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We consider a circular string in γ̂ deformed AdS5 × T 1,1 which is localized in the center of AdS5 and 
winds around the two circles of deformed T 1,1. We observe chaos in the phase space of the circular 
string implying non-integrability of string dynamics. The chaotic behaviour in phase space is controlled 
by energy as well as the deforming parameter γ̂ . We further show that the point like object exhibits 
non-chaotic behaviour. Finally we calculate the Lyapunov exponent for both extended and point like 
object in support of our first result.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The AdS/CFT correspondence is a powerful technique that pro-
vides an interplay between the gauge theory without gravity and 
a string theory (supergravity theory) with gravity [1–3]. The most 
studied example is the duality between type IIB string theory on 
AdS5 × S5 and N = 4 supersymmetric Yang Mills (SYM) theory 
in D = 4. It is particularly well understood in the strong coupling 
limit of the field theory side. In this connection integrability on 
both sides of the duality has played a key role in the understand-
ing the duality better. In particular it has helped us in getting 
close to a solution of N = 4 SYM in the planar limit [4]. The fact 
that both sides of the duality are integrable in the planar limit 
leaves us interested in looking at the theories more closely. Over 
the past few years there has been enormous amount of work de-
voted towards the advancement of integrability and that in turn 
has opened up the possibility of looking the integrability tech-
niques in a much wider context, e.g. looking the theories, be-
yond the planar limit and in the background of deformationed 
of AdS. In this context the semiclassical strings have played very 
important role. Semiclassical quantization is one of the most pop-
ular approach to probe general string backgrounds with various 
background fluxes. Classical solutions and trajectories of rotating 
strings, and D-branes, have played an important role in under-
standing the AdS/CFT correspondence which was otherwise ob-
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scure at times. Semiclassical quantization has played a vital role 
in the study of BMN, [5], GKP [3] and rigidly rotating strings [6]
which can all be understood as classical trajectories of the ro-
tating and pulsating string. These classical trajectories have been 
one of the main ingredients of the understanding of the semiclas-
sical AdS/CFT from the string theory prospective. In general, the 
string dynamics in curved space are described by the help of 2d 
sigma models where equations of motion in general are non-linear. 
Integrability plays an major role in finding out the classical solu-
tions of the nonlinear equations, correlation functions, scattering 
amplitudes and spectrum. Therefore it is important to check the 
integrability of string sigma model in a specific background.

In the context of integrability on the other hand, it is a common 
fact that the phase space of most mechanical systems is not inte-
grable and thus the role of chaotic classical trajectories has been 
investigated in detail in the past. In general a system is said to 
be integrable if the number of degrees of freedom is same as the 
number of conserved charges. String sigma model in two dimen-
sions has infinite number of degrees of freedom and the system 
is integrable on arbitrary backgrounds only when it has infinite 
number of conserved charges which happens to be the case in 
AdS5 × S5 [7]. The standard way to show the integrability of 2d-
sigma model in arbitrary background is to construct a lax pair 
which generates infinite number of conserved charges. But to show 
the existence of Lax pair is quite comber some. Infact the nec-
essary condition for a system to be integrable is when all of its 
subsystems are integrable. In other words, a system is said to be 
non-integrable if at least one of its subsystem is non-integrable. 
Therefore the general proof of the non-integrability of a two di-
mensional sigma model in arbitrary background can be done by 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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first reducing it to a 1d subsystem and then showing the 1d sub-
system is non-integrable. This can be done either by doing numer-
ical analysis of string motion in phase space or by analytic method 
using normal variational equation (NVE). This numerical approach 
has been particularly useful in various cosmological and black hole 
backgrounds. Using numerical method it has been shown that 
phase space of a test circular cosmic string in Schwarzschild black 
hole geometry is chaotic [8–10]. It has further been found ana-
lytically that the Friedmann–Robertson–Walker (FRW) cosmologi-
cal model is completely integrable only for some special value of 
the cosmological constant [11]. The evidence of chaotic behaviour 
has been noticed in AdS5 × T 1,1 background [12] and in its Pen-
rose limit [13]. Applying the analytic technique it has been shown 
the AdS5 × X5 geometries are non-integrable, where X5 is in a 
general class of five-dimensional Einstein spaces [14]. In case of 
non-relativistic theories it has been shown the integrability nature 
depends on dynamical critical exponent [15,16]. Taking classical 
spinning string solution in various supergravity backgrounds [17]
it has been shown the phase spaces are chaotic and hence non-
integrable. More recently the integrability of curved brane back-
grounds has been studied and it is found except for some specific 
limit the extended string motion is non-integrable while the point 
like string dynamics is always integrable [18]. Apart from these 
there are number of instances where the integrability is studied by 
the help of either analytical method or numerical analysis [19–24]. 
Motivated by the recent interest in studying the classical integra-
bility of string motion in various backgrounds and its connection 
with chaotic motion of the test string in generic deformed back-
ground and otherwise, we study the motion of classical circular 
string in γ̂ deformed AdS5 × T 1,1 background. We have shown 
numerically the appearance of chaos for a circular string moving 
in the deformed background.

The rest of the paper is organised as follows. In section 2 we 
write down γ̂ deformed AdS5 × T 1,1 background geometry and 
the fields. In section 3 we study a consistent string sigma model, 
taking a semi-classical circular string ansatz. We write down the 
equations of motion for the test string for the given ansatz and 
construct all the conserved charges. Section 4 is devoted to the 
study of chaos in the classical string dynamics by two different 
techniques, namely first by looking at the Poincaré section and 
then by studying the Lyapunov exponent. Finally, in section 5 we 
conclude with some comments.

2. The γ̂ deformed AdS5 × T 1,1 background

The AdS5 × T 1,1 geometry is the gravity dual of N = 1 super 
symmetric Yang–Mills theory, which arises from the near horizon 
geometry of a stack of N number of D3-branes at the tip of the 
conifold, where the base of the conic is T 1,1. The metric of AdS5 ×
T 1,1 is given by

ds2 = ds2
AdS5

+ ds2
T 1,1

ds2
AdS5

= − cosh2 ρdt2 + dρ2 + sinh2 ρd�2
3

ds2
T 1,1 = 1

6

2∑
i=1

[
dθ2

i + sin2 θidφ2
i

]

+ 1

9
[dψ + cos θ1dφ1 + cos θ2dφ2]2 . (2.1)

The internal manifold T 1,1 is a five dimensional Sasaki–Einstein 
manifold and is the coset space (SU (2) × SU (2))/U (1). Applying 
the TsT transformation to this gives rise to the so called γ̂ de-
formed AdS5 × T 1,1 metric and NS–NS two forms (bmn) [25,26].
ds2 = ds2
AdS + G(γ̂ )

[
1

6

2∑
i=1

(G−1(γ̂ )dθ2
i + sin2 θidφ2

i )

+ 1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2+ γ̂ 2 sin2 θ1 sin2 θ2

324
dψ2

]
.

(2.2)

bmn = γ̂ G(γ̂ )

[
cos θ2 sin2 θ1

54
dφ1 ∧ dψ − cos θ1 sin2 θ2

54
dφ2 ∧ dψ

+
(

sin2 θ1 sin2 θ2

36

+cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1

54

)
dφ1 ∧ dφ2

]
, (2.3)

where

G(γ̂ )−1 ≡ 1 + γ̂ 2

(
sin2 θ1 sin2 θ2

36

+ cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1

54

)
.

The above deformed geometry has also been achieved by making 
a deformation of classical Yang–Baxter sigma model as described 
in [27].

3. The string sigma-model and circular string

In this section we shall start our analysis by making the follow-
ing ansatz for the circular string

ρ = 0, θi = θi(τ ), φ1 = α1σ , φ2 = α2σ , ψ = ψ(τ ).

(3.1)

It shows that the string is localized at the center of the AdS 
whereas it extends along the two angles (φ1, φ2) of deformed T 1,1

with winding numbers α1 and α2 respectively. Here we have cho-
sen such type of ansatz because we can truncate 2d sigma-model 
to 1d dynamical Hamiltonian system and the same time we can 
study its dynamics in phase space. The 2d sigma-model action in 
generic background is written as

S = − 1

4πα′
∫

dτdσ
[√

−hhαβ gmn∂αxm∂β xn

− εαβ∂αxm∂β xnbmn

]
, (3.2)

where m, n are the spacetime indices. Further in conformal gauge 
hαβ = diag(−1, 1) and as usual ετσ = −εστ = 1. Now we can 
write the Lagrangian from the action as

L = − ṫ2

2
+ 1

12
(θ̇2

1 + θ̇2
2 ) − G(γ̂ )

36
(α2

1 sin2 θ1 + α2
2 sin2 θ2)

− G(γ̂ )

18
(α2

1 + α2
2) − G(γ̂ )

9
α1α2 cos θ1 cos θ2

+ ψ̇2G(γ̂ )

(
1

18
+ γ̂ 2 sin2 θ1 sin2 θ2

648

)

+ γ̂ G(γ̂ )

54

(
α2 cos θ1 sin2 θ2 − α1 cos θ2 sin2 θ1

)
ψ̇. (3.3)

The canonical momenta are introduced as
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pτ
m = ∂L

∂(∂τ xm)
=

√
−hhτα∂αxn gmn − ετβ∂βxnbmn. (3.4)

Using canonical momenta and Lagrangian density we can get the 
Hamiltonian density,

H = − E2

2
+ 3(p2

θ1
+ p2

θ2
) + G(γ̂ )

36
(α2

1 sin2 θ1 + α2
2 sin2 θ2)

+ G(γ̂ )

9
α1α2 cos θ1 cos θ2 + G(γ̂ )

18
(α2

1 + α2
2)

+
(

J − γ̂ G(γ )
54 (α2 cos θ1 sin2 θ2 − α1 cos θ2 sin2 θ1)

)2

2G(γ̂ )
(

1
9 + γ̂ 2 sin2 θ1 sin2 θ2

324

) . (3.5)

Variation of action with respect to xm gives the following equation 
of motion,

2∂α(
√

−hhαβ gkm∂βxm) −
√

−hhαβ∂k gmn∂αxm∂βxn

− 2∂αεαβ∂βxmbkm + εαβ∂αxm∂βxn∂kbmn = 0 (3.6)

Further, the variation of action with respect to metric gives the 
Virasoro constraints,

gmn(∂τ xm∂τ xn + ∂σ xm∂σ xn) = 0 (3.7)

gmn(∂τ xm∂σ xn) = 0. (3.8)

The equations of motion for t and ψ leads, respectively, to

ṫ = E, (3.9)

ψ̇G(γ̂ )

(
1

9
+ γ̂ 2 sin2 θ1 sin2 θ2

324

)

+ γ̂ G(γ̂ )

54

(
α2 cos θ1 sin2 θ2 − α1 cos θ2 sin2 θ1

)
= J , (3.10)

here E and J both are constants motion. Further, the equations 
motion of θ1 and θ2 are non-trivial and are given by,

θ̈1 = −G(γ̂ )

(
1

3
α2

1 cos θ1 sin θ1 − 2

3
α1α2 cos θ2 sin θ1

− γ̂ 2 sin 2θ1 sin2 θ2ψ̇
2

108
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)
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3
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2

108
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,
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,

and

F = 1

3
(α2
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2) + 2

3
α1α2 cos θ1 cos θ2

+ 1
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(α2

1 sin2 θ1 + α2
2 sin2 θ2) − ψ̇2
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1
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. 1. Kolmogorov–Arnold–Moser (KAM) torus for energy E = 0.3 and γ̂ = 1 with 
tial conditions θ1(0) = 0.4, Pθ1 (0) = 0, θ1(0) = π , Pθ2 (0) = 0.12.

om (3.7) the Virasoro constraints can be written as,

= 1
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(θ̇1

2 + θ̇2
2
) + G(γ̂ )

18
(α2

1 sin2 θ1 + α2
2 sin2 θ2

2 )

+ 2
G(γ̂ )

9
α1α2 cos θ1 cos θ2 + G(γ̂ )

9
(α2

1 + α2
2)

+
(

J − γ̂ G(γ )
54 (α2 cos θ1 sin2 θ2 − α1 cos θ2 sin2 θ1)

)2

G(γ̂ )
(

1
9 + γ̂ 2 sin2 θ1 sin2 θ2

324

) .

(3.13)

e Hamiltonian is fixed to zero by Virasoro constraints. Since the 
uations of motion θ1 and θ2 are complicated, it is very difficult 
 find out normal variational equation (NVE) and study the inte-
ability analytically. We will study the problem from a numerical 
alysis by showing the appearance of chaos in the next section.

 Numerical analysis

The non-integrability nature of the string dynamics can be ver-
ed numerically by showing chaotic behaviour of the string in its 
ase space. There are various techniques to show the chaotic be-
viour of the string dynamics in a particular background. Here we 
ve used two methods. First we wish to study it from the point 
 view of Poincaré section and then calculating the Lyapunov Ex-
nent.

. Poincaré section

The string trajectories in phase space are distorted torus or the 
mous Kolmogorov–Arnold–Moser (KAM) torus [Fig. 1]. As time 
olves, the trajectories wind over the torus shows the quasi-
riodic nature of the trajectories. It will be convenient to take the 
ojection of the trajectories over a surface for studying their dy-
mics. These projections over a surface is called Poincaré section 
 surface of section [28,29].

In the present case, the system has four phase space coordi-
tes (θ1, θ2, pθ1 , pθ2 ). The Virasoro constraint reduces it to a three 
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Fig. 2. Poincaré sections for constant γ̂ = 1.
dimensional subspace. Different initial conditions to the phase 
space coordinates give different tori in the phase space. To find 
different set of initial conditions we take pθ1 = 0, θ2 = π , then 
keeping energy a constant in equation (3.13) we vary θ1 to get 
the corresponding values of pθ2 . For an extended string we take 
the winding numbers of both θ1 and θ2 coordinates to 1. The in-
tersection of the tori with the surface sin θ2 = 0 gives distorted 
circles.

When energy is small these tori in the phase space are distinct 
[Fig. 2(a)]. Each colour correspond to different set of initial condi-
tions. As the energy of the system increased gradually some of the 
tori get deformed and destroyed by making a collection of scat-
tered points in the phase space [Fig. 2(b)–2(d)]. These distorted 
tori are called cantori. At some higher value of energy all the tori 
get distorted and phase space become chaotic [Fig. 2(e)].

In Fig. 3 it is observed that chaotic nature of phase space not 
only depends on energy but also the deformation parameter (γ̂ ) of 
AdS5 × T 1,1 background. Keeping energy constant E = 0.5 when 
γ̂ is changed, the tori get distorted as earlier case and becomes 
chaotic for a higher value of γ̂ .
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Fig. 3. Poincaré sections for constant energy E = 0.5.
Fig. 4. Poincaré section for point like string with energy E = 5 and γ̂ = 10.

Point like string. Let us look at the fate of the point like string in 
the deformed background. If we make the winding numbers tends 
to zero then the string is no longer extended and it becomes point 
like. We observe the phase space of a point like string is ordered 
and non-chaotic [Fig. 4]. This ordered behaviour of phase space re-
mains unchanged even with the varying energy or the deformation 
parameter γ̂ .
Fig. 5. Lyapunov exponent.

4.2. Lyapunov exponent

Chaotic nature of the trajectories can be studied more quanti-
tatively by the so called Lyapunov exponent. Lyapunov exponent 
describes sensitivity of the phase space trajectories to the ini-
tial conditions. It measures the growth rate between two initially 
nearby trajectories. (See Fig. 5.)
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Fig. 6. Largest Lyapunov exponents for (a) extended string with initial conditions θ1(0) = 0.1, pθ1 (0) = 0, θ2(0) = 0.1, pθ2 (0) = 0.203444 and (b) point like string with initial 
conditions θ1(0) = 0.1, pθ1 (0) = 0, θ2(0) = 0.1, pθ2 (0) = 0.2041.
Let us consider two initially nearby orbits, one passes through 
the point X0 and other X0 + �X0. These orbits can be thought 
of as parametric functions of time. If �X(X0, τ ) is the separation 
between these two orbits at a later time τ , then the Lyapunov 
exponent is defined as

λ = 1

τ
ln

‖�X(X0, τ )‖
‖�X0‖ (4.1)

It will be useful to take the largest Lyapunov exponent which can 
be measured when the interval is very large.

� = lim
τ−>∞

1

τ
ln

‖�X(X0, τ )‖
‖�X0‖ = lim

τ−>∞
1

τ

∑
λiτi (4.2)

The largest Lyapunov exponent generally converges to a positive 
value for a physical system which exhibits chaotic behaviour. If 
� is zero then it indicates the system is conservative. For a non-
conservative system or dissipative system the � converges to a 
negative value [30,31]. For extended string the largest Lyapunov 
exponent Fig. 6(a) converges to a positive value close to 3.55 which 
verifies extended string motion in γ deformed AdS5 × T 1,1 is 
chaotic in nature. But for point like string Fig. 6(b) its value con-
verges to zero which indicates non-chaotic nature of the system. 
We arrived at this conclusion by studying the problem mostly nu-
merically.

5. Conclusion

In this paper we have explicitly showed through the appearance 
of chaos that the string motion in the γ̂ deformed AdS5 × T 1,1 ge-
ometry is not integrable. We arrived at this conclusion by studying 
the problem mostly numerically. We study numerically the motion 
of the system and found it to be chaotic. Non-integrability does 
not, necessarily, imply the chaotic motion. However, the appear-
ance of chaos is evidence of the breakdown of integrability. In our 
study the chaotic motion of the strings is first seen in the Poincaré 
sections and also in the phase space trajectories. We have taken 
the example of a particular type of circular string and showed 
that numerically that the motion is chaotic. We have shown fur-
ther that as soon as the strings are replaced with point particles 
the integrability restores back. Hence one can conclude that while 
the point like solutions are integrable, the extended string equa-
tions of motion are not. We have further support of this result by 
looking at the Lyapunov exponent and proved that the string equa-
tions of motion are non-integrable while the point like equations 
are integrable. There are various things that one could look at. 
First whether there is any link between the marginal deformations 
and the chaos. Whether all marginal deformations lead to chaotic 
behaviour? Further one may ask what happens to these classical 
chaos at the quantum level. Of course the string trajectories will 
lead to excitations of heavy string states. Hence in the field theory 
side they would correspond to operators withe very large quantum 
numbers. Finally, the method of nonintegrability and chaos in clas-
sical string trajectories might help us better in understanding the 
gauge/gravity duality better in terms of looking at how the nonin-
tegrability really affects the field theory operators.
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