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Abstract
Fully-Implicit (FI) Methods are often employed in the numerical simulation of large-scale sub-
surface flows in porous media. At each implicit time step, a Newton-like method is used to
solve the FI discrete nonlinear algebraic system. The linear solution process for the Newton
updates is the computational workhorse of FI simulations. Empirical observations suggest that
the computed Newton updates during FI simulations of multiphase flow are often sparse. More-
over, the level of sparsity observed can vary dramatically from iteration to the next, and across
time steps. In several large scale applications, it was reported that the level of sparsity in
the Newton update can be as large as 99%. This work develops a localization algorithm that
conservatively predetermines the sparsity pattern of the Newton update. Subsequently, only
the flagged nonzero components of the system need be solved. The localization algorithm is
developed for general FI models of two phase flow. Large scale simulation results of bench-
mark reservoir models show a 10 to 100 fold reduction in computational cost for homogeneous
problems, and a 4 to 10 fold reduction for strongly heterogeneous problems.
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1 Introduction

Numerous physical phenomena are modeled using nonlinear and variable-coefficient forms of the
Advection-Diffusion-Reaction (ADR) partial differential equations (PDEs) [3]. These include
geologic subsurface multiphase flows [1, 6, 8, 2], large-scale and steady fluid dynamics [5, 7]
and atmospheric flows [11, 4]. These phenomena are generally characterized by a stiff nonlinear
coupling and a wide disparity in the range of varying coefficients. Furthermore, in many appli-
cations there is a need to model large-scale domains while capturing critical, intrinsically local
effects. As a consequence of these factors, modern numerical methods must somehow balance
robustness with computational efficiency.

For the class of problems at hand, implicit numerical approximations are particularly attrac-
tive owing to their unconditional stability with respect to the time-step size (see for example
[1, 2]). An implicit time-step requires the solution of a tightly coupled nonlinear system of
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discrete residual equations given the target time-step size and the initial state vector for the
time-step. An often cited limitation of implicit methods remains to be their need for the so-
lution of large coupled nonlinear algebraic systems at each time step. Due to the nonlinear
nature of the governing equations, Newton-like iterative processes are the method of choice,
and subsequently, requires the solution of a large linear system at every iteration.

Recent mathematical developments show that there is significant locality present with the
Newton updates. [12, 9] present a novel algorithm to characterize this locality and reduce the
size of the linear system which increases the computational efficiency. [10] applies this algorithm
to two phase sequential implicit simulation of flow and transport.

This work extends the solution strategy to three-dimensional two-phase fully implicit simula-
tion. This is a meaningful point of departure for the development of adaptive solution methods
for more general problems.

2 General approach

Fluid flow in porous media can be described by the canonical equation

∂ta(u) + ∂xf(u) + ∂xG(u, ∂xu) + s(u) = 0, in (0, T )× Ω, (1a)

α(u) + β

(
∂u

∂ν

)
= w, in (0, T )× ∂Ω, (1b)

u = u0, for t = 0 and x ∈ ∂Ω (1c)

where Ω is a bounded domain in R
d with boundary ∂Ω and (d = 1, 2, 3); ∂u

∂ν denoted the
gradient along the outward oriented unit-normal on ∂Ω; u = (u1, . . . , um)T is the state vector
that is comprised of the independent state variables, ui : Ω× (0, T ) → R, for i = 1, . . . ,m; a(u)
is the accumulation; f(u) is the inviscid flux; G(u, ∂xu) is the viscous flux, and s(u) are the
reaction terms.

Upon the semi-discretization in time, the independent state vector un+1 = (un+1
1 ), . . . , un+1

m

T

is introduced, where un+1
i : Ω → R, i = 1, . . . ,m. The solution, un+1, is the approximation to

the independent state vector at discrete time level n + 1; i.e., un+1(x) ≈ u(x, tn+1). The type
of implicit discretization is unimportant so long as the resulting semi-discrete form has a single
stage. Linear multistep methods follow this paradigm for example. In what follows we drop
the superscript indicating the discrete time level, and we assume that all variables are at the
n+ 1 level. The corresponding canonical form of the semi-discrete equations becomes,

R∞(u) := s(u) + ∂xf(u) + ∂xG(u, ∂xu) = 0, in Ω, (2a)

B∞(u) := αu+ β
∂u

∂ν
= w, in ∂Ω, (2b)

where s(u) incorporates both the reaction and discrete accumulation. The dependence on the
approximations at previous time levels is implied by the fact that all terms in Equations 2
are spatially variable. Equation 2 is a nonlinear system of PDE and is referred to as the
infinite-dimensional problem.

Assuming Fréchet differentiability (denoted by R′
∞), and invertability of the derivative,

Newton’s method may be applied to solve Equation 2. Given an initial guess, u0, the infinite-
dimensional Newton updates,

δν∞(x) := uν+1 − uν , ν = 1, . . . ,
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are obtained by solving the linear PDE,

R′
∞(uν)δν∞ +R∞(uν) = 0, in Ω, (3a)

αδν∞ + β
∂

∂ν
δν∞ = 0, in ∂Ω, (3b)

Analogously, assuming that the finite-dimensional residual equations are differentiable, and
that the resulting Jacobian matrix is invertible, the finite-dimensional problem may be solved
using Newton’s method as well. The iteration is started from U0

h , and the update directions
are obtained by solving the linear algebraic system,

R′
h(U

ν
h )(δ

ν
h) +Rh(U

ν
h ) = 0 ν = 1, . . . . (4)

The infinite- and finite-dimensional Newton iterates are also realed to each other through the
spatial discretization error. This situation is summarized in Figure 1. Assuming a sufficiently

Figure 1: The connections between the Newton processes for the infinite- and finite-dimensional
problems.

accurate discretization, and requiring the infinite norms, we have that the nonzero support of
the infinite update is equation to that the numerical update,

supp δν∞ = supp δνh.

The approach taken in [12, 9, 10] is to seek an analytical approximation to the solution of the
problem 3. An approximation is necessary as the problem has generally variable coefficients,
and despite beng linear, the direct solution may be intractable. Nevertheless, the approximate
solution, δ∗, is derived such that,

‖δ∗‖ ≥ ‖δ∞‖, (5)

thereby guaranteeing that the support of the estimate is conservative,

supp δ∗ ⊇ supp δν∞ ≈ supp δh.

In multiple dimensions, the analytical solution to the linear problem described above is chal-
lenging. Next, we present an algorithm that produces conservative estimates.
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3 Fully implicit multidimensional algorithm

The infinite-dimensional Newton iteration is a linear Partial Differential Equation (PDE) with
variable coefficients. For flow, Equation 3 becomes the screened Poisson equation (or the
modified Helmholtz equation), and for transport, it reduces to a first-order hyperbolic equation
with no time component. Since the PDEs are linear, superposition may be applied by the
decomposition of the residual into a serious of bump functions, each of which has a disjoint
and compact support. This allows us to derive the estimate that is composed of the sum
of the solutions of each sub-domain. In order to use the superposition principle efficiently,
for each compactly supported residual component, the PDE may be solved analytically. In
multiple dimensions, closed form analytical solutions for general variable coefficient PDEs are
almost impossible to obtain. Following the procedure described in [10], instead of seeking exact
analytical update, δ∞, we may choose to solve a similar but simpler problem for a conservative
estimate, δ∗, that satisfies condition given in Equation 5.

Similar to the algorithm developed in [10], we will seek spherically symmetric solutions that
will be conservative to the solutions obtained within a three-dimensional cubic space. For highly
heterogeneous problems, the solutions obtained will be overly conservative due to the strong
spatial correlation in the variable coefficients of the Newton problem.

For coupled flow and transport, the infinite-dimensional Newton iteration is a system of
linear PDEs. If Rp(p, s) and Rs(p, s) represent the governing equations for flow and transport,
respectively, then the Newton iteration is given by⎡

⎣
∂Rp(p+εδp,s)

∂ε

∣∣∣
ε=0

∂Rp(p,s+εδs)
∂ε

∣∣∣
ε=0

∂Rs(p+εδp,s)
∂ε

∣∣∣
ε=0

∂Rs(p,s+εδs)
∂ε

∣∣∣
ε=0

⎤
⎦ = −

[
Rp(p, s)
Rs(p, s)

]
, (6)

where ∂Ru(u+εδu,v)
∂ε

∣∣∣
ε=0

is the Fréchet derivative, which evaluates to ∂Ru(u,v)
∂u · δu. We postulate

that a conservative estimate, δ∗, can be obtained by neglecting the off-diagonal entries in the
matrix system given by Equation 6 and solving a decoupled system for flow and transport.

With an analytical solution of Equation 3, the following algorithm can be used to identify
the support of the discrete Newton update:

1. Inspect the discrete residual vector. If it is sparse, we proceed to step 2. Otherwise, the
original system is solved.

2. For each nonzero residual entry:

(a) Project the nonzero entry onto a piecewise constant bump function whose support
is the corresponding grid cell.

(b) Use the analytical estimate to obtain the radius of the anticipated support due to
the residual entry; supp δ∗.

(c) Flag all cells within the radius from the i-th cell.

3. Solve the discrete Newton system for the flagged cells only by removing the rows and
columns of all unflagged cells from the Jacobian matrix.

The complexity of this algorithm scales linearly with the number of nonzero residual entries,
O(||Rh||0). Next we derive the decoupled analytical estimates for flow and transport for three-
dimensional problems, which corresponds to the solution of Equation 6 by neglecting the off-
diagonal matrix entries. The equations derived will be used to obtain a priori estimates of the
nonzero support of the Newton updates for a fully implicit time stepping algorithm.
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4 Flow

The following second order differential equation describes fluid flow in porous media in multiple
dimensions. The canonical form is give by

∂a(p(x, t))

∂t
+∇(K(p(x, t), x)∇(p(x, t))) = w(p(x, t)), in (0, T )× Ω, (7)

with the auxiliary conditions

K(p, x)∇p = 0, in ∂D, t ≥ 0, (8a)

p = p0, t = 0, (8b)

where K(u, x) is a nonlinear mobility function which incorporates spatially varying diffusion
coefficient and a dynamic mobility dependency. In most applications K is solely a function of u
but in cases with spatial heterogeneity, its a direct function of u and x. a(u) is mostly nonlinear
and it incorporates a heterogeneous porosity and general density dependencies. The net source
term is denoted by w(u) and it may be spatially and temporally variable. Equation 7 reduces
to a reaction-diffusion equation when K(u, x) is constant. The semi-discrete form of Equation 7
is

Rp(p
n+1) = a(pn+1)− a(pn) + Δt∇.[K(pn+1, x)∇pn+1]− w(pn+1). (9)

Subsequently, the infinite-dimensional Newton iteration becomes

Rp(p
ν) = −R′

p(p
ν)δp

= − [{a′(pν)−Δtw
′(pν)}δp +Δt∇{∇ [K(pν , x)δp]−∇K(pν , x)δp}] .

Assuming no spatial variation in K i.e., ∇K(p, x) = 0, the above equation reduces to

Δδ̂p(x) + h(x)δ̂p(x) = −Rp(x), (10)

where δ̂p = ΔtK(p, x)δp and

h(x) =
a′(p)−Δtw

′(p)
ΔtK(p)

.

As described in the previous section, instead of seeking solution of Equation 10, we solve a
similar equation such that we obtain conservative solution. It is postulated that for a modified
Helmholtz equation, the infimum of the variable coefficient, h(x), produces the most conser-
vative estimates. Using the infimum of the variable coefficients, the estimates obtained may
sometimes be highly conservative. Through experiments, it was observed that harmonic mean
averaging also provide conservative estimates and are less conservative than the estimates ob-
tained by taking the infimum as the homogenization strategy. Therefore, letting

λ2
avg = −harmmeanx∈Ωh(x),

we obtain
Δδ∗p(x)− λ2

avgδ
∗
p(x) = −Rp(x). (11)

For a two-dimensional problem, a step wise solution is obtain in [10]. Following the same
method, we obtain spherically symmetric solutions of Equation 11. Assuming a nontrivial
residual bump function, β, with a nonzero support of radius r1,

δp(r) =
βeλavg(r1−r)

2λavgΔtK(p, r)

[
R2

r(1 + λavgR)
− 1

λavg

]
, (12)
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where, R is the domain boundary and Δt is the time step size. The radius of the nonzero
support of the Newton update can be computed from the above expression numerically by
equating the right hand side to machine precision number.

5 Transport

Transport equation governs the motion of a conserved scalar field as it is transported by a
known velocity vector field. One such process is the flow of fluids in porous media described by
the hyperbolic conservation laws. The canonical form of the saturation equation is given by

∂a(s(x, t))

∂t
+∇ · f(s(x, t)) = w(s(x, t)), in (0, T )× Ω, (13)

where f(s) is a general nonlinear flux function, a(s) is the mass accumulation term and w(s) is
a source term. The auxiliary conditions prescribed here are

f(s(x, t)).n̂ = 0, in ∂D, t ≥ 0, (14a)

s = s0, t = 0. (14b)

The semi-discrete form of Equation 13 is

Rs(s
n+1) := a(sn+1)− a(sn) + Δt∇ · f(sn+1)−Δtw(s

n+1), (15)

where Δt is the time step size. Following the procedure described in the previous sections, the
Fréchet derivative results in a quasilinear differential equation given by

R′
s(s

n+1)δs := {a′(sn+1)−Δtw
′(sn+1)}δs +Δt∇ · (f ′(sn+1)δs). (16)

Subsequently, the infinite-dimensional Newton iteration becomes

Rs(s
ν) = −R′

s(s
ν)δs

= − [{a′(sν)−Δtw
′(sν)}δs +Δt∇ · (f ′(sν)δs)] .

The above equation reduces to

∇δ̂s(x) + h(x)δ̂s(x) = −Rs(x), (17)

where δ̂s = Δtf
′(s)δs and

h(x) =
a′(s) + Δtw

′(s)
Δtf ′(s)

.

The solution obtained in [10] for a two-dimensional case decomposes the residual function into
summation of several bump functions. Following the same procedure, the solution in three-
dimensions is

δs(r) =
δ∗s (r

∗)
Δtf ′(s)

r∗2

r2
e−λmin(r−r∗), (18)

where r∗ is the position of the residual, δ∗ is the Newton update experienced by the gridcell
contained within r∗ and λmin is the infimum over all h(x).
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From Equation 18, the radius of the nonzero support of the Newton update caused by the
residual at r∗ is computed by

r =
2

A
Wn

(
A

2
√
B

)

=
2

A

⎡
⎣log

(
A

2
√
B

)
− log

(
log

(
A

2
√
B

))
− log

⎛
⎝1−

log
(
log

(
A

2
√
B

))

log
(

A
2
√
B

)
⎞
⎠
⎤
⎦ ,

where Wn(x) is the Lambert function evaluated at x, A = λmin and B = εmΔtf
′(s)

δ∗s (r∗)r∗exp[λminr∗]
.

6 Results

Incorporating the analytical estimates derived in the previous sections in a two phase reservoir
simulator, we estimate the radius of influence for each nonzero residual entry. The union of all
the sub-domains that result from individual flagging, forms the new and reduces computational
domain for the linear solver. The first test case is a homogeneous permeability field with
1, 122, 000 gridcells (60X220X85). One production and one injection well act as a source and
a sink with slight compressibility in the problem. Figure 2 shows the simulation results for a
few time steps with the time-step size increasing stepwise, shown by the green curve on the
secondary axis. The primary y-axis is the percentage of domain that is solved every iteration.
For conventional solution strategies, the entire domain is solved every iteration, resulting in a
straight line at 100% as its ordinate. The red curve in Figure 2 is the actual domain that is
showing a nonzero Newton update or in other words active. The rest of the domain, which is
inactive, if excluded from the computational domain will neither affect the solution nor degrade
the nonlinear convergence rate. The blue curve is an a priori estimate of the active domain
obtained by applying the aforementioned algorithm. As it can be observed, the estimate is
consistently conservative to the a posteriori numerical solution. The maximum domain that
needs to be solved is around 25%, with an average of 8.5%.

The corresponding increase in the computational efficiency is shown by computing the com-
plexity of the new algorithm against that of the conventional methods. Suppose that the
computational cost for a linear solver is given by

cost = αNβ , (19)

where N is the size of the problem, α and β are constants. Usually, the values of β for a
linear solver range from 1.1 − 1.5. In Table 1 the first row gives the increasing values of β,
second row shows the ratio of the complexity of the developed localized algorithm to that of
the conventional full field simulation, give by

ratio =
α
∑n

i=1(%Ni)
β

αnNβ
,

where n is the total number of iterations and %Ni is the reduced size of the domain as predicted
by the algorithm. The folds increase in the computational efficiency is given in the third row.
For an average β value of 1.4, the localized algorithm will be 28 times faster compared to solving
the entire domain every iteration. Stronger the locality, higher will be the computational gains.

The second test case is the highly heterogeneous SPE10 comparative study with 1, 122, 000
gridcells (60X220X85), shown in Figure 3. Due to a huge contrast in the values of the variable
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Figure 2: Percentage of domain solved over several time-steps for a homogeneous permeability
field.

coefficient, the homogenization of the pressure equation leads to overly conservative estimates.
Saturation equation being hyperbolic in nature results in highly local estimates.

Table 1: Complexity analysis for localized linear solver for a homogeneous domain.

β value 1.0 1.2 1.4 1.6 1.8 2.0
α
∑n

i=1(%Ni)
β

αnNβ 0.0847 0.0546 0.0356 0.0235 0.0156 0.0105
Folds faster 11.80 18.29 28.03 42.50 63.83 95.03

Table 2: Complexity analysis for localized linear solver for the SPE10 comparative study case
(60X220X85 gridcells).

β value 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
α
∑n

i=1(%Ni)
β

αnNβ 0.38 0.34 0.32 0.29 0.27 0.24 0.22 0.21 0.19 0.17 0.16
Folds faster 2.65 2.90 3.16 3.45 3.76 4.10 4.46 4.86 5.30 5.77 6.28

Stricter estimates can be obtained by devising alternate strategies for homogenizing the variable
coefficient equation. One such strategy is shown in the next section. Observing the nonzero
Newton updates for pressure and saturation over several iterations, see Figure 4, show that
there is no uniform trend visible, thus rendering ad hoc prediction methods unreliable. In
Figure 4, blue shaded area is obtained by the application of the algorithm described in this
paper while the green shaded area is the result from the numerical simulator. As it can be
easily observed, the new algorithm is conservative and sharp at all points in the domain, thus
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(a) Logarithm of permeability in the x-
direction for the full SPE10 case.

(b) Logarithm of permeability for the 48th layer of
SPE10.

Figure 3: SPE 10 comparative geological model permeability field.

(a) Iteration 1: Pressure

(b) Iteration 2: Pressure

(c) Iteration 3: Pressure

(d) Iteration 1: Saturation

(e) Iteration 2: Saturation

(f) Iteration 3: Saturation

Figure 4: Nonzero Newton updates for pressure and saturation over three consecutive iterations.
The blue shaded ares is obtained by using the algorithm described in the paper while the green
area is the actual domain showing a nonzero Newton update. Our estimates are conservative
and sharp.
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Figure 5: Percentage of domain solved over several time-steps for the SPE10 comparative study
case.

proving to be a reliable method for the prediction of locality present in the nonlinear solution
process. Another important observation made is that the degree of locality increases over
iterations. From Figure 5 it can be observed that the first iteration for pressure result in a
fairly global update but the subsequent iterations are all local. The overall computational
gains are summarized in Table 2.

Depending on the complexity of the linear solver, the localized algorithm will result in
improved computational speed. The average gain in the computational efficiency is around
4 folds. Even for the worst case scenario, this algorithm is 2.6 times faster than the full
field solution strategies. The higher gains are a result of the strictly localized behavior of the
hyperbolic equation. With multicomponent systems, the gains would be substantially higher
than two phase simulations.

7 Homogenization strategy

The homogenization strategy that result in conservative estimates theoretically is the infimum
strategy. In other words, taking the infimum of the variable coefficient on the domain results
in a constant coefficient second order equation whose solution is always conservative to the
solution of the variable coefficient equation. Through experiments, it was observed that this
strategy can be replaced by harmonic mean averaging. In this section we present an alternate
strategy that result in very sharp estimates that might not be conservative at all times. It
was also observed that even though the estimates are not conservative in some cases, the
nonlinear convergence rate is not affected. Figure 6 is obtained by simulating the first 20
layers layers of the SPE10 comparative study case for several time-steps. It can be readily
seen that the arithmetic averaging strategy result if very sharp estimates as the difference
between the blue and the red curves is significantly smaller than the one for harmonic averaging
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strategy in Figure 5. Sharp estimates mean high computational gains. Hence, using arithmetic
averaging instead of harmonic averaging will result in higher computational gains at the expense
of nonconservative estimates. For this case, the estimates obtained are always conservative,
which might not be the case in more complex cases. Further investigation is required to develop
conservative and sharp homogenization strategies.

Figure 6: Percentage of domain solved over several time-steps for the arithmetic homogenization
strategy applied on the SPE10 comparative study case.

8 Conclusions

An algorithmic approach and associated theory is developed to exploit the locality present in
the nonlinear solution processes for flow in porous media. The methods are conservative and
reproduce the Newton updates exactly, thereby preserving the nonlinear convergence rate. The
degree of locality depends on the physics and complexity of the problem. It is a strong function
of the compressibility of the system and the numerical time-step size. Advanced homogenization
strategies can be developed to obtain conservative and sharp estimates such as the arithmetic
averaging strategy. Gains of up to 95 fold were obtained for homogeneous simple problems. Up
to 6 fold gains were observed in the computational time for the case of highly complex problems.
The future work includes extending this algorithm to general fully-implicit simulation of coupled
flow and multicomponent transport.
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