JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 61, 116-121 (1977)

Remarks on Nonlinear Contraction and Comparison Principle in Abstract Cones

J. EISENFELD* AND V. LAKSHMIKANTHAM*

Department of Mathematics, University of Texas, Arlington, Texas 76010 Submitted by W. F. Ames

INTRODUCTION

The contraction mapping principle and the Schauder principle can both be viewed as a comparison of maps. For the former one has a condition of the type

$$\rho(Tx, Ty) \leqslant \psi \rho(x, y) \tag{1.1}$$

and for the latter one has a condition of the type

$$\gamma(T(S)) \leqslant \psi(\gamma(S)), \tag{1.2}$$

where ρ is the metric and γ is the Kuratowski measure of noncompactness. If ψ is a linear map $\psi x - kx$ from the nonnegative real R^+ into itself then the map T satisfying (1.1) is said to be k-contractive and the map satisfying (1.2) is said to be k-set contractive. It is also usually assumed that k < 1 in which case the adjective "strict" is used to describe the contractive property.

Instead of taking ψ to be a linear map on the cone $R^+ \to R^+$, ψ can be chosen as a nonlinear map from a cone of a Banach space into itself [1, 4]. This innovation provides for greater flexibility in the choice of ψ and it also has the advantage of stronger convergence properties and more accurate estimates. The comparison map ψ is positive (in the sense that it takes values in a cone), monotone (nondecreasing) and has a unique fixed point which is the zero element of the cone. For a regular cone (such as cones in L_p , $1 \leq p < \infty$) ψ need only satisfy the weak continuity condition: upper semicontinuous from above (or from the right). However, in the case of a normal cone which is not regular (such as C[0, 1]) it is assumed in [1, 4] that ψ is completely continuous. The complete continuity condition which is also used by Krasnoselskii [7, p. 127] may be replaced by a weaker compactness-type condition in terms of measure of noncompactness along with upper semicontinuity from above. We also manage to avoid strict contractive conditions.

* Partially supported by University of Texas at Arlington Organized Research Grant.

The paper is organized as follows. In Section 2 we state definitions regarding the theory of cones and some propositions which are used as lemmas or to amplify results proved later on. In Section 3 we present some results dealing with maximal fixed points of monotone maps. As a consequence we obtain a generalized Bellman-Gronwall-Reid inequality. In Section 4 we present a generalization of the contraction mapping principle.

For applications see [1–4]. Also see [5] for modifications using minimal solutions in place of maximal solutions.

2. Cones

Let *E* be a real Banach space. A set $k \subseteq E$ is called a *cone* if: (i) *k* is closed; (ii) if $u, v \in k$, then $\alpha u + \beta v \in k$ for all $\alpha, \beta \ge 0$; (iii) of each pair of vectors u, -vat least one does not belong to *k*, provided $u \ne \theta$, where θ is the zero of the space *E*. We say that $u \ge v$ if and only if $u - v \in k$. A cone is called *normal* if a $\delta > 0$ exists such that $||e_1 + e_2|| > \delta$ for e_1 , $e_2 \in k$ and $||e_1|| = ||e_2|| = 1$. The norm in *E* is called *semimonotone* if for arbitrary $x, y \in k$ it follows from $x \le y$ that $||x|| \le N ||y||$, where the constant *N* does not depend on *x* and *y*.

PROPOSITION 2.1 [7]. A necessary and sufficient condition for the cone K to be normal is that the norm be semimonotone.

PROPOSITION 2.2. A decreasing sequence $u_0 \ge u_1 \ge \cdots$ in a space with a normal cone is convergent if it has a convergent subsequence.

Proof. Let $u_{n_k} \to u_{\infty}$, as $n \to \infty$. Then for $m \ge m_k$, $u_m - u_{\infty} \le u_{n_k} - u_{\infty}$. By Proposition 2.1, $||u_m - u_{\infty}|| \le N ||u_{n_k} - u_{\infty}|| \to 0$ as $n_k \to \infty$. Thus u_n converges to u_{∞} .

A cone is said to be *regular* if every decreasing sequence $u_0 \ge u_1 \ge \cdots$ which is bounded from below; i.e., there is a vector v such that $u_n \ge v$, $n = 0, 1, \dots$, is convergent.

The conical segment $\langle x_0, u_0 \rangle$ is the subset of E of vectors x satisfying $x_0 \leqslant x \leqslant u_0$.

A map ψ from a subset of E into E is said to be *monotone* if $\psi u \ge \psi v$ when $u \ge v$.

If (A, ρ) is a bounded metric space, we define $\gamma(A)$, the *measure of non*compactness of A, to be $\inf\{d > 0 \mid A \text{ can be covered by a finite number of sets}$ of diameter less than or equal to $d\}$.

PROPOSITION 2.3 (Kuratowski [8]). Let (X, ρ) be a complete metric space and let $A_1 \supset A_2 \supset \cdots$ be a decreasing sequence of nonempty, closed subsets of X. Assume

that $\gamma(A_n)$ converges to zero. Then if we write $A_{\infty} = \bigcap_{n \ge 1} A_n$, A_{∞} is a nonempty compact set and A_n approaches A_{∞} in the Hausdorff metric.

With regard to Kuratowski's theorem we say that a map ψ on a complete metric space (A_0, ρ) into itself is *quasi-compact* if the sequence of measure of noncompactness $\gamma(A_n)$ of the closed sets $A_{n+1} = \operatorname{cl}(\psi(A_n))$, $n \ge 0$, approaches zero.

A mapping ψ on a partially ordered set into itself is said to be *upper semi*continuous from above if whenever $u_0 \ge u_1 \ge \cdots$ and $\psi u_0 \ge \psi u_1 \ge \cdots$ are both monotonic, convergent sequences and $w = \lim u_n$ is in the domain of ψ , then $\psi w \ge \lim \psi u_n$.

PROPOSITION 2.4. Let ψ be monotone and upper semicontinuous from above and suppose that the sequence of iterates $u_n = \psi^n u_0$, of a vector u_0 , is decreasing and convergent to a vector u_∞ which is in the domain of ψ . Then u_∞ is a fixed point of ψ , i.e., $\psi u_\infty = u_\infty$.

Proof. Clearly $\psi u_n = u_{n+1}$ is also decreasing and convergent to u_{∞} . From $u_n \ge u_{\infty}$ and the monotone property we deduce that $\psi u_n \ge \psi u_{\infty}$ and hence $u_{\infty} \ge \psi u_{\infty}$. The reverse inequality follows from the upper-semicontinuous-from-above property.

PROPOSITION 2.5. Let f be monotone and upper semicontinuous from above from an interval [0, a] of real numbers into itself such that f(x) = x if and only if x = 0. Let ψ be a map from a complete metric space (A_0, ρ) into itself such that

$$\gamma(\psi A) \leqslant f(\gamma(A)) \tag{2.1}$$

for any subset A of A_0 . Then ψ is quasi-compact.

Proof. Let $A_{n+1} = \operatorname{cl}(\psi A_n)$, $n \ge 0$. Put $r_n = \gamma(A_n)$, $n \ge 0$. One then has from condition (2.1) that $r_{n+1} \le f(r_n)$, $n \ge 0$. From the monotone property of f, it follows that $r_n \le t_n$, $n \ge 0$ where sequence t_n is defined by $t_0 = r_0$, $t_{n+1} = f(t_n)$. By the monotone property of f, t_n is a decreasing sequence. Let $t_{\infty} = \lim t_n$. From Proposition 2.4, t_{∞} is a fixed point f and hence $t_{\infty} = 0$. Clearly, r_n converges to zero.

Remark. The map ψ in Proposition 2.5 is called α -set contractive, $\alpha > 0$, if it is continuous and $\gamma(\psi(A)) \leq \alpha \gamma(A)$ for any bounded subset A. If ψ is α -set contractive with $\alpha < 1$ then ψ is quasi-compact since we may take $f(x) = \alpha x$ in this case.

3. FIXED POINTS IN SPACES WITH CONES

THEOREM 3.1. Let A be a closed bounded subset of a Banach space which is partially ordered with respect to a normal cone. Let ψ be a monotone, quasi-compact, upper-semicontinuous-from-above map from A into itself. Let

$$U = \{ u \in A \mid \psi u \leqslant u \}, \tag{3.1}$$

$$L = \{ u \in A \mid \psi u \geqslant u \}, \tag{3.2}$$

$$F = \{ u \in A \mid \psi u = u \}. \tag{3.3}$$

Then (i) U, L, F are invariant under ψ . (ii) Let ψ_n denote the restriction of ψ^n to U, $n \ge 0$. Then the sequence ψ_n is decreasing, i.e., $\psi_n u \ge \psi_{n+1} u$ for $u \in U$, and pointwise convergent to a map ϕ , i.e., $\psi_n u \rightarrow \phi u$ for $u \in U$. (iii) The range of ϕ is F which is precompact. (iv) The map ϕ is monotone. (v) If $v \in L$ and $v \le u \in U$, then $v \le \phi u \le u$.

Proof. Statement (i) is obvious from the monotone property of ψ which also implies that $\psi_n u \ge \psi_{n+1} u$ when $u \in U$. Let $u \in A$, then by Proposition 2.3, with $A_n = \operatorname{cl}(\psi^n(A))$, and from the quasi-compact property, there is a compact set C and sequence $c_n \in C$ such that $|| \psi^n u - c_n || \to 0$ as $n \to \infty$. Since the sequence c_n has a convergent subsequence, so does the sequence $u_n = \psi^n u$. If $u \in U$, we deduce from Proposition 2.2 that u_n is convergent. This establishes statement (ii). The fact that $\phi u \in F$ follows from Proposition 2.4. Now if $u \in F$ then $\phi u = u$ so that ϕ maps U into F. Also $\operatorname{cl}(F)$ is precompact because $F \subset C$. This completes the proof of statement (iii). Statement (iv) follows because each of the maps ψ_n are monotone. For statement (v), note that $v \leq u$ implies $v \leq \psi^n v \leq \psi^n u \to \phi u$. Thus $v \leq \phi u$. This completes the proof.

THEOREM 3.2. Let ψ be a monotone, upper-semicontinuous map from a conical segment $\langle \theta, u_0 \rangle$ into itself and let the following condition be satisfied.

Condition (H): either ψ is quasi-compact and the cone is normal or the cone is regular (or both).

Then the sequence of iterates $\psi^n u_0$ is decreasing and convergent to fixed point w of ψ . Moreover, $v \leq \psi u$ implies $v \leq w$. In particular, w is the maximal fixed point of ψ in the segment.

Proof. If ψ is quasi-compact and the cone is normal then the result is a corollary of Theorem 3.1. If the cone is regular the result follows from [1, Theorem 3.1].

The following result is a generalization of the Bellman-Gronwall-Reid inequality.

COROLLARY 3.1. Let the hypothesis of Theorem 3.1 be satisfied and let p be a mapping of a set X into the segment $\langle \theta, u_0 \rangle$. Suppose T is a mapping of X into itself such that $pTa \leq \psi pa$, $a \in X$. Then if b is a fixed point of T, $pb \leq w$ where w is the maximal fixed point of ψ .

Proof. Set u = pb. Then $u = pTb \leq \psi pb = \psi u$. By Theorem 3.2, $u \leq w$.

4. CONTRACTION MAPPING PRINCIPLE

Let X be a set and let ρ be a mapping from $X \times X$ into a cone k of a Banach space. The map ρ is said to be a *k-metric* on X if it satisfies the properties:

$$egin{aligned} &
ho(x,y)=
ho(y,x), &
ho(x,y)= heta & ext{if} \quad x=y, \ &
ho(x,y)\leqslant
ho(x,z)+
ho(z,y). \end{aligned}$$

A sequence x_n in the k-metric space (X, ρ) is said to be *Cauchy* if $\lim_{m \ge n \to \infty} \rho(x_n, x_m) \to \theta$. The sequence x_n is said to be *convergent* if there is a $y \in X$ such that $\lim_{n \to \infty} \rho(x_n, y) = \theta$. A k-metric space is *complete* if every Cauchy sequence is convergent. A convergent sequence x_n is said to be k-convergent to y if there is a sequence $u_n \to \theta$ in k such that $\rho(x_n, y) \le u_n$.

THEOREM 4.1. Let (X, ρ) be a complete k-metric space. Let ψ be a monotone, upper-semicontinuous-from-above map from the conical segment $\langle \theta, u_0 \rangle$ into itself such that condition (H) is satisfied and such that θ is the unique fixed point of ψ . Let T be a map from X into itself such that

$$\rho(Tx, Ty) \leqslant u_0, \qquad x, y \in X, \qquad (4.1)$$

$$\rho(Tx, Ty) \leqslant \psi \rho(x, y) \quad \text{when} \quad \rho(x, y) \leqslant u_0.$$
(4.2)

Then for arbitrary $x_0 \in X$, the sequence of iterates $x_n = T^n x_0$ k-converges to a fixed point y of T and y is the unique fixed point of T.

Proof. For any pair of integers $m \ge n \ge 1$ we have $\rho(x_n, x_m) = \rho(Tx_{n-1}, Tx_{m-1}) \le u_0$. Hence, $\rho(x_{n+1}, x_{m+1}) \le \psi \rho(x_n, x_m)$. Repeating this argument we find that $\rho(x_{n+1}, x_{m+1}) \le \psi^m \rho(Tx_0, Tx_m)$. Since $\rho(Tx_0, Tx_m) \le u_0$ and since ψ is monotone, $\rho(x_{n+1}, x_{m+1}) \le \psi^m u_0$. But by Theorem 3.2 and since θ is the maximal fixed point of $\psi, \psi^m u_0$ decreases to θ . Thus x_n is a Cauchy sequence. Let $y = \lim x_n$. Then by letting $m \to \infty$ in the above inequality we have $\rho(x_{n+1}, y) \le \psi^n u_0$. Thus the sequence $x_n k$ -converges to y. Since $\rho(x_{n+1}, y) \le u_0$, $\rho(Tx_{n+1}, Ty) \le \psi \rho(x_{n+1}, y) \le \psi^{n+1} u_0 \to \theta$. Therefore $\rho(x_{n+2}, Ty) \to \theta$ so that y = Ty, i.e., y is a fixed point of T. Suppose also z = Tz is also a fixed point. Then $\rho(y, z) = \rho(Ty, Tz) \le u_0$. Hence $\rho(y, z) = \rho(Ty, Tz) \le \psi \rho(y, z)$. By Theorem 3.2, $\rho(y, z) \le \theta$. This means that $\rho(y, z) = \theta$ or y = z. The proof is now complete.

The above result weakens assumptions made by the authors in [1] regarding the complete continuity of ψ and the strict inequality $\psi u_0 \leq u_0$. Still it assumes too much. The following theorem represents an economization of Theorem 4.1.

Recall that a map T is closed if whenever $x_n \in \text{Domain}(T), x_n \to u, Tx_n \to v$ then $u \in \text{Domain}(T)$ and Tu = v.

THEOREM 4.2. Let (X, ρ) be a k-metric space and let ψ be a monotone map from a segment $\langle \theta, u_0 \rangle$ into itself such that

$$\lim \psi^n u_0 \to \theta \tag{4.3}$$

Suppose T is a closed map from a subset D of X into X such that

$$\rho(Tx, Ty) \leqslant \psi \rho(x, y), \qquad x, y \in D, \quad \rho(x, y) \leqslant u_0.$$
(4.4)

Suppose further that $x \in \mathcal{D}$ and $x_n \in T^n x \in D$, n = 1, 2, ..., and that

$$\rho(x_n, x_0) \leqslant u_0. \tag{4.5}$$

Then x_n k-converges to a fixed point of T.

Proof. As in the proof of Theorem 4.1, $\rho(x_n, x_m) \leq \psi^n \rho(Tx_0, Tx_n) \leq \psi^{n+1}\rho(x_0, x_n) \leq \psi^{n+1}u_0$ for m > n > 0. Whence by (4.3), x_n is Cauchy. Let $x_n \to w$. Then $Tx_n = x_{n+1} \to w$. Since T is closed, Tw = w. Moreover from $\rho(x_n, w) \leq \psi^{n+1}u_0$ we conclude that x_n k-converges to w.

See [9] for further conditions under which an iterative process converges to a fixed point.

References

- 1. J. EISENFELD AND V. LAKSHMIKANTHAM, Comparison principle and nonlinear contractions in abstract spaces, J. Math. Anal. Appl. 49 (1975), 504-511.
- J. EISENFELD AND V. LAKSHMIKANTHAM, On a boundary value problem for a class of differential equations with a deviating argument, J. Math. Anal. Appl. 51 (1975), 158-164.
- 3. J. EISENFELD AND V. LAKSHMIKANTHAM, "Existence and Estimates for Solutions of Nonlinear Equations Near a Branch Point," *Bull. Math.* 18 (1974), 49-56.
- J. EISENFELD AND V. LAKSHMIKANTHAM, Fixed point theorems through abstract cones, J. Math. Anal. Appl. 52 (1975), 25-35.
- S. KEIKKILA AND S. SEIKKALA, "On the Estimation of Successive Approximations in Abstract Spaces," J. Math. Anal. Appl. 58 (1977), 378-383.
- 6. V. LAKSHMIKANTHAM AND S. LEELA, On the existence of zeros of Lyapunov-monotone operators, J. Appl. Math. Comp., to appear.
- 7. M. A. KRASNOESEL'SKII, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964.
- 8. C. KURATOWSKI, Sur les espars complets, Fund. Math. 15 (1930), 301-309.
- 9. W. V. PETRYSHYN AND T. E. WILLIAMSON, JR., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-495.