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The contraction mapping principle and the Schauder principle can both be 
viewed as a comparison of maps. For the former one has a condition of the type 

and for the latter one has a condition of the type 

where p is the metric and y is the Kuratowski measure of noncompactness. If # 
is a linear map z&-c - kx from the nonnegative real R+ into itself then the map T 

satisfying (1.1) is said to be K-contractive and the map satisfying (1.2) is said 
to be k-set contractive. It is also usually assumed that R < 1 in which case the 
adjective “strict” is used to describe the contractive property. 

Instead of taking 4’1 to be a linear map on the cone R+- - R+, I,!J can be chosen 
as a nonlinear map from a cone of a Banach space into itself [l ,4]. This innova- 
tion provides for greater flexibility in the choice of 4 and it also has the advantage 
of stronger convergence properties and more accurate estimates. The comparison 
map # is positive (in the sense that it takes values in a cone), monotone (non- 
decreasing) and has a unique fixed point which is the zero element of the cone. 
For a regular cone (such as cones in L, , 1 <p < CO) 4 need only satisfy the 
weak continuity condition: upper semicontinuous from above (or from the 
right). However, in the case of a normal cone which is not regular (such as 
C[O, 11) it is assumed in [l, 41 that 4 is completely continuous. The complete 
continuity condition which is also used by Krasnoselskii [7, p. 1271 may be 
replaced by a weaker compactness-type condition in terms of measure of non- 
compactness along with upper semicontinuity from above. We also manage 
to avoid strict contractive conditions. 
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The paper is organized as follows. In Section 2 we state definitions regarding 
the theory of cones and some propositions which are used as lemmas or to 
amplify results proved later on. In Section 3 we present some results dealing 
with maximal fixed points of monotone maps. As a consequence we obtain a 
generalized Bellman-Gronwall-Reid inequality. In Section 4 we present a 
generalization of the contraction mapping principle. 

For applications see [l-4]. Also see [5] f or modifications using minimal solu- 
tions in place of maximal solutions. 

2. CONES 

Let E be a real Banach space. A set K C E is called a cone if: (i) Iz is closed; 
(ii) if u, u E K, then IYU + pv E K for all a, /3 >, 0; (iii) of each pair of vectors u, --z, 
at least one does not belong to k, provided u # 0, where 6J is the zero of the 
space E. We say that II > v if and only if u - v E k. A cone is called normal if a 
6 > 0 exists such that jj e, + es 11 > 6 for e, , e, E k and 11 e, jl = 11 ea (/ = 1. The 
norm in E is called semimonotone if for arbitrary X, y E k it follows from x < y 
that 11 x I/ < iV 11 y 11 , where the constant N does not depend on x and y. 

PROPOSITION 2.1 [7]. A necessary and suficient condition for the cone K to be 
normal is that the norm be semimonotone. 

PROPOSITION 2.2. A decreasing sequence uO 3 u1 3 ..’ in a space with a 
nwmal cone is convergent if it has a convergent subsequence. 

Proof. Let u,~ + II, , as n ---f 00. Then for m 3 m, , u,, - u, < uar - u, . 
By Proposition 2.1, I/ u, - I(, I! < N I/ u,~ - u, 11 ---f 0 as nk -+ co. Thus u, 
converges to u, . 

A cone is said to be regular if every decreasing sequence ua >, u1 3 ... which 
is bounded from below; i.e., there is a vector v such that u, > v, n = 0, I,..., is 
convergent. 

The conical segment (x,, , u,,) is the subset of E of vectors x satisfying 
x0 < x < u(J . 

A map # from a subset of E into E is said to be monotone if #J > #v when 
u 3 v. 

If (A, p) is a bounded metric space, we define y(A), the measure of non- 
compactness of A, to be inf{d > 0 I A can be covered by a finite number of sets 
of diameter less than or equal to d). 

PROPOSITION 2.3 (Kuratowski [S]). Let (X, p) be a complete metric space and 
let A,3 A,3 .I’ be a decreasing sequence of nonempty, closed subsets of X. Assume 
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that y(AIE) converges to zero. Then rf we write A,,, = nn>I A, , A, is a nonempty 
compact set and A, approaches A, in the Hausdorff metric. 

With regard to Kuratowski’s theorem we say that a map # on a complete 
metric space (A,, p) into itself is quasi-compact if the sequence of measure of 
noncompactness y(A,) of the closed sets A,,, = cl(#(A,)), n >, 0, approaches 
zero. 

A mapping # on a partially ordered set into itself is said to be upper semi- 
continuous from above if whenever us > ur 3 ... and #us 2 #ur 3 .‘. are both 
monotonic, convergent sequences and w = lim u, is in the domain of $, then 
(bw > lim $u, . 

PROPOSITION 2.4. Let # be monotone and upper semicontinuous from above 
and suppose that the sequence of iterates u, = vu,, , of a vector u,, , is decreasing 
and convergent to a vector u, which is in the domain of #. Then u, is a fixed point 
of *, i.e., *u, = u, . 

Proof. Clearly *un = u,+r is also decreasing and convergent to u, . From 

u, 3 w.o and the monotone property we deduce that +u, >, #u, and hence 

urn > *u, . The reverse inequality follows from the upper-semicontinuous- 
from-above property. 

PROPOSITION 2.5. Let f be monotone and upper semicontinuous from above 
from an interval [0, a] of real numbers into itself such that f (x) = x rf and only sf 
x = 0. Let # be a map from a complete metric space (A, , p) into itself such that 

for any subset A of A, . Then +b is quasi-compact. 

Proof. Let A,+r = cl(@,), n 3 0. Put r, = y(A,), n > 0. One then has 
from condition (2.1) that r,,, < f (r,), n > 0. From the monotone property off, 
it follows that r < t n1 n, n 3 0 where sequence t, is defined by t, = r,, , tn+l = 
f (tP1). By the monotone property off, t, is a decreasing sequence. Let t, = lim t, . 
From Proposition 2.4, t, is a fixed point f and hence t, = 0. Clearly, rn con- 
verges to zero. 

Remark. The map # in Proposition 2.5 is called a-set contractive, 01 > 0, 
if it is continuous and r(#(A)) < &A) for any bounded subset A. If 4 is a-set 
contractive with (Y < 1 then $ is quasi-compact since we may take f(x) y.= 0~: 
in this case. 
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3. FIXED POINTS IN SPACES WITH CONES 

THEOREM 3.1. Let A be a closed bounded subset of a Banach space which is 
partially ordered with respect to a normal cone. Let 4 be a monotone, quasi-compact, 
upper-semicontinuous-from-above map from A into itself. Let 

u = {u E A / y!Ju < u>, (3.1) 

L = {u E A 1 $u 2 u}, (3.2) 

F = {u E A j #u = u}. (3.3) 

Then (i) U, L, F are invariant under 4. (ii) Let $n denote the restriction of I,@ to U, 
n 3 0. Then the sequence $J,, is decreasing, i.e., #nu > I/J~+~u -for u E Lr, and point- 
wise convergent to a map q5, i.e., &+ - $u for u E U. (iii) The range of 4 is F which 
is precompact. (iv) The map 4 is monotone. (v) If v EL and v < u E U, then 
2’ <h <<Il. 

Proof. Statement (i) is obvious from the monotone property of + which 
also implies that $nu 3 &+i u when u 6 U. Let u E ,4, then by Proposition 2.3, 
with A, = cl($“(A)), and from the quasi-compact property, there is a compact 
set C and sequence c, E C such that /I 4% - c, I/ - 0 as n + 03. Since the 
sequence c, has a convergent subsequence, so does the sequence u, = I/J%. 
If u E U, we deduce from Proposition 2.2 that u, is convergent. This establishes 
statement (ii). The fact that $u E F follows from Proposition 2.4. Now if u E F 
then $u =- u so that 4 maps U into F. Also cl(F) is precompact because F C C. 
This completes the proof of statement (iii). Statement (iv) follows because each 
of the maps I+!J% are monotone. For statement (v), note that v < u implies 
v < 41,*% < +% - Cu. Thus u < Cu. This completes the proof. 

THEOREM 3.2. Let # be a monotone, upper-semicontinuous map from a conical 
segment (0, u,,) into itself and let the following condition be satisfied. 

Condition (H): either II, is quasi-compact and the cone is normal or the cone 
is regular (or both). 

Then the sequence of iterates @uo is decreasing and convergent to fixed point w of 4. 
Moreover, v < #u implies v < w. In particular, w is the maximal Jixed point of $ 
in the segment. 

Proof. If Z/I is quasi-compact and the cone is normal then the result is a 
corollary of Theorem 3.1. If the cone is regular the result follows from [l, 
Theorem 3.11. 

The following result is a generalization of the Bellman-Gronwall-Reid 
inequality. 
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COROLLARY 3.1. Let the hypothesis of Theorem 3.1 be satisjied and let p be a 
mapping of a set X into the segment (0, u&. Suppose T is a mapping of X into itself 
such that pTa < #pa, a E X. Then tf b is a fixed point of T, pb < w where zv is 
the maximal fixed point of #. 

Proof. Set u = pb. Then u = pTb ,< #pb = Cu. By Theorem 3.2, u ( w. 

4. CONTRACTION MAPPING PRINCIPLE 

Let X be a set and let p be a mapping from X x X into a cone k of a Banach 
space. The map p is said to be a k-metric on X7 if it satisfies the properties: 

PGT Y) = P(Y, 4, p(x, y) = Q iff x =y, 

/4x, Y) G P(X, 4 + P(% Y). 

A sequence x, in the k-metric space (X, p) is said to be Cuucky if 
lim n,2n-m P(G , x,,) - 8. The sequence x, is said to be convergent if there is a 
VEX such that lim,_,p (xTL , y) = 0. A k-metric space is complete if every 
Cauchy sequence is convergent. A convergent sequence x, is said to be k-con- 
vergent to y if there is a sequence u, + 0 in k such that p(xn , y) < u, . 

THEOREM 4.1. Let (X, p) be a complete k-metric space. Let I/ be a monotone, 
upper-semicontinuous-from-above map from the conical segment (0, uO> into itself 
such that condition (H) is satisfied and such that B is the unique fixed point of (cr. 
Let T be a map from X into itself such that 

p(Tx, TY) < u,, > X,YEX, (4.1) 

PG% TY) G &J(x,Y) when P(X, Y) < uo f (4.2) 

Then for arbitrary x0 E X, the sequence of iterates x, = T”x, k-converges to a 
$xed point y of T and y is the unique fixed point of T. 

Proof. For any pair of integers m 2 n 3 1 we have p(xn , a+,,) == p(Tx,+, , 
Tzc,,,+~) < u. . Hence, ~(x,~+r , x,+r) < #f(xn , x,). Repeating this argument 
we find that ~(.z~.+r , x,,,r) < ~,/?~p(Tx, , TX,,). Since p(Txo , TX,,,) < u. and since 
II, is monotone, p(xn+r , x,,,+J < +!J’%~ . But by Theorem 3.2 and since 0 is the 
maximal fixed point of I/J, Z,!PU~ decreases to 0. Thus x, is a Cauchy sequence. Let 
y = lim .2^ 71. Then by letting m - cc in the above inequality we have 
p(.xnlmr , _v) >< IJ%~ . Thus the sequence x, k-converges toy. Since P(N, , r,, y) < uo, 
~(Tx~+~ , Ty) Z< ~,+(x~~r , y) < $‘2+1uo ---f 0. Therefore ,o(xn+a , Ty) 4 0 so that 
y == Ty, i.e., y is a fixed point of T. Suppose also z = Tz is also a fixed point. 
Then p(y, z) --: p(n~, Tz) < u. . Hence p(y, z) bum p(Ty, Tz) < t/&y, z). B? 
Theorem 3.2, p(y, z) < 8. This means that p(y, z) = 8 or y = a. The proof is 
now complete. 



NONLINEAR CONTR4CTION AND COMPARISON PRINCIPLE 121 

The above result weakens assumptions made by the authors in [l] regarding the 
complete continuity of I/J and the strict inequality I,&, < u,, . Still it assumes too 
much. The following theorem represents an economization of Theorem 4.1. 

Recall that a map T is closed if whenever X, E Domain (T), x, 4 u, TX, - v 
then u E Domain (T) and Tu = v. 

THEOREM 4.2. Let (X, p) be a k-metric space and let 4 be a monotone map 
from a segment (0, uO) into itserf such that 

lim $PuO + 0 

Suppose T is a closed map from a subset D of X into X such that 

PG’% W G #P@, r>, X,Y E D, P@,Y) < ~0. 

Suppose further that x E 9 and x, E Tnx E D, n = 1, 2,..., and that 

Ph, %J) G uo. 

(4.3) 

(4.4) 

(4.5) 

Then x, k-converges to a fixed point of T. 

Proof. As in the proof of Theorem 4.1, p(xm , x,,J < z,Fp(Tx, , TX,) < 

+n+lP(xo 9 x,) < #“+$, for m > n > 0. Whence by (4.3), X, is Cauchy. Let 
x, - w. Then TX, = x,+~ --f w. Since T is closed, Tw = w. Moreover from 
p(xn , w) < #n+luO we conclude that x, k-converges to w. 

See [9] for further conditions under which an iterative process converges to a 
fixed point. 
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