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The present paper studies the stochastic maximum principle in singular optimal control,
where the state is governed by a stochastic differential equation with nonsmooth
coefficients, allowing both classical control and singular control. The proof of the main
result is based on the approximation of the initial problem, by a sequence of control
problems with smooth coefficients. We, then apply Ekeland’s variational principle for this
approximating sequence of control problems, in order to establish necessary conditions
satisfied by a sequence of near optimal controls. Finally, we prove the convergence of
the scheme, using Krylov’s inequality in the nondegenerate case and the Bouleau–Hirsch
flow property in the degenerate one. The adjoint process obtained is given by means of
distributional derivatives of the coefficients.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider stochastic control problems of nonlinear systems, where the control variable has two-components, the first
being absolutely continuous and the second singular. More precisely, we study the stochastic maximum principle in optimal
control for a problem in which the state evolves according to the d-dimensional stochastic differential equation{

dxt = b(t, xt , ut)dt + σ(t, xt)dBt + Gt dξt , for t ∈ [0, T ],
x0 = α,

(1.1)

and the expected cost has the form

J (u, ξ) = E

[ T∫
0

f (t, xt , ut)dt +
T∫

0

kt dξt + g(xT )

]
. (1.2)

Singular control problems have numerous applications. They appear in mathematical finance, e.g. in the problem of
optimal consumption investment, with transaction costs (see Davis, Norman [14], Shreve, Soner [25]). A huge literature has
been produced on the subject, including Benĕs, Shepp, and Witsenhausen [6], Chow, Menaldi, and Robin [12], Karatzas,
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Shreve [19], Davis, Norman [14], Haussmann, Suo [17,18]. See [17] for a complete list of references on the subject. The
approaches used in these papers, are mainly based on dynamic programming. It was shown in particular that the value
function is a solution of a variational inequality, and the optimal state is a reflected diffusion at the free boundary. Note
that in [17], the authors apply the compactification method to show the existence of an optimal relaxed singular control.

The other major approach to study singular control problems is the investigation for necessary conditions satisfied by
an optimal control. The first version of the stochastic maximum principle, that covers singular control problems was ob-
tained by Cadenillas and Haussmann [10], in which they consider linear dynamics, convex cost criterion and convex state
constraints. The method used in [10] is based on the known principle of convex analysis, related to the minimization of
convex, Gâteaux differentiable functionals defined on a convex closed set.

A first order weak maximum principle has been derived by Bahlali and Chala [1], in which convex perturbations are
used for both absolutely continuous and singular components. A second order stochastic maximum principle for nonlinear
SDEs with a controlled diffusion matrix was obtained by Bahlali and Mezerdi [4], extending Peng’s maximum principle [23]
to singular control problems. This result is based on two perturbations of the optimal control. The first is a spike variation,
on the absolutely continuous component of the control, and the second one is convex on the singular component. A similar
approach has been used by Bahlali et al. [2] to study the relaxed stochastic maximum principle in the case of uncontrolled
diffusion coefficient.

On the other hand, the stochastic maximum principle for classical control problems (without the singular part) has been
studied, with differentiability assumptions on the data weakened. The first result has been derived by Mezerdi [22], in
the case of an SDE with a nonsmooth drift, by using Clarke generalized gradients and stable convergence of probability
measures. In [3,5], the authors extend the classical stochastic maximum principle to the case where the coefficients of the
diffusion process are only Lipschitz continuous. The adjoint process obtained is given by means of generalized derivatives of
the coefficients. See also [7,8,11,21,24] for other versions of the maximum principle.

Our aim in this paper is to extend the stochastic maximum principle in singular optimal control, to the case where the
coefficients b, σ , f and g are Lipschitz continuous in the state variable. The main result is proved via an approximation
scheme of the initial control problem, by a sequence of control problems, where the data are smooth functions. Ekeland’s
variational principle is then applied to derive necessary conditions for near optimality satisfied by a sequence of near
optimal controls. The convergence of the approximation scheme is obtained by using Krylov’s estimate in the nondegenerate
case and the Bouleau–Hirsch flow property in the degenerate case.

2. Assumptions and preliminaries

Let (Ω, F , Ft , P ) be a filtered probability space, satisfying the usual conditions, on which a d-dimensional Brownian
motion (Bt) is defined with the filtration (Ft). Let T be a strictly positive real number, A1 is a nonempty subset of R

n and
A2 = ([0,∞))m . U1 is the class of measurable, adapted processes u : [0, T ] × Ω → A1, and U2 is the class of measurable,
adapted processes ξ : [0, T ] × Ω → A2.

Definition 2.1. An admissible control is a pair (u, ξ) of measurable A1 × A2-valued, Ft -adapted processes, such that ξ is of
bounded variation, nondecreasing left-continuous with right limits and ξ0 = 0.

We denote by U = U1 × U2 the set of all admissible controls.
For (u, ξ) ∈ U , suppose that the state xt = x(u,ξ)

t ∈ R
d is described by the equation{

dxt = b(t, xt , ut)dt + σ(t, xt)dBt + Gt dξt , for t ∈ [0, T ],
x0 = α.

(2.1)

Since dξt may be singular with respect to Lebesgue measure dt , we call ξ the singular part of the control and the
process u its absolutely continuous part. Suppose we are given a cost functional J (u, ξ) of the form

J (u, ξ) = E

[ T∫
0

f (t, xt , ut)dt +
T∫

0

kt dξt + g(xT )

]
, (2.2)

where b : [0, T ]×R
d × A1 → R

d , σ : [0, T ]×R
d → R

d ⊗R
d , f : [0, T ]×R

d × A1 → R, g : R
d → R, G : [0, T ] → R

d ⊗R
m , and

k : [0, T ] → ([0,∞))m .
Assume that b, σ , f and g are Borel measurable, bounded functions and there exists M > 0, such that for all (t, x, y,a)

in R
+ × R

d × R
d × A1∣∣b(t, x,a) − b(t, y,a)

∣∣+ ∣∣σ(t, x) − σ(t, y)
∣∣� M|x − y|, (2.3)∣∣ f (t, x,a) − f (t, y,a)

∣∣+ ∣∣g(x) − g(y)
∣∣� M|x − y|, (2.4)

b(t, x,a) and f (t, x,a) are continuous in a uniformly in (t, x), (2.5)



K. Bahlali et al. / J. Math. Anal. Appl. 355 (2009) 479–494 481
and

G,k are continuous and bounded. (2.6)

The problem is to find (û, ξ̂ ) ∈ U such that

J (û, ξ̂ ) = min
(u,ξ)∈U

J (u, ξ).

Any (û, ξ̂ ) satisfying the above property is called an optimal control for problem (2.1), (2.2). The corresponding state process
x̂ is called the optimal state process.

Under the above hypothesis, the SDE (2.1) has a unique strong solution xt , such that for any p > 0,

E
[

sup
0�t�T

|xt |p
]

< +∞.

Moreover the cost functional is well defined from U into R.
Since b, σ j (the jth column of the matrix σ ), f and g are Lipschitz continuous functions in the state variable, then they

are differentiable almost everywhere in the sense of Lebesgue measure (Rademacher Theorem, see [13]). Let us denote by
bx , σx , fx and gx any Borel measurable functions such that

∂xb(t, x,a) = bx(t, x,a) dx-a.e.,

∂x f (t, x,a) = fx(t, x,a) dx-a.e.,

∂xσ(t, x) = σx(t, x) dx-a.e.,

∂x g(x) = gx(x) dx-a.e.

It is clear that these almost everywhere derivatives are bounded by the Lipschitz constant M . Finally, assume that
bx(t, x,a) and fx(t, x,a) are continuous in a uniformly in (t, x).

Let us recall Krylov’s inequality and Ekeland’s variational principle, which will be used in the sequel.

Theorem 2.1. (See Krylov [20].) Let (Ω, F , Ft , P ) be a filtered probability space, (Bt)t�0 be a d-dimensional Brownian motion and
b : Ω × R+ → R

d, σ : Ω × R+ → R
d ⊗ R

d be bounded adapted processes such that: ∃c > 0, ∀ζ ∈ R
d, ∀(t, x) ∈ [0, T ] × R

d,
ζ ∗σσ ∗ζ � c|ζ |2 . Let

xt = x +
t∫

0

b(s,ω)dt +
t∫

0

σ(s,ω)dBs,

be an Itô process. Then for every Borel function f : R+ × R
d → R with support in [0, T ] × B(0, M), the following inequality holds

E

[ T∫
0

∣∣ f (t, xt)
∣∣dt

]
� K

[ T∫
0

∫
B(0,M)

∣∣ f (t, x)
∣∣d+1

dt dx

] 1
d+1

,

where K is a constant and B(0, M) is the ball of center 0 and radius M.

Lemma 2.1 (Ekeland variational principle). (See [15].) Let (S,d) be metric space and ρ : S → R∪{+∞} be lower-semicontinuous and
bounded from below. For ε � 0, suppose uε ∈ S satisfies ρ(uε) � infu∈S ρ(u) + ε. Then for any λ > 0, there exists uλ ∈ S such that

ρ
(
uλ
)
� ρ

(
uε
)
,

d
(
uλ, uε

)
� λ,

ρ
(
uλ
)
� ρ(u) + ε

λ
d
(
u, uλ

)
, for all u ∈ S.

To apply Ekeland’s variational principle to the control problem, we have to endow the set of controls with an appropriate
metric. For any (u, ξ), (υ,η) ∈ U , we set

d1(u, v) = P ⊗ dt
{
(ω, t) ∈ Ω × [0, T ], v(ω, t) 
= u(ω, t)

}
, (2.7)

d2(ξ,η) =
(

E
[

sup
0�t�T

|ξt − ηt |2
]) 1

2
, (2.8)

d
(
(u, ξ), (υ,η)

)= d1(u, v) + d2(ξ,η), (2.9)

where P ⊗ dt is the product measure of P with the Lebesgue measure dt .
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Lemma 2.2.

(1) (U ,d) is a complete metric space.
(2) The cost functional J is continuous from U into R.

Proof. (1) It is clear that (U2,d2) is a complete metric space. Moreover, it was shown in [19] that (U1,d1) is a complete
metric space. Hence (U ,d) is a complete metric space.

Item (2) is proved as in [22,26]. �
3. The nondegenerate case

In this section, we assume the following condition:

∃c > 0, ∀ζ ∈ R
d, ∀(t, x) ∈ [0, T ] × R

d, ζ ∗σ(t, x)σ ∗(t, x)ζ � c|ζ |2. (3.1)

3.1. The main result

The main result of this section is stated in the following theorem.

Theorem 3.1 (Stochastic maximum principle). Let (û, ξ̂ ) be an optimal control for the controlled system (2.1), (2.2) and let x̂ be the
corresponding optimal trajectory. Then there exists a measurable Ft -adapted process pt satisfying

pt := E

[ T∫
t

Φ∗(s, t). fx(s, x̂s, ûs)ds + Φ∗(T , t).gx(x̂T )/Ft

]
, (3.2)

such that for all a ∈ A1 and η ∈ U2

0 � H(t, x̂t ,a, pt) − H(t, x̂t , ût , pt) dt-a.e., P -a.s., (3.3)

and

0 � E

T∫
0

(
kt + G∗

t pt
)

d(η − ξ̂ )t , (3.4)

where the Hamiltonian H associated to the control problem is

H(t, x, u, p) = p.b(t, x, u) + f (t, x, u), (3.5)

and Φ(s, t) (s � t) is the fundamental solution of the linear equation⎧⎨⎩dΦ(s, t) = bx(s, x̂s, ûs).Φ(s, t)ds +
∑

1� j�d

σ
j

x (s, x̂s).Φ(s, t)dB j
s ,

Φ(t, t) = Id.

(3.6)

Here Φ∗ denotes the transpose of the matrix Φ .

3.2. Proof of the main result

Let ϕ be a nonnegative smooth function defined on R
d , with support in the unit ball such that

∫
Rd ϕ(y)dy = 1. Define

the following smooth functions by convolution

bn(t, x,a) = nd
∫
Rd

b(t, x − y,a)ϕ(ny)dy,

f n(t, x,a) = nd
∫
Rd

f (t, x − y,a)ϕ(ny)dy,

σ j,n(t, x) = nd
∫
Rd

σ j(t, x − y)ϕ(ny)dy,

gn(x) = nd
∫
Rd

g(x − y)ϕ(ny)dy.



K. Bahlali et al. / J. Math. Anal. Appl. 355 (2009) 479–494 483
Lemma 3.1.

(1) The functions bn(t, x,a), σ j,n(t, x), f n(t, x,a) and gn(x) are Borel measurable bounded functions and Lipschitz continuous with
constant K in x.

(2) There exists a positive constant C , independent of t, x and n such that for every t in [0, T ]∣∣bn(t, x,a) − b(t, x,a)
∣∣+ ∣∣σ j,n(t, x) − σ j(t, x)

∣∣� C

n
,∣∣ f n(t, x,a) − f (t, x,a)

∣∣+ ∣∣gn(x) − g(x)
∣∣� C

n
.

(3) The functions bn(t, x,a), f n(t, x,a), σ j,n(t, x) and gn(x) are C∞-functions in x, and for all t in [0, T ], we have

lim
n→∞ bn

x(t, x,a) = bx(t, x,a) dx-a.e.,

lim
n→∞ f n

x (t, x,a) = fx(t, x,a) dx-a.e.,

lim
n→∞σ

j,n
x (t, x) = σ

j
x (t, x) dx-a.e.,

lim
n→∞ gn

x (x) = gx(x) dx-a.e.

(4) For every p � 1 and R > 0

lim
n→∞

∫ ∫
B(0,R)×[0,T ]

sup
a∈A

∣∣bn
x(t, x,a) − bx(t, x,a)

∣∣p dx dt = 0,

lim
n→∞

∫ ∫
B(0,R)×[0,T ]

sup
a∈A

∣∣ f n
x (t, x,a) − fx(t, x,a)

∣∣p dx dt = 0.

Proof. Statements (1)–(3) are classical facts (see [16] for the proof).
(4) is proved as in [5] Lemma 2.3. �
For n ∈ N

∗ , let us consider the sequence of perturbed control problems obtained by replacing b, σ , f and g by bn , σ n ,
f n and gn . Let us denote y the solution of the controlled stochastic differential equation.{

dyt = bn(t, yt , ut)dt + σ n(t, yt)dBt + Gt dξt ,

y0 = α.
(3.7)

The corresponding cost is given by

Jn(u, ξ) = E

[ T∫
0

f n(t, yt , ut)dt +
T∫

0

kt dξt + gn(yT )

]
. (3.8)

Lemma 3.2. Let (u, ξ) ∈ U , xt and yt the solutions of (2.1) and (3.7) respectively corresponding to the control (u, ξ), then we have

(1) E[sup0�t�T |xt − yt |2] � M1.(εn)2 , where εn = C
n .

(2) | Jn(u, ξ) − J (u, ξ)| � M2.εn.

Proof. Since xt − yt and Jn(u, ξ) − J (u, ξ) do not depend on the singular part, then this lemma follows from standard
arguments from stochastic calculus and Lemma 3.1. �

Let us suppose that (û, ξ̂ ) ∈ U is an optimal control for the initial control problem (2.1) and (2.2). Note that (û, ξ̂ ) is not
necessarily optimal for the perturbed control problem (3.7) and (3.8). However, by Lemma 3.2, we obtain the existence of
(δn) ≡ (2M2.εn), a sequence of positive real numbers converging to 0, such that

Jn(û, ξ̂ ) � inf
(υ,η)∈U

Jn(υ,η) + δn.

The control (û, ξ̂ ) is then δn-optimal for the perturbed control problem. According to Lemma 2.2, it is easy to see that
Jn(.,.) is continuous on U = U1 ×U2 endowed with the metric d = d1 +d2 defined by (2.9). By Ekeland’s variational principle

(Lemma 2.1) applied to (û, ξ̂ ) with λn = δ
2
3

n , there exists an admissible control (un, ξn) such that
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d
(
(û, ξ̂ ),

(
un, ξn))� δ

2
3

n ,

and

Jn
δ

(
un, ξn)� Jn

δ (υ,η), for all (υ,η) ∈ U ,

where

Jn
δ (υ,η) = Jn(υ,η) + δ

1
3

n d
(
(υ,η),

(
un, ξn)).

This means that (un, ξn) is an optimal control for the perturbed system (3.7) with a new cost function Jn
δ . The controlled

process xn is defined as the unique solution to the stochastic differential equation,{
dxn

t = bn(t, xn
t , un

t

)
dt + σ n(t, xn

t

)
dBt + Gt dξn

t ,

y0 = α.
(3.9)

We consider Φn(s, t) (s � t), the fundamental solution of the linear stochastic differential equation⎧⎨⎩dΦn(s, t) = bn
x

(
s, xn

s , un
s

)
.Φn(s, t)ds +

∑
1� j�d

σ
j,n

x
(
s, xn

s

)
.Φn(s, t)dB j

s ,

Φn(t, t) = Id.

(3.10)

Note that bn
x , σ

n, j
x ( j = 1, . . . ,d) are respectively the matrices of first order partial derivatives of bn , σ n, j ( j = 1, . . . ,d)

with respect to x.

Proposition 3.1. For each integer n, there exist an admissible control (un, ξn) and an (Ft)-adapted process pn
t given by

pn
t = E

[ T∫
t

Φn,∗(s, t). f n
x

(
s, xn

s , un
s

)
ds + Φn,∗(T , t).gn

x

(
xn

T

)
/Ft

]
, (3.11)

and a Lebesgue null set N such that for t ∈ Nc

E
[

Hn(t, xn
t ,υ, pn

t

)− Hn(t, xn
t , un

t , pn
t

)]
� −δ

1
3

n .M1, (3.12)

and

E

T∫
0

(
kt + G∗

t pn
t

)
d
(
η − ξn)

t � −δ
1
3

n .M2, (3.13)

for all υ ∈ A1 , and η ∈ U2 . The Hamiltonian Hn is defined by

Hn(t, x, u, p) = p.bn(t, x, u) + f n(t, x, u). (3.14)

Proof. According to the optimality of (un, ξn) for the perturbed system with cost function Jn
δ , we can use the spike variation

method to derive a maximum principle for (un, ξn). Let t0 ∈ [0, T ], υ ∈ A1 and η ∈ U2. For any ε > 0, define the two
perturbations (un,ε

t , ξn
t ) and (un

t , ξ
n,ε
t ) by

(
un,ε

t , ξn
t

)=
{

(υ, ξn
t ), t ∈ [t0, t0 + ε],

(un
t , ξn

t ), t ∈ [0, T ]\[t0, t0 + ε],
and (

un
t , ξ

n,ε
t

)= (un
t , ξ

n
t + ε

(
ηt − ξn

t

))
.

Since (un
t , ξn

t ) is optimal for the cost Jn
δ , then

0 � Jn
δ

(
un,ε

t , ξn
t

)− Jn
δ

(
un

t , ξ
n
t

)
and

0 � Jn
δ

(
un

t , ξ
n,ε
t

)− Jn
δ

(
un

t , ξ
n
t

)
.

This implies that

0 � Jn(un,ε
t , ξn

t

)− Jn(un
t , ξ

n
t

)+ δ
1
3

n .d1
(
un

t , un,ε
t

)
,
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and

0 � Jn(un
t , ξ

n,ε
t

)− Jn(un
t , ξ

n
t

)+ δ
1
3

n .d2
(
ξn

t , ξ
n,ε
t

)
.

Using the definitions of d1 and d2 it holds that

0 � Jn(un,ε
t , ξn

t

)− Jn(un
t , ξ

n
t

)+ δ
1
3

n .M1ε, (3.15)

and

0 � Jn(un
t , ξ

n,ε
t

)− Jn(un
t , ξ

n
t

)+ δ
1
3

n .M2ε, (3.16)

where Mi (i = 1,2) is a positive constant. From inequalities (3.15) and (3.16) respectively we use the same method as in
Section 3.3 in [2] to obtain respectively (3.12) and (3.13). �

We use a transformation that makes it possible to apply Krylov’s estimate for diffusion processes. Define the coefficients
b : [0, T ] × R

d × A1 → R
d , bn : [0, T ] × R

d × A1 → R
d , σ : [0, T ] × R

d → R
d ⊗ R

d , and σ n : [0, T ] × R
d → R

d ⊗ R
d , by

b(t, x,a) = b

(
t, x +

t∫
0

Gs dξs,a

)
,

bn(t, x,a) = bn

(
t, x +

t∫
0

Gs dξs,a

)
,

σ (t, x) = σ

(
t, x +

t∫
0

Gs dξs

)
,

σ n(t, x) = σ n

(
t, x +

t∫
0

Gs dξs

)
.

Let z be the unique solution of{
dzt = b(t, zt , ut)dt + σ(t, zt)dBt ,

z0 = α.
(3.17)

This implies that xt = zt + ∫ t
0 Gs dξs solves the SDE (2.1) with data (b, σ ).

Similary, let zn be the unique solution of{
dzn

t = bn(t, zn
t , ut

)
dt + σ n(t, zn

t

)
dBt ,

zn
0 = α.

(3.18)

Then xn
t = zn

t + ∫ t
0 Gs dξs solves the SDE (3.7) with data (bn, σ n).

Note that, b,bn,σ j , and σ j,n ( j = 1, . . . ,d) are measurable bounded functions and Lipschitz continuous with constant M
in x. We conclude that the generalized derivatives (in the sense of distributions) bx,bn

x,σ
j
x , and σ

j,n
x ( j = 1, . . . ,d) are well

defined.

Lemma 3.3. The following estimates

lim
n→+∞ E

[
sup

0�t�T

∣∣xn
t − x̂t

∣∣2]= 0, (3.19)

lim
n→+∞ E

[
sup

t�s�T

∣∣Φn(s, t) − Φ(s, t)
∣∣2]= 0, (3.20)

lim
n→+∞ E

[
sup

0�t�T

∣∣pn
t − pt

∣∣2]= 0, (3.21)

lim
n→+∞ E

[∣∣Hn(t, xn
t , un

t , pn
t

)− H(t, x̂t , ût , pt)
∣∣]= 0, (3.22)

hold at least for a subsequence.
Φt , pt and H are determined respectively by the solution of (3.6), the adjoint process (3.2) and the associated Hamiltonian (3.5),

corresponding to the optimal state process x̂t . Φn
t , pn

t and Hn are determined respectively by the solution (3.10), the adjoint pro-
cess (3.11) and the associated Hamiltonian (3.14), corresponding to the approximating sequence xn

t , given by (3.9).
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Proof. In what follows, C represents a generic constant, which can be different from line to line.
By squaring, taking expectations and using Burkholder–Davis–Gundy inequality, we get

E
[

sup
0�t�T

∣∣xn
t − x̂t

∣∣2]� C
(

An
1 + An

2 + An
3 + M.

(
d2
(
ξn, ξ̂

))2)
,

where M is a positive constant, and

An
1 = E

[ t∫
0

∣∣bn(s, xn
s , un

s

)− bn(s, xn
s , ûs

)∣∣2χ{un 
=û}(s)ds

]
,

An
2 = E

[ t∫
0

∣∣bn(s, xn
s , ûs

)− bn(s, x̂s, ûs)
∣∣2 + ∣∣σ n(s, xn

s

)− σ n(s, x̂s)
∣∣2 ds

]
,

An
3 = E

[ t∫
0

∣∣bn(s, x̂s, ûs) − b(s, x̂s, ûs)
∣∣2 + ∣∣σ n(s, x̂s) − σ(s, x̂s)

∣∣2 ds

]
.

By using the boundness of the coefficient bn and the fact that d1(un, û) → 0 as n → +∞, we have limn→∞ An
1 = 0. Since

bn and σ n are Lipschitz in the state variable, then

An
2 � C E

[ t∫
0

sup
0�r�s

∣∣xn
r − x̂r

∣∣2 ds

]
.

Finally, we conclude from Lemma 3.2 that limn→+∞ An
3 = 0. Then by Gronwall Lemma, we obtain (3.19).

Again, using standard arguments based on Burkholder–Davis–Gundy, Schwartz inequalities and Gronwall Lemma, we
easily check that

E
[

sup
t�s�T

∣∣Φn(s, t) − Φ(s, t)
∣∣2]� C E

[
sup

t�s�T

∣∣Φn(s, t)
∣∣4] 1

2

{
E

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bx(t, x̂t , ût)
∣∣4 dt

] 1
2

+
∑

1� j�d

E

[ T∫
0

∣∣σ j,n
x
(
t, xn

t

)− σ
j

x (t, x̂t)
∣∣4 dt

] 1
2
}

.

Since the coefficients in the linear stochastic differential equation (3.10) are bounded, it is easy to see that
E[sups�t�T |Φn(s, t)|4] < +∞. To obtain the desired result it is sufficient to prove that

lim
n→+∞ E

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bx(t, x̂t , ût)
∣∣4 dt

]
= 0,

lim
n→+∞ E

[ T∫
0

∣∣σ j,n
x
(
t, xn

t

)− σ
j

x (t, x̂t)
∣∣4 dt

]
= 0, for j = 1, . . . ,d.

We have

E

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bx(t, x̂t , ût)
∣∣4 dt

]
� C

(
In
1 + In

2

)
,

where

In
1 = E

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bn
x

(
t, xn

t , ût
)∣∣4χ{un 
=û}(t)dt

]
,

In
2 = E

[ T∫
0

∣∣bn
x

(
t, xn

t , ût
)− bx(t, x̂t , ût)

∣∣4 dt

]
.

First, in view of the boundness of the derivative bn
x by the Lipschitz constant and the fact that d1(un, û) → 0 as n → +∞,

we obtain limn→+∞ In = 0. Next, let k � 1 be a fixed integer, then we get
1
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lim
n→+∞ In

2 � lim
n

C .
{

Jn
1 + Jn

2 + Jn
3

}
,

where

Jn
1 = E

[ T∫
0

∣∣bn
x

(
t, xn

t , ût
)− bk

x

(
t, xn

t , ût
)∣∣4 dt

]
,

Jn
2 = E

[ T∫
0

∣∣bk
x

(
t, xn

t , ût
)− bk

x(t, x̂t , ût)
∣∣4 dt

]
,

Jn
3 = E

[ T∫
0

∣∣bk
x(t, x̂t , ût) − bx(t, x̂t , ût)

∣∣4 dt

]
.

Now, let ẑ (resp. zn) denote the unique solution of the SDE (3.17) (resp. (3.18)) corresponding to (û, ξ̂ ) (resp. (un, ξn)),
then it holds that

Jn
1 = E

[ T∫
0

∣∣bn
x

(
t, zn

t , ût
)− bk

x

(
t, zn

t , ût
)∣∣4 dt

]
,

and

Jn
3 = E

[ T∫
0

∣∣bk
x(t, ẑt , ût) − bx(t, ẑt , ût)

∣∣4 dt

]
.

Arguing as in [20, p. 87], let w(t, x) be a continuous function such that 0 � w � 1, w(t, x) = 0 if t2 + x2 � 1, and
w(0,0) = 1. Then for M > 0, we have

lim
n

Jn
1 � C E

[ T∫
0

(
1 − w

(
t

M
,

ẑt

M

))
dt

]
+ C lim

n
E

[ T∫
0

w

(
t

M
,

ẑt

M

)
.
∣∣bn

x

(
t, zn

t , ût
)− bk

x

(
t, zn

t , ût
)∣∣4 dt

]
.

Therefore without loss of generality, we may suppose that for all n ∈ N
∗ , the functions bx , σ x , bn

x , and σ n
x have compact

support in [0, T ] × B(0, M). Since the diffusion matrix σ n is nondegenerate, then by applying Krylov’s inequality, we obtain

lim
n

Jn
1 � C E

[ T∫
0

(
1 − w

(
t

M
,

ẑt

M

))
dt

]
+ C lim

n

∥∥∥ sup
a∈A1

∣∣bn
x(t, x,a) − bk

x(t, x,a)
∣∣4∥∥∥

d+1,M
.

Since bn
x converges to bx dx-a.e., it is simple to see that bn

x converges to bx dx-a.e. and

lim
n

∥∥∥ sup
a∈A1

∣∣bn
x(t, x,a) − bk

x(t, x,a)
∣∣4∥∥∥

d+1,M
= 0.

Next, let M go to +∞, then from the properties of the function w(t, x) we have limn Jn
1 = 0. Estimating Jn

3 similarly,
it holds that limn Jn

3 = 0. By using the continuity of bk
x in x, relation (3.19), and the Dominated Convergence Theorem, we

deduce that limn Jn
2 = 0. Hence limn→+∞ In

1 = 0. Using the same technique, we prove that

lim
n→+∞ E

[ T∫
0

∣∣σ j,n
x
(
t, xn

t

)− σ
j

x (t, x̂t)
∣∣4 dt

]
= 0, for j = 1, . . . ,d.

Now, let us prove that limn→+∞ E[sup0�t�T |pn
t − pt |2] = 0. Clearly,

E
[∣∣pn

t − pt
∣∣2]� C

(
αn

1 + αn
2

)
, (3.23)

where

αn
1 = E

[ T∫ ∣∣Φn,∗(s, t). f n
x

(
s, xn

s , un
s

)− Φ∗(s, t). fx(s, x̂s, ûs)
∣∣2 ds

]
,

t
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and

αn
2 = E

[∣∣Φn,∗(T , t).gn
x

(
xn

T

)− Φ∗(T , t).gx(x̂T )
∣∣2].

Since fx is bounded by the Lipschitz constant M , then applying Schwarz inequality, we get

αn
1 � C E

[
sup

t�s�T

∣∣Φn,∗(s, t)
∣∣4] 1

2
.E

[ T∫
0

∣∣ f n
x

(
s, xn

s , un
s

)− fx(s, x̂s, ûs)
∣∣4 ds

] 1
2

+ C M.E
[

sup
t�s�T

∣∣Φn,∗(s, t) − Φ∗(s, t)
∣∣2].

We use the continuity and the boundness of derivatives f n
x , fx , relations (3.19), (3.20) and the fact that d1(un, û) → 0

as n → ∞, together with the Krylov’s inequality and the Dominated Convergence Theorem, for the term involving
f n

x (s, xn
s , un

s ) − fx(s, x̂s, ûs), to conclude that limn→+∞ αn
1 = 0.

On the other hand, since gx is bounded by the Lipschitz constant, then applying Schwarz inequality we get

αn
2 � C

{
E
[∣∣Φn,∗(T , t)

∣∣4]} 1
2 .
{

E
[∣∣gn

x

(
xn

T

)− gx(x̂T )
∣∣4]} 1

2 + C M.E
[∣∣Φn,∗(T , t) − Φ∗(T , t)

∣∣2].
Since, gn

x and gx are bounded by the Lipschitz constant and gn
x converges to gx , we conclude by using (3.19) and the

Dominated Convergence Theorem that

lim
n→+∞ E

[∣∣gn
x

(
xn

T

)− gx(x̂T )
∣∣4]= 0.

Then by using Burkholder–Davis–Gundy inequality together with (3.23), we obtain (3.21).
Now let us prove (3.22).
Apply Schwarz inequality to get

E
[∣∣Hn(t, xn

t , un
t , pn

t

)− H(t, x̂t , ût , pt)
∣∣]�

{
E
∣∣pn

t − pt
∣∣2} 1

2
{

E
∣∣bn(t, xn

t , un
t

)∣∣2} 1
2

+ {E
∣∣bn(t, xn

t , un
t

)− b(t, x̂t , ût)
∣∣2} 1

2
{

E|pt |2
} 1

2

+ E
∣∣ f n(t, xn

t , un
t

)− f (t, x̂t , ût)
∣∣.

Lemma 3.1 and relation (3.21) imply that the first expression in the right-hand side converges to 0 as n → +∞.
Next,

E
∣∣bn(t, xn

t , un
t

)− b(t, x̂t , ût)
∣∣2 � C

(
βn

1 + βn
2 + βn

3

)
,

where

βn
1 = E

[∣∣bn(t, xn
t , un

t

)− bn(t, xn
t , ût

)∣∣2χ{un 
=û}(t)
]
,

βn
2 = E

[∣∣bn(t, xn
t , ût

)− bn(t, x̂t , ût)
∣∣2],

βn
3 = E

[∣∣bn(t, x̂t , ût) − b(t, x̂t , ût)
∣∣2].

The boundness of bn and the fact that d1(un, û)→n→∞ 0 (which implies the a.s. convergence to û of a subsequence
which is still denoted by (un)), guarantee the convergence of βn

1 to 0 as n → +∞. By virtue of (3.19), and the Dominated
Convergence Theorem, we get, limn→+∞ βn

2 = 0. In view of Lemma 3.1, we have limn→+∞ βn
3 = 0.

The term E| f n(t, xn
t , un

t ) − f (t, x̂t , ût)| can be treated by using the same technique. �
Proof of Theorem 3.1. Let n go to +∞, then from Proposition 3.1 and Lemma 3.3, we get

E
[

H(t, x̂t , v, pt) − H(t, x̂t , ût , pt)
]
� 0, dt-a.e., P -a.s.,

E

T∫
0

(
kt + G∗

t pt
)

d(η − ξ̂ )t � 0,

for every A1-valued Ft -measurable random variable v , and η ∈ U2.
Let a ∈ A1, then for every At ∈ Ft

E
[(

H(t, x̂t ,a, pt) − H(t, x̂t , ût , pt)
)
χAt

]
� 0, dt-a.e., P -a.s.,

which implies that

E
[(

H(t, x̂t ,a, pt) − H(t, x̂t , ût , pt)
)
/Ft
]
� 0.

Since H(t, x̂t ,a, pt) − H(t, x̂t , ût , pt) is Ft -measurable, then the first variational inequality without expectations, follows
immediately. �
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4. The Degenerate case

In this section we drop the uniform ellipticity condition on the diffusion matrix. It is clear that the method used in the
last section will no longer be valid. To overcome this difficulty, the idea is to use a result of Bouleau and Hirsch [9], on
the differentiability in the sense of distributions, of the solution of an SDE with Lipschitz coefficients, with respect to the
initial data. This derivative is defined as the solution of a linear stochastic differential equation defined on an extension of
the initial probability space.

Let h be a continuous positive function on R
d such that

∫
h(x)dx = 1 and

∫ |x|2h(x)dx < ∞. We set

D =
{

f ∈ L2(h dx), such that
∂ f

∂x j
∈ L2(h dx)

}
,

where ∂ f
∂x j

denotes the derivative in the distribution sense.

Equipped with the norm

‖ f ‖D =
[ ∫

Rd

f 2h dx +
∑

1� j�d

∫
Rd

(
∂ f

∂x j

)2

h dx

] 1
2

,

D is a Hilbert space, which is a classical Dirichlet space (see [9]). Moreover D is a subset of the Sobolev space H1
loc(R

d).
Let Ω̃ = R

d × Ω , and F̃ be the Borel σ -field over Ω̃ and P̃ = h dx ⊗ P . Let B̃t(x, w) = Bt(w) and F̃t be the natural
filtration of B̃t augmented with P̃ -negligible sets of F̃ . It is clear that (Ω̃, F̃ , ( F̃t)t�0, P̃ , B̃t) is a Brownian motion. We intro-
duce the process x̃t defined on the enlarged space (Ω̃, F̃ , ( F̃t)t�0, P̃ , B̃t), which is the solution of the stochastic differential
equation{

dx̃t = b(t, x̃t , ũt)dt + σ(t, x̃t)dB̃t + Gt dξ̃t , for t ∈ [0, T ],
x̃0 = α,

(4.1)

associated to the control (ũt , ξ̃t)(x,ω) = (ut , ξt)(ω).

Since the coefficients are Lipschitz continuous and bounded, Eq. (4.1) has a unique F̃t -adapted solution. Eqs. (2.1) and
(4.1) are almost the same, except that uniqueness of the solution of (4.1) is slightly weaker. One can easily prove that the
uniqueness implies that for each t � 0, x̃t = xt , P̃ -a.s.

4.1. The main result

The main result of this section is stated in the following theorem.

Theorem 4.1 (Stochastic maximum principle). Let (û, ξ̂ ) be an optimal control for the system (2.1), (2.2) and let x̂ be the corresponding
optimal trajectory. Then there exists a measurable Ft -adapted process pt satisfying

pt := Ẽ

[ T∫
t

Φ∗(s, t). fx(s, x̂s, ûs)ds + Φ∗(T , t).gx(x̂T )/ F̃t

]
, (4.2)

such that for all a ∈ A1 and η ∈ U2

0 � H(t, x̂t ,a, pt) − H(t, x̂t , ût , pt) dt-a.e., P̃ -a.s., (4.3)

and

0 � Ẽ

T∫
0

(
kt + G∗

t pt
)

d(η − ξ̂ )t , (4.4)

where the Hamiltonian H is defined by

H(t, x, u, p) = p.b(t, x, u) + f (t, x, u), (4.5)

and Φ(s, t), (s � t) is the fundamental solution of the linear equation⎧⎨⎩dΦs = bx(s, x̂s, ûs).Φ(s, t)ds +
∑

1� j�d

σ
j

x (s, x̂s).Φ(s, t)dB̃ j
s ,

Φ(t, t) = Id.

(4.6)
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4.2. Proof of the main result

Let z̃t = x̃t − ∫ t
0 Gs dξs be the unique solution of the SDE{

dz̃t = b(t, z̃t , ut)dt + σ (t, z̃t)dB̃t ,

z̃0 = α
(4.7)

on the enlarged space (Ω̃, F̃ , ( F̃t)t�0, P̃ , B̃t), where b and σ are defined in Section 3.

Theorem 4.2 (The Bouleau–Hirsch flow property).

(1) For P̃ -almost every w and for all t � 0, z̃t is in Dd.
(2) There exists an F̃t -adapted GLd(R)-valued continuous process (Φ̃t)t�0 such that for every t � 0

∂

∂x

(
zα

t (w)
)= Φ̃t(α, w) dx-a.e.,

where ∂
∂x denotes the derivative in the distribution sense.

(3) The distributional derivative Φ̃t is the unique solution of the linear stochastic differential equation⎧⎪⎨⎪⎩
dΦ̃(s, t) = bx(s, z̃s, ũs).Φ̃(s, t)ds +

∑
1� j�d

σ
j
x(s, z̃s).Φ̃(s, t)dB̃ j

s , s � t,

Φ̃(t, t) = Id,

(4.8)

where bx and σ
j
x are versions of the almost everywhere derivatives of b and σ j .

(4) The image measure of P̃ by the map z̃t is absolutely continuous with respect to the Lebesgue measure.

Now, consider the process yt , t � 0, defined on the enlarged probability space (Ω̃, F̃ , ( F̃t)t�0, P̃ , B̃t) which is a solution
of {

dyt = bn(t, yt, ut)dt + σ n(t, yt)dB̃t + Gt dξt ,

y0 = α.
(4.9)

Define the cost functional accordingly

Jn(ut) = Ẽ

[ T∫
0

f n(t, yt, ut)dt +
T∫

0

kt dξt + gn(yT )

]
, (4.10)

where bn , σ n , f n and gn be the regularized functions of b, σ , f and g defined in Section 3.
The following result gives the estimates which relate the original control problem with the perturbed one.

Lemma 4.1. Let (xt) and (yt) be the solutions of (2.1) and (4.9) respectively, corresponding to an admissible control (u, ξ). Then

(1) Ẽ[sup0�t�T |xt − yt |2] � M1.(εn)2 ,
(2) | Jn(u, ξ) − J (u, ξ)| � M2.εn,

where εn = C
n , and M1 and M2 are positive constants.

Let (û, ξ̂ ) be an optimal control for the initial problem (2.1) and (2.2). Note that (û, ξ̂ ) is not necessarily optimal for the
perturbed control problem (4.9) and (4.10). However, according to Lemma 4.1, there exists (δn) ≡ (2M2.εn) a sequence of
positive real numbers converging to 0, such that

Jn(û, ξ̂ ) � inf
(υ,η)∈U

Jn(υ,η) + δn.

The functional Jn defined by (4.10) is continuous on U = U1 × U2, with respect to the topology induced by the metric
d′((u, ξ), (υ,η)) = d′

1(u, v) + d′
2(ξ,η), where

d′
1(u, v) = P̃ ⊗ dt

{
(w, t) ∈ Ω̃ × [0, T ], v(w, t) 
= u(w, t)

}
,

d′
2(ξ,η) =

(
Ẽ
[

sup |ξt − ηt |2
]) 1

2
.

0�t�T
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Then by applying Ekeland’s principle to Jn and (û, ξ̂ ) with λn = δ
2
3

n , there exists an admissible control (un, ξn) such that

d′((û, ξ̂ ),
(
un, ξn))� δ

2
3

n ,

Jn
δ

(
un, ξn)� Jn

δ (υ,η), for any (υ,η) ∈ U .

Then (un, ξn) is an optimal control for the perturbed system (4.9) with a new cost function

Jn
δ (υ,η) = Jn(υ,η) + δ

1
3

n .d′((υ,η),
(
un, ξn)).

Denote by xn the unique solution of (4.9) corresponding to (un, ξn){
dxn

t = bn(t, xn
t , un

t

)
dt + σ n(t, xn

t

)
dB̃t + Gt dξn

t ,

xn
0 = α.

(4.11)

The controlled process dzn
t = dxn

t − Gt dξn
t is then defined as the solution to the stochastic differential equation{

dzn
t = bn(t, zn

t , un
t

)
dt + σ n(t, zn

t

)
dB̃t ,

zn
0 = α,

(4.12)

where bn and σ n are defined in Section 3. Let Φn(s, t) (s � t) be the fundamental solution of the linear equation⎧⎨⎩dΦn(s, t) = bn
x

(
s, xn

s , un
s

)
.Φn(s, t)ds +

∑
1� j�d

σ
j,n

x
(
s, xn

s

)
.Φn(s, t)dB̃ j

s ,

Φn(t, t) = Id.

(4.13)

Proposition 4.1. For each integer n, there exist an admissible control (un, ξn) and an ( F̃t)-adapted process pn
t given by

pn
t = Ẽ

[ T∫
t

Φn,∗(s, t). f n
x

(
s, xn

s , un
s

)
ds + Φn,∗(T , t).gn

x

(
xn

T

)
/ F̃t

]
, (4.14)

and a Lebesgue null set N such that for t ∈ Nc

Ẽ
[

Hn(t, xn
t ,υ, pn

t

)− Hn(t, xn
t , un

t , pn
t

)]
� −δ

1
3

n .M1, (4.15)

and

Ẽ

T∫
t

(
kt + G∗

t pn
t

)
d
(
η − ξn)

t � −δ
1
3

n .M2, (4.16)

for all υ ∈ A1 , and η ∈ U2 , where the Hamiltonian Hn is defined by

Hn(t, x, u, p) = p.bn(t, x, u) + f n(t, x, u). (4.17)

The proof goes as in Section 3.
The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. The following estimates hold

(i) lim
n→+∞ Ẽ

[
sup

0�t�T

∣∣xn
t − x̂t

∣∣2]= 0; (4.18)

(ii) lim
n→+∞ Ẽ

[
sup

s�t�T

∣∣Φn(s, t) − Φ(s, t)
∣∣2]= 0; (4.19)

(iii) lim
n→+∞ Ẽ

[
sup

0�t�T

∣∣pn
t − pt

∣∣2]= 0; (4.20)

(iv) lim
n→+∞ Ẽ

[∣∣Hn(t, xn
t , un

t , pn
t

)− H(t, x̂t , ût , pt)
∣∣]= 0, (4.21)

where Φt , pt and H are determined by (4.6), (4.2), and (4.5), corresponding to the optimal solution x̂t . Φn
t , pn

t and Hn are determined
by (4.13), (4.14) and (4.17), corresponding to the approximating sequence xn

t , given by (4.11).
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Proof. (i) is proved as (3.19).
Let us prove (ii).
Using Burkholder–Davis–Gundy, Schwartz inequalities and Gronwall Lemma, we obtain

Ẽ
[

sup
t�s�T

∣∣Φn(s, t) − Φ(s, t)
∣∣2]� C Ẽ

[
sup

t�s�T

∣∣Φn(s, t)
∣∣4] 1

2

{
Ẽ

[ T∫
0

∣∣bn
x

(
t, xn

t , ût
)− bx(t, x̂t , ût)

∣∣4 dt

] 1
2

+
∑

1� j�d

Ẽ

[ T∫
0

∣∣σ j,n
x
(
t, xn

t

)− σ
j

x (t, x̂t)
∣∣4 dt

] 1
2
}

.

Since the coefficients in the linear stochastic differential equation (4.13) are bounded, it is easy to see that
Ẽ[supt�s�T |Φn(s, t)|4] < +∞. To derive (4.19), it is sufficient to prove the following two assertions

Ẽ

[ T∫
0

∣∣bn
x

(
t, xn

t , ût
)− bx(t, x̂t , ût)

∣∣4 dt

]
→ 0 as n → +∞,

and

Ẽ

[ T∫
0

∣∣σ j,n
x
(
t, xn

t

)− σ
j

x (t, x̂t)
∣∣4 dt

]
→ 0 as n → +∞, for j = 1,2, . . . ,d.

Let us prove the first limit. We have

Ẽ

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bx(t, x̂t , ût)
∣∣4 dt

]
� C

(
In
1 + In

2 + In
3

)
,

where

In
1 = Ẽ

[ T∫
0

∣∣bn
x

(
t, xn

t , un
t

)− bn
x

(
t, xn

t , ût
)∣∣4χ{un 
=û}(t)dt

]
,

In
2 = Ẽ

[ T∫
0

∣∣bn
x

(
t, xn

t , ût
)− bx

(
t, xn

t , ût
)∣∣4 dt

]
,

In
3 = Ẽ

[ T∫
0

∣∣bx
(
t, xn

t , ût
)− bx(t, x̂t , ût)

∣∣4 dt

]
.

According to the boundness of the derivative bn
x by the Lipschitz constant and the fact that d′

1(un, û) → 0 as n → +∞,
we obtain limn→+∞ In

1 = 0.
Moreover, we have

In
2 � Ẽ

[ T∫
0

sup
a∈A1

∣∣bn
x

(
t, zn

t ,a
)− bx

(
t, zn

t ,a
)∣∣4 dt

]
=

T∫
0

∫
Rd

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy dt,

where zn
t denotes the unique solution of the SDE (4.12), corresponding to (un, ξn), and ρn

t (y) its density with respect to
the Lebesgue measure. Let us show

lim
n→+∞

∫
Rd

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy dt = 0.

For each p > 0, we have Ẽ[sup0�t�T |zn
t |p] < +∞. Then, limR→∞ P̃ (sup0�t�T |zn

t | > R) = 0. So it is enough to show that
for every R > 0,

lim
n→+∞

∫
B(0,R)

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy = 0.

According to Lemma 3.1, it is easy to see that
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sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4 = sup
a∈A1

∣∣∣∣∣bn
x

(
t, y +

T∫
0

Gt dξn
t ,a

)
− bx

(
t, y +

T∫
0

Gt dξn
t ,a

)∣∣∣∣∣
4

→ 0 dy-a.e.,

at least for a subsequence. Then by Egorov’s Theorem, for every δ > 0, there exists a measurable set F with λ(F ) < δ,
such that supa∈A1

|bn
x(t, y,a) − bx(t, y,a)| converges uniformly to 0 on the set F c . Note that, since the Lebesgue measure is

regular, F may be chosen closed. This implies that

lim
n→+∞

∫
F c

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy � lim

n→+∞
(

sup
y∈F c

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4)= 0.

Now, by using the boundness of the derivatives bn
x , bx we have∫

F

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy = Ẽ

[
sup
a∈A1

∣∣bn
x

(
t, ẑn

t ,a
)− bx

(
t, ẑn

t ,a
)∣∣4χ{ẑn

t ∈F }
]

� 2M4 P̃
(
ẑn

t ∈ F
)
.

According to (4.18), it is easy to see that zn
t = xn

t − ∫ t
0 Gs dξn

s converges to ẑt = x̂t − ∫ t
0 Gs dξ̂s in probability, then in

distribution. Applying the Portmanteau–Alexandrov Theorem, we obtain

lim
n

∫
F

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy � 2M4 lim sup P̃

(
zn

t ∈ F
)
� 2M4 P̃ (ẑt ∈ F ) = 2M4

∫
F

ρt(y)dy < ε,

where ρt(y) denotes the density of ẑt with respect to Lebesgue measure.
Now, since∫

B(0,R)

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy =

∫
F

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy

+
∫
F c

sup
a∈A1

∣∣bn
x(t, y,a) − bx(t, y,a)

∣∣4ρn
t (y)dy,

we get limn→+∞ In
2 = 0.

Let k � 0 be a fixed integer, then it holds that In
3 � C( J k

1 + J k
2 + J k

3), where

J k
1 = Ẽ

[ T∫
0

∣∣bx
(
t, xn

t , ût
)− bk

x

(
t, xn

t , ût
)∣∣4 dt

]
,

J k
2 = Ẽ

[ T∫
0

∣∣bk
x

(
t, xn

t , ût
)− bk

x(t, x̂t , ût)
∣∣4 dt

]
,

J k
3 = Ẽ

[ T∫
0

∣∣bk
x(t, x̂t , ût) − bx(t, x̂t , ût)

∣∣4 dt

]
.

Applying the same arguments used in the first limit (Egorov and Portmanteau–Alexandrov Theorems), we obtain that
limn→+∞ J k

1 = 0. We use the continuity of bk
x in x and the convergence in probability of xn

T to x̂T to deduce that bk
x(t, xn

t , ût)

converges to bk
x(t, x̂t , ût) in probability as n → +∞, and to conclude by using the Dominated Convergence Theorem, that

limn→+∞ J k
2 = 0.

J k
3 = Ẽ

[ T∫
0

sup
a∈A1

∣∣bk
x(t, ẑt ,a) − bx(t, ẑt ,a)

∣∣4 dt

]
=

T∫
0

∫
Rd

sup
a∈A1

∣∣bk
x(t, y,a) − bx(t, y,a)

∣∣4ρt(y)dy dt.

bk
x , bx being bounded, then by using the convergence of bk

x to bx , and the Dominated Convergence Theorem, we get
limn→+∞ J k

3 = 0.
(iii) and (iv) are proved by using the same techniques as in (ii) and Lemma 3.3. �

Proof of Theorem 4.1. Use Proposition 4.1 and Lemma 4.2. �
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