lij and the strength differential parameter k as

m̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðjU1j � kU1Þ2 þ ðjU2j � kU2Þ2 þ ðjU3j � kU3Þ2

s
ð16Þ

with

U1 ¼
2
3

L11 �
1
3

L12 �
1
3

L13;

U2 ¼
2
3

L12 �
1
3

L22 �
1
3

L23;

U3 ¼
2
3

L13 �
1
3

L23 �
1
3

L33:

ð17Þ

In the same spirit as Hill (1948), it is assumed here that the sum
of the L-components on the first row is equal to the sum of the L-
components on the second row and to the sum of the L-compo-
nents on the third row. Specifically,

L11 þ L12 þ L13 ¼ 1;
L12 þ L22 þ L23 ¼ 1;
L13 þ L23 þ L33 ¼ 1:

ð18Þ

The constant on the right hand side of Eq. (18) has been chosen to
be unity such that for isotropic conditions, the tensor L reduces to
the fourth-order identity tensor, 1. Note that the additional con-
straints of Eq. (18) ensure that the transformed stress tensor r̂ is
deviatoric. As an example, in Fig. 1 is shown the representation in
the biaxial plane (r11, r33) of the yield surface given by Eq. (14) cor-
responding to several materials displaying tension–compression
asymmetry characterized by the same value of the strength–differ-
ential parameter k = 0.3098. One of these materials is isotropic
while the other two materials are transversely isotropic with (e1,
e2) being the plane of symmetry (one material is stronger in the
plane of symmetry while the other one is stronger in the direction
normal to the symmetry plane, e3).

3.2. Local plastic dissipation

A key step in obtaining the overall plastic dissipation W(D) of
the void-matrix aggregate is the calculation of the local plastic dis-
sipation w(d) (see Eq. (3)) associated with the matrix yield crite-
rion. Since the anisotropic criterion that describes yielding in the
matrix is a homogeneous function of first order in stresses (see
Eq. (14)), the local plastic dissipation becomes

wðdÞ ¼ _krT
1: ð19Þ

In other words, _k is the dual of the anisotropic stress potential u gi-
ven by Eq. (14).



Fig. 1. Plane stress yield loci for void-free materials according to the CPB06 yield
criterion given by Eq. (14). The solid line denotes the isotropic material with the
other curves represent the two transversely isotropic materials. All these materials
display tension–compression asymmetry with k = 0.3098 (i.e., the tensile yield
strengths are greater than the compressive yield strengths).

360 J.B. Stewart, O. Cazacu / International Journal of Solids and Structures 48 (2011) 357–373
In the (e1, e2, e3) frame associated with orthotropy, the trans-
formed stress tensor of Eq. (10) can be written as

r̂mn ¼ Lmnklr0kl ¼ LmnklKklijrij ð20Þ

where K is the fourth-order deviatoric projection operator whose
components with respect to any Cartesian coordinate system are

Kijkl ¼
1
2

dikdjl þ dildjk

� �
� dijdkl

3
: ð21Þ

In Voigt notation, K can be written as

K ¼ 1
3

2 �1 �1 0 0 0
�1 2 �1 0 0 0
�1 �1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

2666666664

3777777775
: ð22Þ

Substituting the anisotropic stress potential given by Eq. (14) into
the flow rule of Eq. (1) and applying the chain rule yields

dij ¼ _k
@u
@rij
¼ _k

@u
@r̂mn

@r̂mn

@r0rs

@r0rs

@rij
¼ _k

@u
@r̂mn

LmnrsKrsij: ð23Þ

Hence, in the anisotropic case,

Brsijdij ¼ _k
@u
@r̂rs

when u r̂1; r̂2; r̂3; m̂;rT
1

� �
¼ 0; ð24Þ

where the fourth-order tensor B = L�1. Indeed, if the constraints gi-
ven by Eq. (18) are enforced then L is invertible. Note that in the iso-
tropic case,

dij ¼ _kiso
@u
@r0ij

when u s1; s2; s3; m;rTð Þ ¼ 0; ð25Þ

where m is the isotropic version of m̂ given by Eq. (16) and reduces
to

m ¼ m̂jL¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=2

3k2 � 2kþ 3

s
: ð26Þ

The plastic multiplier rate associated with the isotropic CPB06
stress potential, _kiso, is expressed in terms of all principal values of
the stress deviator (see Cazacu and Stewart, 2009). If dI P dII P dIII

are the principle values of the rate of deformation tensor d, then
the expression for the plastic multiplier rate is given as
_kiso ¼
1

mð1þkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2þ10kþ3
3k2�2kþ3

� �
d2

I þd2
IIþd2

III

r
if dIffiffiffiffiffiffiffi

dijdij

p P 3k2�2kþ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðk2þ3Þð3k2þ1Þ
p ;

1
mð1�kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

I þd2
IIþ 3k2�10kþ3

3k2þ2kþ3

� �
d2

III

r
if dIIIffiffiffiffiffiffiffi

dijdij

p 6
�ð3k2þ2kþ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðk2þ3Þð3k2þ1Þ
p :

8>>><>>>:
ð27Þ

If k = 0 (no tension–compression asymmetry) then _k reduces to the
von Mises effective strain rate ð _k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þd : d

p
Þ. Comparing Eqs.

(24) and (25), it follows that in the anisotropic case the expression
for the plastic multiplier rate _k is obtained by replacing in Eq. (27)
the rate of deformation tensor d with b = B:d and the constant m
with m̂. Thus, the anisotropic plastic multiplier rate is given as
follows:

_k¼
1

m̂ð1þkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2þ10kþ3
3k2�2kþ3

� �
b2

I þb2
IIþb2

III

r
if bIffiffiffiffiffiffiffi

bijbij

p P 3k2�2kþ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðk2þ3Þð3k2þ1Þ
p ;

1
m̂ð1�kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

I þb2
IIþ 3k2�10kþ3

3k2þ2kþ3

� �
b2

III

r
if bIIIffiffiffiffiffiffiffi

bijbij

p 6
� 3k2þ2kþ3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðk2þ3Þð3k2þ1Þ
p

;

8>>><>>>:
ð28Þ

where bI, bII and bIII are the ordered principal components of bij (for
more details see Cazacu et al., 2010). It is worth noting that if there
is no tension–compression asymmetry in the matrix material (i.e.,
the yield strength in tension is equal to the yield in compression)
then the parameter k associated with strength differential effects
is automatically zero. Therefore, the anisotropic strain rate potential
given by Eq. (28) reduces to _k ¼

ffiffiffiffiffiffiffiffiffiffi
b : b
p

=m̂, which can be rewritten
as _k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þd : H : d

p
with H being a fourth-order orthotropic ten-

sor satisfying Hiikl = 0 with i = 1, 2, 3. Thus, if k = 0, Eq. (28) reduces
to Hill’s (1987) orthotropic strain rate potential.

Note that the scalar b:b, which appears in Eq. (28), can be ex-
pressed as follows:

b : b ¼ d : bL : d ð29Þ

where bL is a fourth-order diagonal tensor in the coordinate system
associated to the material symmetry (e1, e2, e3) and is expressible in
Voigt notation as

bL ¼
l̂1 0 0 0 0 0
0 l̂2 0 0 0 0
0 0 l̂3 0 0 0
0 0 0 l̂4 0 0
0 0 0 0 l̂5 0
0 0 0 0 0 l̂6

26666666664

37777777775
: ð30Þ

The expressions for the diagonal components of bL in terms of the
components of B = L�1 are

l̂1 ¼ B2
11 þ B2

12 þ B2
13 � B11B12 � B11B13 � B22B12 þ B22B23 � B33B13

þ B33B23 þ B12B13 � B12B23 � B13B23

l̂2 ¼ B2
12 þ B2

22 þ B2
23 � B22B12 � B22B23 � B11B12 þ B11B13 � B33B23

þ B33B13 þ B12B23 � B23B13 � B12B13

l̂3 ¼ B2
13 þ B2

23 þ B2
33 � B33B13 � B33B23 � B11B13 þ B11B12 � B22B23

þ B22B12 þ B13B23 � B12B13 � B23B12

l̂4 ¼ B2
44

l̂5 ¼ B2
55

l̂6 ¼ B2
66:

ð31Þ
4. Development of the anisotropic macroscopic yield criterion

An approximate yield criterion will now be analytically derived
for a void-matrix aggregate containing randomly-distributed
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spherical voids and with an incompressible matrix material dis-
playing anisotropy and tension–compression asymmetry. The ma-
trix yield behavior will be described using the criterion given by
Eq. (14). The approach that will be used in the derivation is the
kinematic homogenization approach presented in Section 2.

Consider as an RVE a hollow sphere with inner radius a and out-
er radius b = af�1/3, where f is the void volume fraction (also called
the porosity). The void is considered to be traction-free. The RVE is
subjected to axisymmetric loading such that

R ¼ R11 e1 � e1 þ e2 � e2ð Þ þ R33 e3 � e3ð Þ; ð32Þ

where R = hriX denotes the macroscopic stress tensor while (e1, e2,
e3) is the frame associated to the axes of orthotropy.

To obtain the upper-bound of the overall plastic potential, the
classical velocity field proposed by Rice and Tracey (1969) and
Gurson (1977) will be used. Thus, the local velocity field v in the
RVE is considered to be of the form

v ¼ vV þ vS; ð33Þ

where vV is associated with volumetric expansion and vS is associ-
ated with shape changes. Imposing uniform rate of deformation
boundary conditions and matrix incompressibility yields

v x ¼ berð Þ ¼ D � x and divv ¼ 0; ð34Þ

where x is the Cartesian position vector that denotes the current po-
sition in the RVE and er is the radial unit vector.

From Eqs. (33) and (34), it follows that

vV ¼ Dm
b3

r2

 !
er ;

vS ¼ D0 � x;

ð35Þ

where r is the radial coordinate, Dm ¼ 1
3 Dkk is the mean part of D and

D0 = D � DmI is the deviatoric part of D with I being the second-or-
der identity tensor. In Eq. (35), both Cartesian and spherical coordi-
nates have been used. The local rate of deformation tensor
d ¼ 1

2 ðrv þrTvÞ corresponding to the velocity field v given by
Eq. (35) is

d ¼ dV þ dS
; ð36Þ

where

dS ¼ D0;

dV ¼ Dm
b
r

	 
3

�2er � er þ eh � eh þ e/ � e/

� �
¼ Dm

b
r

	 
3
�d;

ð37Þ

with �d ¼ ð�2er � er þ eh � eh þ e/ � e/Þ. Hence, the principal values
of the local rate of deformation tensor d are as follows:

d1 ¼ Dm
b
r

	 
3

þ D011;

d2 ¼ �
1
2

Dm
b
r

	 
3

þ D011

" #

þ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

m
b
r

	 
6

þ 2D011Dm
b
r

	 
3

cos 2hþ D011

� �2

s
;

d3 ¼ �
1
2

Dm
b
r

	 
3

þ D011

" #

� 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

m
b
r

	 
6

þ 2D011Dm
b
r

	 
3

cos 2hþ D011

� �2

s
:

ð38Þ
4.1. Overall plastic dissipation

Let W+(D) denote the average macroscopic plastic dissipation
corresponding to the velocity field given by Eq. (35) such that

WþðDÞ ¼ 1
V

Z
X�x

wðdÞdV ¼ 1
V

Z
X�x

rT
1

_kdV ; ð39Þ

where d is given by Eqs. (36) and (37), V ¼ 4
3 pb3 is the volume of the

RVE being considered, x represents the void volume and _k is the
plastic multiplier rate associated to the anisotropic CPB06 yield cri-
terion (see Eq. (28)). The approach of Leblond (2003) will be fol-
lowed to obtain a new upper-bound estimate of the macroscopic
yield locus by applying the Cauchy–Schwartz inequality as follows:

WþðDÞ ¼ 1
V

Z b

a
4pr2hwðdÞiSðrÞdr

6WþþðDÞ ¼ 1
V

Z b

a
4pr2 hw2ðdÞiSðrÞ

h i1=2
dr; ð40Þ

where S(r) is the spherical surface of radius r. In Eq. (40), the follow-
ing notation was used for averaging over S(r):

hxiSðrÞ ¼
1

4p

Z 2p

0

Z p

0
x sin hdhd/: ð41Þ

When the matrix behavior is described by the von Mises yield
criterion (L = 1, k = 0), W++(D) can be evaluated analytically (see
Gurson, 1977; Leblond, 2003). In the current derivation, fresh dif-
ficulties are encountered when estimating the overall local plastic
dissipation w(d). These difficulties are due to the tension–com-
pression asymmetry and anisotropy of the matrix material and
are associated with the fact that the CPB06 plastic multiplier rate
has multiple branches (see Eq. (28)). The expression for the
CPB06 plastic multiplier rate depends on the sign and ordering of
the principal values of the transformed rate of deformation tensor
b = B:d.

For the case of an isotropic matrix exhibiting tension–compres-
sion asymmetry (L = 1 but k – 0), the expressions for the local plas-
tic dissipation are provided in Cazacu and Stewart (2009). In order
to obtain an analytic expression of the integral representing the
overall plastic dissipation, it was assumed that in the expressions
of the local plastic dissipation (see, for example, Eqs. (24)–(30) of
Cazacu and Stewart, 2009), the cross term DmD011 could be
neglected. Note that the upper-bound character of the criterion is
retained for both the purely deviatoric or purely hydrostatic cases
(since the cross term is zero for both loading conditions). The valid-
ity of the approximation for general loadings was assessed in
Cazacu and Stewart (2009) by conducting finite-element cell
calculations. Using this approximation, the isotropic local plastic
dissipation becomes (see Eqs. (19), (27) and (38)):

wðdÞ ¼ rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ndijdij

q
; ð42Þ

where

n ¼
1

m2
3

3k2�2kþ3

� �
if Rm < 0;

1
m2

3
3k2þ2kþ3

� �
if Rm > 0;

8><>: ð43Þ

and Rm is the applied mean stress. Note that for the cases of purely
hydrostatic and purely deviatoric loading, the approximation given
by Eq. (42) coincides with the exact value of the local plastic dissi-
pation for the velocity field given by Eq. (35).

In the anisotropic case, the local plastic dissipation is obtained
by replacing in Eq. (42) the local rate of deformation tensor d with
the transformed rate of deformation tensor b = B:d and the con-
stant n with its anisotropic equivalent n̂. Thus, the following
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approximate form of the plastic multiplier rate will be used when
calculating the overall plastic dissipation W++ (see Eq. (40)):

_k2 ¼ n̂bijbij ð44Þ

such that

wðdÞ ¼ rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂bijbij

q
; ð45Þ

where

n̂ ¼
1

m̂2
3

3k2�2kþ3

� �
if Rm < 0;

1
m̂2

3
3k2þ2kþ3

� �
if Rm > 0:

8><>: ð46Þ
4.2. Macroscopic stresses

Let ~Re denote the macroscopic effective stress associated to the
CPB06 anisotropic potential as

~Re ¼ m̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

jR̂ij � kR̂i

� �2

vuut ð47Þ

where R̂ ¼ L : R0 is the transformed macroscopic stress tensor. The
effective strain rate associated with the CPB06 stress potential will
be denoted by eDe. A rigorous proof that eDe is a work-conjugate mea-
sure of ~Re (i.e., that ~Re

eDe ¼ R0 : D0) was provided in Cazacu et al.
(2010). According to Eqs. (29) and (44)

eDe ¼ _k D0
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ D0 : bL : D0
� �r

: ð48Þ

Let Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2ÞR0ijR

0
ij

q
and De ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3ÞD0ijD

0
ij

q
denote the von

Mises effective stress and the von Mises effective strain rate,
respectively. For an orthotropic material under axisymmetric load-
ing conditions (see Eq. (35)), the von Mises effective stress is re-
lated to the CPB06 effective stress as

Re ¼ g ~Re ð49Þ

where g is a constant (see Eq. (75)) expressible in terms of the
strength differential parameter k and the components of the aniso-
tropic tensor L. Since eDe is a work-conjugate measure of ~Re and Re is
a work-conjugate measure of De, it follows that

De ¼
1
g
eDe: ð50Þ

The macroscopic stress tensor associated with the upper-bound
estimate of the plastic dissipation W++(D) is given as

R ¼ @Wþþ

@D
Dm;Deð Þ: ð51Þ

Employing the chain rule yields

R ¼ @Wþþ

@Dm

@Dm

@D
þ @Wþþ

@De

@De

@D
ð52Þ

such that

Rm ¼
1
3
@Wþþ

@Dm
ð53Þ

and

R0 ¼ 2
3

D0

De

@Wþþ

@De
: ð54Þ

It follows that

Re ¼
@Wþþ

@De

���� ���� ð55Þ
and

@Wþþ

@ eDe

¼ 1
g
@Wþþ

@De
ð56Þ

such that

~Re ¼
@Wþþ

@ eDe

�����
�����: ð57Þ
5. Anisotropic criterion

According to Eq. (37), the local rate of deformation can be
decomposed into a volumetric part dV and a deviatoric part
dS = D0 = constant. Thus, the approximate expression for the macro-
scopic plastic dissipation can be written as

Wþþ ¼rT
1

V

Z b

a
4pr2 h _k2iSðrÞ

h i1=2
dr

¼rT
1

V

Z b

a
4pr2 n̂hb : biSðrÞ

h i1=2
dr

¼rT
1

V

Z b

a
4pr2 n̂hd : bL : diSðrÞ

h i1=2
dr

¼rT
1

V

Z b

a
4pr2 n̂hdV

: bL : dV þdS
: bL : dSþ2dV

: bL : dSiSðrÞ
h i1=2

dr:

ð58Þ

Since

hdS
: bL : dSiSðrÞ ¼ D0 : bL : D0 ð59Þ

and noting that

hdV
: bL : dSiSðrÞ ¼ hd

V iSðrÞ : bL : D0 ð60Þ

with

h�diSðrÞ ¼ h �2er � er þ eh � eh þ e/ � e/

� �
iSðrÞ ¼ 0; ð61Þ

the following expression is obtained for the estimated macroscopic
plastic dissipation:

Wþþ ¼ rT
1

4
3 pb3

Z b

a
4pr2 n̂hdV

: bL : dV iSðrÞ þ n̂D0 : bL : D0
h i1=2

dr

¼ 3rT
1

b3

Z b

a
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

m
b6

r6 h2 þ eD2
e

s
dr

¼ rT
1 Dmj jh

Z 1=f

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

c2

s
du
u2 ð62Þ

such that

Wþþ ¼ rT
1 Dmj jh sinh�1 cuð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2u2

p
cu

" #1=f

1

; ð63Þ

where u = b3/r3,

c ¼ jDmjeDe

h ð64Þ

and

h2 ¼ n̂h�d : bL : �diSðrÞ ¼ n̂
4
5

l̂1 þ l̂2 þ l̂3

� �
þ 6

5
l̂4 þ l̂5 þ l̂6

� �� 
ð65Þ

(see Appendix A for details regarding the calculation of h). Note that
the parameter h depends on the anisotropy coefficients (see Eq.
(15)) as well as the parameter n̂ given by Eq. (46).
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Using Eqs. (53) and (57) along with Eq. (63) yields

Rm ¼
1
3
@Wþþ

@Dm
¼ h

3
rT

1sgn Dmð Þ sinh�1 cuð Þ
h i1=f

1

¼ h
3
rT

1sgn Dmð Þ sinh�1 c
f

	 

� sinh�1 cð Þ

� 
ð66Þ

and

~Re ¼
@Wþþ

@ eDe

�����
����� ¼ rT

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2u2

p
u

�����
�����
1=f

1

¼ rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ f 2

q���� ����: ð67Þ

Finally, eliminating c from the previous two equations yields the
following expression for the macroscopic yield criterion incorporat-
ing anisotropy:

U ¼
m̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1 jR̂ij � kR̂i

� �2
r

rT
1

0BB@
1CCA

2

þ 2f cosh
3Rm

hrT
1

	 

� 1� f 2 ¼ 0;

ð68Þ

where R̂ ¼ L : R;rT
1 is the uniaxial tensile yield strength in the 1-

direction of orthotropy, f is the void volume fraction, Rm is the mac-
roscopic mean stress, h is the hydrostatic factor given by Eq. (65)
and the parameter m̂ is given by Eq. (16). These key equations are
repeated here for the readers convenience:

m̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðjU1j � kU1Þ2 þ ðjU2j � kU2Þ2 þ ðjU3j � kU3Þ2

s
ð16Þ

with

U1 ¼
2
3

L11 �
1
3

L12 �
1
3

L13;

U2 ¼
2
3

L12 �
1
3

L22 �
1
3

L23;

U3 ¼
2
3

L13 �
1
3

L23 �
1
3

L33

ð17Þ

and

h2 ¼ n̂h�d : bL : �diSðrÞ ¼ n̂
4
5

l̂1 þ l̂2 þ l̂3

� �
þ 6

5
l̂4 þ l̂5 þ l̂6
� �� 

ð65Þ

with

l̂1 ¼ B2
11 þ B2

12 þ B2
13 � B11B12 � B11B13 � B22B12 þ B22B23 � B33B13

þ B33B23 þ B12B13 � B12B23 � B13B23

l̂2 ¼ B2
12 þ B2

22 þ B2
23 � B22B12 � B22B23 � B11B12 þ B11B13 � B33B23

þ B33B13 þ B12B23 � B23B13 � B12B13

l̂3 ¼ B2
13 þ B2

23 þ B2
33 � B33B13 � B33B23 � B11B13 þ B11B12 � B22B23

þ B22B12 þ B13B23 � B12B13 � B23B12

l̂4 ¼ B2
44

l̂5 ¼ B2
55

l̂6 ¼ B2
66;

ð31Þ

where B = L�1.
Note that the developed criterion (Eq. (68)) accounts for the

combined effects of matrix anisotropy and tension–compression
asymmetry on both the yielding of the porous aggregate and the
porosity evolution. These effects are captured through the
strength–differential parameter k and the anisotropy coefficients
(the components of the fourth-order tensor L) involved in the
expressions of the transformed stress tensor r̂ as well as m̂ and
h. Indeed, the evolution of the porosity is given as
_f ¼ 1� fð ÞDP
kk ¼ 1� fð Þ _k @U

@Rkk

¼ 1� fð Þ _k 6f
hrT

1

	 

sinh

3Rm

hrT
1

	 

: ð69Þ

Eq. (68) represents the approximate yield criterion for a porous
material with the matrix incompressible, orthotropic and display-
ing tension–compression asymmetry. Although the expression of
the developed criterion is similar to that of Benzerga and Besson
(2001), there are distinct differences. First, Hill’s (1948) effective
stress is replaced with the CPB06 effective stress ~Re, which involves
the stress deviator R0, the anisotropy coefficients Lij and the
strength–differential parameter k. Secondly, the hydrostatic
parameter h depends on the anisotropy coefficients Lij, on the
strength–differential parameter k and on the sign of the applied
mean stress Rm.

In contrast with the criteria of Gurson (1977) and that of Benze-
rga and Besson (2001), the yield locus given by Eq. (68) is no longer
symmetric with respect to the axis Rm = 0. According to the devel-
oped criterion, for tensile hydrostatic loading, yielding occurs in
the porous aggregate when Rm ¼ pþY with

pþY ¼ �rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

15m̂2

7̂l1 þ 2̂l3 þ 6̂l4

3k2 þ 2kþ 3

 !vuut lnðf Þ; ð70Þ

while for compressive loading yielding occurs when Rm ¼ p�Y with

p�Y ¼ rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

15m̂2

7̂l1 þ 2̂l3 þ 6̂l4
3k2 � 2kþ 3

 !vuut lnðf Þ: ð71Þ

If there is no tension–compression asymmetry in the matrix (k = 0),
pþY ¼ jp�Y j. The limiting pressures pþy and p�y correspond to the exact
solution of a hollow sphere loaded hydrostatically only if the matrix
is isotropic (L = 1) since, in this case, the trial velocity field given by
Eq. (35) is the only admissible velocity field.

If the matrix is orthotropic and has no tension–compression
asymmetry, Eq. (68) reduces to that of Benzerga and Besson
(2001). Indeed, for k ¼ 0; n̂ ¼ 2=3 and bL ¼ bH (i.e., the matrix
behavior is described by Hill’s 1948 yield criterion), the hydrostatic
factor h given by Eq. (65) reduces to

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

15
l̂1 þ l̂2 þ l̂3

� �
þ 4

5
l̂4 þ l̂5 þ l̂6
� �r

; ð72Þ

which is the hydrostatic factor corresponding to a Hill (1948) ma-
trix (see Benzerga and Besson, 2001). Note that when the matrix
is isotropic and displays tension–compression asymmetry (i.e.,bL ¼ I and k – 0),

h ¼
2 if Rm < 0;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2�2kþ3
3k2þ2kþ3

q
if Rm > 0

(
ð73Þ

such that the developed criterion (Eq. (68)) reduces to that pro-
posed in Cazacu and Stewart (2009). Furthermore, for a von Mises
matrix (bL ¼ I and k = 0) the developed criterion reduces to Gurson’s
(1977) yield criterion for spherical voids. In the next section, the
capabilities of the developed model will be further illustrated and
comparisons with finite element calculations will be made to vali-
date the predicted yield behavior.

6. Validation of the developed anisotropic criterion

This section focuses on the assessment of the developed aniso-
tropic criterion given by Eq. (68). The model is analyzed in detail
for some specific materials in Section 6.1, axisymmetric unit cell fi-
nite element (FE) calculations are presented in Section 6.2 and
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comparisons between the finite element results and the materials
analyzed previously are given in Section 6.3.
6.1. Model assessment

The following analysis will focus on the case of transversely iso-
tropic materials. The choice of a simplified material orthotropy
representation (i.e., the plane of symmetry e1e2 is isotropic) is con-
sidered because the discussion for general orthotropy would in-
volve a very high number of materials corresponding to different
values for the anisotropy coefficients Lij (i.e. various orderings of
the tensile and compressive yield stresses corresponding to the
directions e1, e2, e3). Transverse isotropy is common in clock-rolled
hexagonal metal sheets, where multiple passes ensure in-plane
isotropy (see, for example, the data on high-purity zirconium re-
ported in Tomé et al., 2001; Nixon, 2008). For a given loading path,
the parameters that are varied are the anisotropy coefficients Lij

and the tension–compression parameter k. Thus, the yield surfaces
of nine materials containing randomly oriented spherical voids will
be examined:

1. Isotropic materials for which the matrix is characterized by
L = 1 and either displays tension–compression asymmetry
(such that k – 0) or does not (k = 0). These materials are called
materials type A.

2. Transversely isotropic materials for which the matrix has a
weaker in-plane yield strength than through-thickness yield
strength (see Fig. 2) with either tension–compression asymme-
try (k – 0) or not (k = 0). These materials are called materials
type B.
(a)

(c)

Fig. 2. Plane stress yield loci for void-free materials A (isotropic), B and C (transversely iso
the through-thickness direction. (a) No strength differential (k = 0). (b) Tension–compres
compression (k = �0.3098). (c) Tension–compression asymmetry with the yield strength
3. Transversely isotropic materials with matrix displaying larger
in-plane yield strength than through-thickness yield strength
(see Fig. 2) with either tension–compression asymmetry
(k – 0) or not (k = 0). These materials are called materials
type C.

The isotropic case (material type A) is taken as a reference. Note
that calculations for material A with k = 0 corresponds to a von
Mises matrix; hence, the FE results obtained in this case will be
compared to the Gurson–Tvergaard–Needleman (GTN) yield locus.
Likewise, material type A with k – 0 corresponds to the isotropic
CPB06 matrix and FE results will be compared to the Cazacu and
Stewart (2009) yield locus. In Table 1 are given the numerical val-
ues of the anisotropy coefficients for each material. These values
were chosen such that all materials have the same tensile yield
strength in the plane of symmetry. As an example, in Fig. 2 are rep-
resented the projection of the yield loci given by Eq. (68) corre-
sponding to f = 0 (the void-free state) for all these materials.

As already mentioned, if the anisotropic matrix does not display
tension–compression asymmetry (k = 0), then the developed crite-
rion of Eq. (68) reduces to that proposed by Benzerga and Besson
(2001) for spherical void geometry. In Benzerga and Besson
(2001), through comparison with axisymmetric cell calculations,
the authors have assessed the accuracy of the description of the ef-
fects of plastic anisotropy on void growth. However, no discussion
of the accuracy of the yielding description has been reported.

In this paper, the numerical values for the anisotropy coeffi-
cients of the transversely isotropic materials B and C with no ten-
sion–compression asymmetry were taken to coincide with the set
of anisotropy parameters considered by Benzerga and Besson
(2001), which correspond to a zircaloy sheet and thin aluminum
(b)

tropic) according to the CPB06 yield criterion. x is an in-plane direction with z being
sion asymmetry with the yield strengths in tension less than the yield strengths in
s in tension greater than the yield strengths in compression (k = 0.3098).



Table 1
Numerical values of the anisotropy coefficients for the materials A, B, and C.

CPB06 parameters Material A Material B Material C

L11 = L22 1.000 1.054 0.963
L33 1.000 0.850 1.064
L13 ¼ L23 ¼ 1

2 ð1� L33Þ 0.000 0.075 �0.032

L12 ¼ 1
2 ð1þ L33Þ � L11 0.000 �0.129 0.069

L44 1.000 0.775 1.817
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sheet, respectively. This choice of anisotropic coefficients serves
two purposes: (a) it allows partial verification of the FE implemen-
tation of the model (Eq. (68)) and (b) it provides FE data for assess-
ing the analytic yield loci according to Benzerga and Besson (2001)
for k = 0 and according to Eq. (68) for k – 0.

For axisymmetric loadings, the effective stress according to the
CPB06 anisotropic criterion is related to the von Mises effective
stress by the relation

Re ¼ jR11 � R33j ¼ g ~Re; ð74Þ
(a)

(b)

Fig. 3. Anisotropic yield surfaces for a matrix material containing a spherical void of poro
yield strength (i.e., material B). (a) Tension–compression asymmetry with the yield st
Tension–compression asymmetry with the yield strengths in tension greater than the y
where

g ¼
1

m̂ U3j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3k2þ2kþ3Þ
p for R11 > R33;

1

m̂ U3j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3k2�2kþ3Þ
p for R11 < R33:

8<: ð75Þ

In Fig. 3 are presented the projections of the analytical yield loci gi-
ven by Eq. (68) in the plane (Re, Rm) for a transversely isotropic
material of type B with either yield strengths in tension greater than
in compression (k = 0.3098) or yield strengths in tension less than in
compression (k = �0.3098).

Note that the effect of the sign of the third invariant of the stress
deviator is well captured. Specifically, for purely deviatoric loading,
if R33 > R11 then the material yields at

Re ¼
rT

1ð1� f Þ

m̂ U3j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3k2 � 2kþ 3Þ

q ; ð76Þ

whereas for R33 < R11,
sity f = 0.01 and with the through-thickness yield strength greater than the in-plane
rengths in tension less than the yield strengths in compression (k = �0.3098). (b)
ield strengths in compression (k = 0.3098).
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Re ¼
rT

1ð1� f Þ

m̂ U3j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3k2 þ 2kþ 3Þ

q ; ð77Þ

where, for transverse isotropy,

U3 ¼
1
6

1� 3L33ð Þ: ð78Þ

Note also that the yield locus is no longer symmetric with the ver-
tical axis Rm = 0 since h depends on the sign of the mean stress (Eq.
(65)). For transverse isotropy, h can be written as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

15
n̂ 7̂l1 þ 2̂l3 þ 6̂l4

� �r
: ð79Þ

The effect of the magnitude of the third invariant of the stress
deviator can be best assessed through examination of the projec-
tions of the yield locus (Eq. (68)) in the p-plane (the plane normal
to the hydrostatic axis: ðe1 þ e2 þ e3Þ=

ffiffiffi
3
p
Þ. Contours corresponding

to a porosity of f = 0.01 and fixed values of the mean stress
Rm ¼ 0;0:75pþY , and 0:9pþY are plotted in Figs. 4–6 for the six mate-
rials considered.

Fig. 4(a)–(c) shows the p-plane representation of the yield loci
for a porous aggregate with an isotropic matrix (material type A)
(a)

(c)

Fig. 4. Representation in the deviatoric plane of the ductile yield criterion given by Eq. (6
pressure. (a) No strength differential (k = 0). (b) Tension–compression asymmetry w
(k = �0.3098). (c) Tension–compression asymmetry with the yield strengths in tension
displaying tension–compression asymmetry with k = 0.3098 and
k = �0.3098, along with the von Mises matrix (k = 0) for compari-
son. The effect of the third invariant of the stress deviator is evi-
dent in the change in shape of the yield loci from circles to
rounded triangles. The combined effects of anisotropy and ten-
sion–compression asymmetry are evident from Fig. 5 (material
type B) and Fig. 6 (material type C). A very drastic departure of
the yield loci from the ellipse (k = 0) is observed for both material
types B and C.

Fig. 7 shows the p-plane representation of the ductile criterion
given by Eq. (68). Fig. 7(a) illustrates the p-plane representation for
a von Mises material (material type A with k = 0 and f = 0). Figs.
7(b)–(d) shows representations with non-zero porosity (f = 0.01)
for materials of type B with no strength–differential (k = 0), yield
strength in tension greater than in compression (k > 0) and yield
strength in tension less than in compression (k < 0), respectively.
Notice that if there are no voids present (see Fig. 7(a)), the response
is independent of the hydrostatic pressure; this is because the ma-
trix material is incompressible. When voids are present, as in
Fig. 7(b)–(d), the yield surface shrinks in the deviatoric plane as
the pressure increases toward either the tensile or compressive
hydrostatic limit pressure (i.e., toward either vertex). Fig. 7 implies
that the anisotropy and tension–compression asymmetry of the
(b)

8) for an isotropic material (material A in Table 1). pþY is the tensile hydrostatic yield
ith the yield strengths in tension less than the yield strengths in compression
greater than the yield strengths in compression (k = 0.3098).



(a) (b)

(c)

Fig. 5. Representation in the deviatoric plane of the ductile yield criterion given by Eq. (68) for a material with the through-thickness yield strength greater than the in-plane
yield strength (material B in Table 1). pþY is the tensile hydrostatic yield pressure. (a) No strength differential (k = 0). (b) Tension–compression asymmetry with the yield
strengths in tension less than the yield strengths in compression (k = �0.3098). (c) Tension–compression asymmetry with the yield strengths in tension greater than the yield
strengths in compression (k = 0.3098).
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matrix influences the shape of the yield locus in the deviatoric
plane while the presence of voids in the aggregate leads to a
decrease in the size of the yield locus with increasing pressure
(positive or negative). Fig. 7(b)–(d) show yield surfaces corre-
sponding to a fixed value of the porosity, f = 0.01; varying the
porosity will simply change the size of the yield locus (the yield lo-
cus decreases in size with increasing porosity for a fixed pressure).
The shape of the yield locus is governed by the matrix anisotropy
and tension–compression asymmetry.
6.2. Validation through finite element cell calculations

The assumption of in-plane isotropy allows axisymmetric calcu-
lations to be performed and the results can be used to examine
directional effects and the influence of tension–compression asym-
metry on yielding. Thus, loading paths of the type (R11, R11, R33)
will be considered, with e3 being normal to the plane of isotropy.
Tension–compression asymmetry in the matrix due to the com-
bined effects of the matrix asymmetry and the presence of the
voids will be assessed by carrying out calculations for both com-
pressive (Rm < 0) and tensile (Rm > 0) axisymmetric loadings.

The axisymmetric unit cell calculations that were carried out
are similar to those of Koplik and Needleman (1988), Ristinmaa
(1997) and Cazacu and Stewart (2009) in the sense that the contin-
uum is considered to consist of a periodic assemblage of hexagonal
cylindrical unit cells which are approximated by right circular cyl-
inders. Due to symmetry, only one quarter of the unit cell for the
anisotropic material is shown in Fig. 8. In the figure, the X3-axis de-
notes the through-thickness direction while the X1-axis is in the
plane of isotropy. Every cell of initial length L0 and radius R0 con-
tains a spherical void of initial radius a0 and is subject to homoge-
neous radial and axial displacements. In other words, the boundary
conditions for this unit cell are as follows:

u1 ¼ ur2 ¼ ur3 ¼ 0 for X1 ¼ 0;

u3 ¼ ur1 ¼ ur2 ¼ 0 for X3 ¼ 0;

u1 ¼ U1 for X1 ¼ R;

u3 ¼ U3 for X3 ¼ L=2;

ð80Þ

where ui are the displacements in the Xi directions and uri are the
rotations about the Xi axes. The void is considered to be traction
free. Thus, for this axisymmetric unit cell, the initial porosity f0 is
defined as

f0 ¼
4a3

0

3R2
0L0

: ð81Þ



(a) (b)

(c)

Fig. 6. Representation in the deviatoric plane of the ductile yield criterion given by Eq. (68) for a material with the through-thickness yield strength less than the in-plane
yield strength (material C in Table 1). pþY is the tensile hydrostatic yield pressure. (a) No strength differential (k = 0). (b) Tension–compression asymmetry with the yield
strengths in tension less than the yield strengths in compression (k = �0.3098). (c) Tension–compression asymmetry with the yield strengths in tension greater than the yield
strengths in compression (k = 0.3098).
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The macroscopic principal strains, the effective von Mises mac-
roscopic strain Ee and the strain triaxiality TE are defined as
follows:

E11 ¼ ln
R
R0

	 

¼ ln

R0 þ U1

R0

	 

;

E33 ¼ ln
L
L0

	 

¼ ln

L0 þ 2U3

L0

	 

;

ð82Þ

Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

E0ijE
0
ij

r
ð83Þ

and

TE ¼
Ekk

3Ee
¼ 2E11 þ E33

2 E11 � E33j j ; ð84Þ

where Ekk is the trace of the macroscopic strain tensor and E0ij are the
components of the macroscopic deviatoric strain tensor.

The macroscopic stress R is also axisymmetric such that

R11 ¼ R22 ¼
F1

pRL
;

R33 ¼
F3

pR2 ;

ð85Þ
where F1 is the total radial force at X1 = R and F3 is the total axial
force at X3 = L/2. Due to axisymmetric loading, JR3 ¼ �ð2=27ÞðR11�
R33Þ3; thus, only the effect of the sign of the third invariant can
be examined in the current analysis.

The analytical yield criterion of Eq. (68) can be modified to in-
clude additional parameters, qi, as was done by Tvergaard (1981)
and Tvergaard and Needleman (1984) in the case of Gurson’s
(1977) yield criterion as follows:

U ¼
~Re

rT
1

 !2

þ 2q1f cosh
3q2Rm

hrT
1

	 

� 1� q3f 2; ð86Þ

where values of q1 = 4/e, q2 = 1 and q3 ¼ q2
1 will be used in the fol-

lowing (these values were suggested in Leblond and Perrin, 1990,
based on an analysis of the effects of a second population of small
voids on the growth of a large void). In the next section, the analyt-
ical yield surfaces given by Eq. (86) will be compared to data from
finite element unit cell calculations.

6.3. Results

All calculations were performed assuming elastic, ideal-plastic
behavior for the matrix with the plastic potential given by the
CPB06 anisotropic criterion (see Eq. (47)). A user material



Fig. 7. Representation in the deviatoric plane of the ductile yield criterion given by
Eq. (68) for a material with the through-thickness yield strength greater than the
in-plane yield strength (material type B in Table 1). (a) No tension–compression
asymmetry (k = 0) and no voids (f = 0). (b) No tension–compression asymmetry
with f = 0.01. (c) Yield strengths in tension greater than in compression (k = 0.3098)
with f = 0.01. (d) Yield strengths in tension less than in compression (k = �0.3098)
with f = 0.01.

R

L/2

a
X1

X3

Fig. 8. Quarter section of the unit cell for transversely isotropic materials
containing spherical voids; axis X3 is the axis of rotational symmetry with the
X1–X2 plane being the plane of symmetry.

Fig. 9. f0 = 0.01 axisymmetric finite element mesh for the unit cell.
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subroutine was written for the commercial FE program ABAQUS
(see Abaqus, 2008) using a fully implicit return mapping algorithm.
A mesh refinement study was performed using four-node quadri-
lateral elements (with reduced integration and ABAQUS’ enhanced
hourglass control) to ensure solution convergence. Fig. 9 shows the
mesh used for all tests. The matrix elastic properties are E=rT

1 ¼
800 and m = 0.32, where E is the Young’s modulus and m is the Pois-
son’s ratio. For ease of comparison, the tensile yield strength in the
e1 direction, rT
1, was considered to be the same for all material

types A, B, and C.
The model implementation was first verified by performing cal-

culations corresponding to k = 0 for material type A (isotropic) and
transversely isotropic (B and C), which correspond to a von Mises
matrix (for material type A) and Hill matrices (for material types
B and C), and comparing the results to those obtained using the
ABAQUS built-in von Mises and Hill material models for the matrix.
As an example, in Fig. 10 are shown the results of these FE calcula-
tions in terms of the von Mises effective stress Re versus the von
Mises effective strain Ee for each material. In the calculations illus-
trated in Fig. 10, the displacements were prescribed such that a
constant value of the strain triaxiality (TE = 1.5) was maintained
and the major stress was oriented along the e3 direction (R33 >
R11 > 0). Both materials B and C have the same yield strength along
the in-plane direction e1. However, since the matrix in material C is
softest in the e3 direction, there is more plastic flow and, hence,
more void growth than in material B, for which the e3 direction
is the hardest. Consequently, material C yields first at at a lower
stress level and its overall softening is much more pronounced
than in material B. Comparison between the isotropic stress–strain
curve and the anisotropic ones illustrate very clearly the effect of
the directionality of the plastic flow of the matrix on yielding of
the void matrix aggregate. Overall softening in the isotropic mate-
rial is less pronounced than in material C since, while all three
materials have the same yield strength in the e1 direction, material
A has equal yield strengths in the e1 and e3 directions whereas
material C has a lower yield strength in the e3 direction.

Figs. 11–13 show the finite element results versus Eq. (86)
where three different materials (corresponding to material types
A, B and C with k = 0.3098 such that the yield strengths in tension
are greater than in compression) are each used as the matrix mate-
rial in a unit cell containing a spherical void (1% void volume frac-
tion). The figures show the normalized macroscopic von Mises
effective stress Re=rT

1 versus the normalized macroscopic mean
stress Rm=rT

1; the numerical values of the anisotropy coefficients
are given in Table 1. The macroscopic yield points for the finite ele-
ment calculations were taken to correspond with the points of
maximum macroscopic effective stress. Results corresponding to
both positive and negative values of the third invariant of the
stress deviator JR3 are reported in the figures.

Fig. 11 shows a comparison between the finite element results
versus the theoretical yield curves given by Eq. (86) when the



Fig. 10. Typical von Mises effective stress versus von Mises effective strain curves corresponding to FE calculations at TE = 1.5 and with the major stress in the e3 direction. For
all materials the yield stress in tension and compression are equal (k = 0) with material type A being isotropic (rT;C

1 ¼ rT;C
3 ), material type B having a through-thickness yield

strength greater than the in-plane yield strength (rT;C
1 < rT;C

3 ) and material type C having a through-thickness yield strength lower than the in-plane yield strength
(rT;C

1 > rT;C
3 ).

Fig. 11. Analytical yield curves according to the Benzerga and Besson (2001) criterion and axisymmetric FE results corresponding to an anisotropic matrix (i.e., material type
B in Table 1 with k = 0). The void volume fraction is f0 = 0.01.
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matrix materials are anisotropic (the anisotropy coefficients corre-
spond to material type B of Table 1) and does not display tension
compression asymmetry (k = 0). Thus, Eq. (86) reduces to the ana-
lytical criterion of Benzerga and Besson (2001). As in the case of
Gurson (1977), the Benzerga and Besson (2001) yield criterion does
not account for the effect of the third invariant of the stress devi-
ator; yet, the agreement with FE results is still quite good.

Figs. 12 and 13 show FE results together with the analytical
yield curves corresponding to materials having the yield strength
in the through-thickness direction greater than the yield strength
in any in-plane direction and vice versa, respectively (i.e., materials
type B and C, respectively, from Table 1). To examine the combined
effects of anisotropy and tension–compression asymmetry, axi-
symmetric calculations were performed with the through-thick-
ness direction, e3, corresponding to either the major stress
(JR3 > 0) or to the minor stress (JR3 < 0). The agreement between
the analytical yield curves according to the developed criterion
(Eq. (86)) and the finite element results obtained from the unit cell
calculations is satisfactory.

Finally, Fig. 14 shows a comparison between the FE results and
the anisotropic yield criterion of Eq. (86) for three different mate-
rials, each having the through-thickness direction e3 the hardest
but displaying various levels of tension–compression asymmetry
(k = 0, k > 0 and k < 0). The FE data corresponds to axisymmetric
loading with the minor stress being in the through-thickness direc-
tion (i.e., JR3 < 0). The model accurately predicts that for the same
yield strength ratio, the softest material corresponds to k > 0 while
the hardest corresponds to k < 0 (see also Eqs. (70), (71) and (77)
which give the expressions of the intercepts of the yield locus with
the hydrostatic and deviatoric axes as functions of the strength–



Fig. 12. Analytical yield curves according to the proposed criterion (Eq. (86)) and axisymmetric FE results for both JR3 > 0 and JR3 < 0. The anisotropic matrix material is
hardest in the through-thickness direction (i.e., material type B in Table 1) and displays tension–compression asymmetry with the tensile yield strengths larger than the
compressive ones (k = 0.3098). The void volume fraction is f0 = 0.01.

Fig. 13. Analytical yield curves according to the proposed criterion (Eq. (86)) and axisymmetric FE results for both JR3 > 0 and JR3 < 0. The anisotropic matrix material is softest
in the through-thickness direction (i.e., material type C in Table 1) and displays tension–compression asymmetry with the tensile yield strengths larger than the compressive
ones (k = 0.3098). The void volume fraction is f0 = 0.01.
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differential parameter k). Once again, the comparison between fi-
nite element data and the yield curves shows quite good
agreement.
7. Concluding remarks

Yielding of porous materials in which the matrix is incompress-
ible, anisotropic, and displays tension–compression asymmetry
has been studied. An analytical yield criterion has been developed
by extending Gurson’s (1977) analysis of the hollow sphere to the
case when the matrix plastic behavior is described by the aniso-
tropic yield criterion of Cazacu et al. (2006). The classical velocity
field of Rice and Tracey (1969) has been used in the upper bound
calculations. This velocity field is the simplest among the fields
that meet the requirements of the Hill–Mandel lemma, i.e., incom-
pressibility and compatibility with uniform strain rate boundary
conditions. There are several studies that motivate the examina-
tion of more complex microscopic flow fields (e.g., Needleman,
1972; Koplik and Needleman, 1988). Specifically, it is shown that
part of the matrix might not attain plastic yield and that elastic
unloading may occur in certain subdomains. Nevertheless, even
using the simplest velocity field, fresh difficulties were encoun-
tered when estimating the local plastic dissipation associated with
the Cazacu et al. (2006) yield criterion. These difficulties are related
to the tension–compression asymmetry and anisotropy of the ma-
trix response. Thus, the plastic multiplier rate has multiple
branches (see Eq. (28)) and depends on each of the principal values
of the local rate of deformation, d.

Certain approximations were introduced in order to obtain the
analytical, closed-form expression of the overall plastic potential
(Eq. (68)). The derived criterion is anisotropic, exhibits tension–



Fig. 14. Anisotropic, axisymmetric finite element yield points versus analytic curves when the initial void volume fraction is f0 = 0.01 and the matrix material is hardest in the
through-thickness direction (i.e., material type B in Table 1). The curves shown are for k = 0 (no strength differential), k = 0.3098 (yield strengths in tension greater than in
compression) and k = �0.3098 (yield strengths in tension less than in compression) with R33 < R11.
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compression asymmetry due to the characteristics of the plastic
flow of the matrix and is pressure-sensitive due to the presence
of voids. It is worth noting that this criterion depends on all stress
invariants as well as the mixed invariants between stress and
structural tensors. Comparison between the theoretical predictions
using this criterion and results of finite element cell calculations
show an overall good agreement.

Although the expression of the proposed criterion for the por-
ous material is similar to that of Benzerga and Besson (2001), there
are distinct differences.

� The Hill (1948) equivalent stress is replaced by

~Re ¼ m̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1ðjR̂ij � kR̂iÞ2
q

, the equivalent stress associated to

the CPB06 anisotropic criterion, which depends on all principal
values of the stress deviator R0, the anisotropy coefficients Lij

and on the ratio between the uniaxial yield in tension rT
1 and

the uniaxial yield in compression rC
1 of the matrix through the

parameter m̂ (see Eq. (16) for the definition of the constant m̂).
� It involves a new coefficient h such that for tensile hydrostatic

loading, yielding of the void-matrix aggregate occurs when

Rm ¼ �rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

15m̂2 ð7̂l1þ2̂l3þ6̂l4
3k2þ2kþ3

Þ
q

lnðf Þ while for compressive hydro-

static loading yielding is at Rm ¼ rT
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

15m̂2 ð7̂l1þ2̂l3þ6̂l4
3k2�2kþ3

Þ
q

lnðf Þ. Thus,

for arbitrary loadings the effective yield locus is no longer sym-
metric with respect to the vertical axis Rm = 0, as it is in the case
of Gurson (1977) or Benzerga and Besson’s (2001) yield locus.

If there is no difference in response between the yield in tension
and compression, ~Re reduces to Hill’s equivalent stress and the
coefficient h reduces to the expression

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8=15Þð̂l1 þ l̂2 þ l̂3Þ þ ð4=5Þð̂l4 þ l̂5 þ l̂6Þ

q
; ð87Þ

which coincides with the hydrostatic factor in Benzerga and Bes-
son’s (2001) criterion (since for k = 0, the quadratic form of Cazacu
et al.’s (2006) anisotropic criterion reduces to Hill’s (1948) aniso-
tropic criterion); hence, the proposed criterion (Eq. (68)) reduces
to the criterion of Benzerga and Besson (2001). In the absence of
voids, the proposed criterion reduces to Cazacu et al.’s (2006) aniso-
tropic yield criterion. The accuracy of the analytical criterion was
assessed through comparison with finite-element cell calculations.
To improve the agreement, the proposed analytic yield criterion
(Eq. (68)) was modified to include additional parameters, qi, as done
by Tvergaard (1981), Tvergaard and Needleman (1984) in the case
of the Gurson (1977) yield criterion. In this manner, for k = 0 and
L = 1 (a von Mises matrix), the criterion reduces to the GTN model,
while for k non-zero and L isotropic it reduces to Cazacu and Stew-
art (2009). The agreement between the theoretical predictions
using this criterion (Eq. (86)) and the results of finite element cell
calculations are quite good.
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Appendix A. Calculation of the hydrostatic parameter

The hydrostatic parameter, h, is given as

h2 ¼ n̂h�d : bL : �diSðrÞ ¼
n̂

4p

Z 2p

0

Z p

0

�d : bL : �d
� �

sin hdhd/; ð88Þ

where

�d ¼ �2er � er þ eh � eh þ e/ � e/: ð89Þ

The basis vectors for the spherical coordinate system (er, eh, e/) are
expressed in terms of the basis vectors for the Cartesian coordinate
system associated with the material axes of symmetry (e1, e2, e3) as
follows:

er ¼ sin h cos /ð Þe1 þ sin h sin /ð Þe2 þ cos he3;

eh ¼ cos h cos /ð Þe1 þ cos h sin /ð Þe2 � sin he3;

e/ ¼ � sin /e1 þ cos /e2;

ð90Þ

where h 2 [0,p] and / 2 [0,2p].
In order to evaluate the integral expression in Eq. (88), the ten-

sor �d will be transformed from the spherical coordinate system to
the material coordinate system. Thus,
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�dð1;2;3Þ ¼ R�dðr;h;/ÞR
T ; ð91Þ

where

R ¼
cos / sin h cos / cos h � sin /

sin / sin h sin / cos h cos /

cos h � sin h 0

264
375 ð92Þ

such that

�dð1;2;3Þ ¼
1�3sin2 hcos2 / �3sin2 hsin/cos/ �3sinhcoshcos/

�3sin2 hsin/cos/ 1�3sin2 hsin2 / �3sinhcoshsin/

�3sinhcoshcos/ �3sinhcoshsin/ 1�3cos2 h

264
375:
ð93Þ

Note that

�d : bL : �d ¼ l̂1
�d2

11 þ l̂2
�d2

22 þ l̂3�d2
33 þ 2 l̂4

�d2
23 þ l̂5

�d2
13 þ l̂6

�d2
12

� �
: ð94Þ

Therefore, evaluating the integral expression in Eq. (88) reduces to
evaluating the surface integral of the squared components of �dð1;2;3Þ.
Referring to Eq. (93) yields

h�d2
11iSðrÞ ¼ h�d2

22iSðrÞ ¼ h�d2
33iSðrÞ ¼

4
5
;

h�d2
23iSðrÞ ¼ h�d2

13iSðrÞ ¼ h�d2
12iSðrÞ ¼

3
5
:

ð95Þ

Finally, an expression for the hydrostatic parameter, h, is arrived at
by combining Eqs. (88), (94) and (95). Thus,

h2 ¼ n̂
4
5

l̂1 þ l̂2 þ l̂3
� �

þ 6
5

l̂4 þ l̂5 þ l̂6

� �� 
: ð96Þ
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