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Abstract In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner

equation and non-homogeneous time-fractional models (including Buck-master equation) using

q-Homotopy Analysis Method (q-HAM). Our work displays the elegant nature of the application

of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to

solve the non-homogeneous fractional differential equations. The presence of the auxiliary param-

eter h helps in an effective way to obtain better approximation comparable to exact solutions. The

fraction-factor in this method gives it an edge over other existing analytical methods for non-linear

differential equations. Comparisons are made upon the existence of exact solutions to these models.

The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

The frequently used analytical methods to solve non-linear dif-

ferential equations have different restrictions and discretiza-
tion of variables are involved in numerical techniques which
leads to rounding off errors see [19].

The Gardner equation (combined KdV–mKdV or eKdV
equation) is a useful model for the description of internal sol-
itary waves in shallow water while the buck-master’s equation
is used in thin viscous fluid sheet flows and have been widely
studied by the various methods see [2,21].

Generally, for the past three decades, fractional calculus
has been considered with great importance due to its various
applications in physics, fluid flow, chemical physics, control
theory of dynamical systems, electrical networks, and so on.

The quest of getting accurate methods for solving resulted
non-linear models involving fractional order is of utmost con-
cern of many researchers in this field today.

Various analytical methods have been put to use success-
fully to obtain solutions of classical Gardner equations and
Buck-Master equations such as the method of planar dynam-

ical systems approach, exp-function method, bilinear method
and extended homo-clinic test approach, fractional variational
iteration method (FVIM) and generalized double reduction

theorem see [1,3–7,13,16–18]. Recently, a modified HAM
called q-Homotopy Analysis Method was introduced in [8],
see also [10–12]. It was proven that the presence of fraction
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factor in this method enables a fast convergence better than the
usual HAM which then makes is more reliable.

To the best of our knowledge, no attempt has been made

regarding analytical solutions of time-fractional homogeneous
Gardner equation and time fractional non-homogeneous
Buck-Master equation using q-Homotopy Analysis Method.

In this paper, we consider these equations subject to some
appropriate initial conditions. Comparison analysis of our
results is carried out with exact solutions when they exist.

The numerical results of the problems are presented graphi-
cally, obtained using Mathematica 9 and MATLAB R2012b.

2. Preliminaries

This section is devoted to some definitions and some known
results. Caputo’s fractional derivative is adopted in this work.

Definition 2.1. The Riemann–Liouville’s ðRLÞ fractional inte-
gral operator of order a P 0, of a function f 2 L1ða; bÞ is
given as

IafðtÞ ¼ 1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds; t > 0; a > 0; ð1Þ

where C is the Gamma function and I0fðtÞ ¼ fðtÞ.

Definition 2.2. The fractional derivative in the Caputo’s sense
is defined as [20],

DafðtÞ ¼ In�aDnfðtÞ ¼ 1

Cðn� aÞ

Z t

0

ðt� sÞn�a�1
fðnÞðsÞds; ð2Þ

where n� 1 < a 6 n; n 2 N; t > 0.

Lemma 2.1. Let t 2 ða; b�. Then

Iaaðt� aÞb
h i

ðtÞ ¼ Cðbþ 1Þ
Cðbþ aþ 1Þ ðt� aÞbþa

; a P 0; b > 0:

ð3Þ

Definition 2.3. The Mittag-Leffler function for two parame-
ters is defined as,

Ea;bðzÞ ¼
X1
k¼0

zk

Cðakþ bÞ ; a; b; z 2 C; ReðaÞP 0 ð4Þ
3. q-Homotopy Analysis Method (q-HAM)

Differential equation of the form

N Da
t uðx; tÞ

� �
� fðx; tÞ ¼ 0 ð5Þ

is considered, where N is a nonlinear operator, Da
t denotes the

Caputo fractional derivative, ðx; tÞ are independent variables, f
is a known function and u is an unknown function. To gener-

alize the original Homotopy method, Liao [9] construct what is
generally known as the zeroth-order deformation equation

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞð Þ
¼ qhHðx; tÞ N½Da

t /ðx; t; qÞ� � fðx; tÞ
� �

; ð6Þ

where n P 1; q 2 0; 1
n

� �
denotes the so-called embedded param-

eter, L ia an auxiliary linear operator, h–0 is an auxiliary
parameter, Hðx; tÞ is a non-zero auxiliary function.
It is clearly seen that when q ¼ 0 and q ¼ 1
n
, Eq. (1) becomes

/ðx; t; 0Þ ¼ u0ðx; tÞ and / x; t;
1

n

� �
¼ uðx; tÞ ð7Þ

respectively. So, as q increases from 0 to 1
n
, the solution

/ðx; t; qÞ varies from the initial guess u0ðx; tÞ to the solution
uðx; tÞ.

If u0ðx; tÞ;L; h;Hðx; tÞ are chosen appropriately, solution
/ðx; t; qÞ of Eq. (1) exists for q 2 0; 1

n

� �
.

Expansion of /ðx; t; qÞ in Taylor series gives

/ðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm: ð8Þ

where

umðx; tÞ ¼
1

m!

@m/ðx; t; qÞ
@qm

����
q¼0
: ð9Þ

Assume that the auxiliary linear operator L, the initial guess

u0, the auxiliary parameter h and Hðx; tÞ are properly chosen
such that the series (8) converges at q ¼ 1

n
, then we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ
1

n

� �m

: ð10Þ

Let the vector un be define as follows:

~un ¼ u0ðx; tÞ; u1ðx; tÞ; . . . ; unðx; tÞf g: ð11Þ

Differentiating Eq. (6) m-times with respect to the (embedding)
parameter q, then evaluating at q ¼ 0 and finally dividing them

by m!, we have what is known as the mth-order deformation
equation (Liao [14,15]) as

L umðx; tÞ � v�mum�1ðx; tÞ
� �

¼ hHðx; tÞRm ~um�1ð Þ: ð12Þ

with initial conditions

uðkÞm ðx; 0Þ ¼ 0; k ¼ 0; 1; 2; . . . ;m� 1: ð13Þ

where

Rm ~um�1ð Þ ¼ 1

ðm� 1Þ!
@m�1 N½Da

t /ðx; t; qÞ� � fðx; tÞ
� �

@qm�1

�����
q¼0

ð14Þ

and

v�m ¼
0 m 6 1

n otherwise;

	
ð15Þ
Remark 1. It should be emphasized that umðx; tÞ for m P 1, is
governed by the linear operator (12) with the linear boundary
conditions that come from the original problem. The existence
of the factor 1

n

� �m
gives more chances for better convergence,

faster than the solution obtained by the standard Homotopy
method. Off course, when n ¼ 1, we are in the case of the
standard Homotopy method.
4. The time-fractional Garner equation

We consider the time fractional homogeneous time-fractional

Garner equation. Let

Da
t uþ 6ðu� e2u2Þux þ uxxx ¼ 0; 0 6 x 6 1; t > 0;

0 < a 6 1 ð16Þ

subjected to the initial condition
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uðx; 0Þ ¼ 1

2
þ 1

2
tanh

x

2


 �
: ð17Þ

The exact solution to this problem, when e ¼ 1 and a ¼ 1, is

uðx; tÞ ¼ 1

2
þ 1

2
tanh

x� t

2


 �
: ð18Þ
4.1. Application of q-HAM

In order to use q-HAM to solve the problem considered in
(16), we choose the linear operator

L½/ðx; t; qÞ� ¼ Da
t /ðx; t; qÞ ð19Þ

with property that L½c1� ¼ 0; c1 is constant.
We use initial approximation u0ðx; tÞ ¼ 1

2
þ 1

2
tanh x

2

� �
. We

can then define the non-linear operator as

N½/ðx; t; qÞ� ¼ Da
t/ðx; t; qÞ þ 6/ðx; t; qÞ/xðx; t; qÞ

� 6e2ð/ðx; t; qÞÞ2/xðx; t; qÞ þ /xxxðx; t; qÞ: ð20Þ

We construct the zeroth order deformation equation

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞ½ �
¼ qhHðx; tÞN Da

t /ðx; t; qÞ
� �

: ð21Þ

We choose Hðx; tÞ ¼ 1 to obtain the mth-order deformation
equation to be

L umðx; tÞ � v�mum�1ðx; tÞ
� �

¼ hRm ~um�1ð Þ; ð22Þ

with initial condition for m P 1; umðx; 0Þ ¼ 0; v�m is as defined
in (15) and

Rm ~um�1ð Þ ¼ Da
t um�1 þ 6

Xm�1
k¼0

uk um�1�kð Þx

� 6e2
Xm�1
k¼0

Xk
i¼0

uiuk�i

 !
uðm�1�kÞx þ uðm�1Þxxx: ð23Þ

So, the solution to Eq. (16) for m P 1 becomes

umðx; tÞ ¼ v�mum�1 þ hIat Rm ~um�1ð Þ½ �: ð24Þ

We therefore obtain components of the solution using q-HAM
successively as follows

u1ðx; tÞ¼ v�1u0þhIa Da
t u0þ6u0ðu0Þx�6�2u20ðu0Þxþðu0Þxxx

� �
¼ 1

8
hsech4

x

2


 �
1þð4�3e2ÞcoshðxÞ�3ð�1þ e2ÞsinhðxÞ
� �

� ta

Cð1þaÞ ð25Þ

u2ðx;tÞ¼v�2u1þhIa

� Da
t u1þ6u0ðu1Þxþ6u1ðu0Þx�6e2u20ðu1Þx�12e2u0u1ðu0Þxþðu1Þxxx

� �
¼hðnþhÞ

8
sech7

x

2


 �
cosh3 x

2


 �
1�ð3e2�4ÞcoshðxÞ�3ðe2�1ÞsinhðxÞ
� � ta

Cð1þaÞ

þ
6h2sech7 x

2

� �
64

4ðe2�1Þcosh x

2


 �
þð22�37e2þ15e4Þcosh 3x

2

� �� 
t2a

Cð1þ2aÞ

�
6h2sech7 x

2

� �
64

4cosh
5x

2

� �
þ3e4 cosh

5x

2

� �
�7e2 cosh

5x

2

� �� 
t2a

Cð1þ2aÞ

�
h2sech7 x

2

� �
64

ð206�204e2Þsinh x

2


 �
þð222e2�129�90e4Þsinh 3x

2

� �� 
t2a

Cð1þ2aÞ

þ
h2sech7 x

2

� �
64

ð42e2�25�18e4Þsinh 5x

2

� �� 
t2a

Cð1þ2aÞ : ð26Þ

In the same way, umðx; tÞ for m ¼ 3; 4; 5; . . . can be obtained
using Mathematica 9.

Then the series solution expression by q-HAM can be writ-

ten in the form
uðx; t; n; hÞ 1
2
þ 1

2
tanh

x

2


 �
þ
X1
i¼1

uiðx; t; n; hÞ 1

n

� �i

: ð27Þ

Eq. (27) is an appropriate solution to the problem (16) in terms
of convergence parameter h and n.

5. The time-fractional non-homogeneous differential equations

We consider the following time-fractional non-homogeneous
differential equations of the form

IHP1

@bu
@tb
þx @u

@x
þ @2u

@x2
¼ 2tbþ2x2þ2; xP 0; tP 0; 0< b6 1;

uðx;0Þ¼ x2:

(

ð28Þ
The exact solution to this problem is

uðx; tÞ ¼ x2 þ 2Cð1þ bÞ
Cð1þ 2bÞ t

2b: ð29Þ

Also,

IHP2

Db
t u�ðu4Þxx�ðu3Þx ¼�12x2e4t�3x2e3tþxet; 06x6 1; tP 0; 0<b6 1;

uðx;0Þ¼ x:

(

ð30Þ

The exact solution to the problem (30) when b ¼ 1 is u ¼ xet.

5.1. Application of q-HAM

5.1.1. Problem IHP1

We follow the same procedure as in first case using the initial

approximation to be u0ðx; tÞ ¼ x2.
We construct the zeroth order deformation equation

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞ½ �
¼ qhHðx; tÞ N Db

t /ðx; t; qÞ
� �

� 2tb � 2x2 � 2
� �

: ð31Þ

We choose Hðx; tÞ ¼ 1 to obtain the mth-order deformation

equation to be

L umðx; tÞ � v�mum�1ðx; tÞ
� �

¼ hRm ~um�1ð Þ; ð32Þ

with initial condition for m P 1; umðx; 0Þ ¼ 0; v�m is as defined
in (15) and

Rm ~um�1ð Þ ¼ Db
t um�1 þ xuðm�1Þx þ uðm�1Þxx � 2tb � 2x2 � 2:

ð33Þ

So, the solution to Eq. (28) for m P 1 becomes

umðx; tÞ ¼ v�mum�1 þ hIbt Rm ~um�1ð Þ½ �: ð34Þ

We therefore obtain components of the solution using q-HAM

successively as follows

u1ðx; tÞ ¼ v�1u0 þ hIb Db
t u0 þ xu0x þ u0xx � 2tb � 2x2 � 2

� �
¼ � 2hCð1þ bÞ

Cð1þ 2bÞ t
2b ð35Þ

u2ðx; tÞ ¼ v�2u1 þ hIb Db
t u1 þ xu1x þ u1xx � 2tb � 2x2 � 2

� �
¼ � 2hðnþ hþ 1ÞCð1þ bÞ

Cð1þ 2bÞ t2b � 2hðx2 þ 1Þ
Cð1þ bÞ tb: ð36Þ

In the same way, umðx; tÞ for m ¼ 3; 4; 5; . . . can be obtained
using Mathematica 9.



Figure 1 (a) q-HAM solution plot and (b) exact solution plot where a ¼ 1; h ¼ �0:0465, and n ¼ 1.
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Then the series solution expression by q-HAM can be writ-
ten in the form

uðx; t; n; hÞ ¼ x2 þ
X1
i¼1

uiðx; t; n; hÞ 1

n

� �i

Eq. (43) is an appropriate solution to the problem (28) in terms

of convergence parameter h and n.

Remark 2. Using the first two terms of the q-HAM series in
(43), when n ¼ 1, we choose appropriate h ¼ �1, to get

uðx; tÞ ¼ x2 þ 2Cð1þ bÞ
Cð1þ 2bÞ t

2b: ð37Þ

Hence, we obtain exact solution to the non-homogeneous dif-
ferential Eq. (28) given by just two terms of the series.
5.1.2. Problem IHP2: time-fractional Buck-Master’s equation

We follow the same procedure as in first case using the initial

approximation to be u0ðx; tÞ ¼ x.
We construct the zeroth order deformation equation

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞ½ �
¼ qhHðx; tÞ N Db

t /ðx; t; qÞ
� �

þ 12x2e4t þ 3x2e3t � xet
� �

:

ð38Þ

We choose Hðx; tÞ ¼ 1 to obtain the mth-order deformation

equation to be

L umðx; tÞ � v�mum�1ðx; tÞ
� �

¼ hRm ~um�1ð Þ; ð39Þ

with initial condition for m P 1; umðx; 0Þ ¼ 0; v�m is as defined

in (15) and

Rm ~um�1ð Þ¼Db
t um�1� u4m�1

� �
xx
� u3m�1
� �

x
þ12x2e4tþ3x2e3t�xet

ð40Þ

So, the solution to Eq. (28) for m P 1 becomes

umðx; tÞ ¼ v�mum�1 þ hIbt Rm ~um�1ð Þ½ �: ð41Þ
We therefore obtain components of the solution using q-HAM

successively as follows

u1ðx; tÞ¼ v�1u0þhIb Db
t u0� u40

� �
xx
� u30
� �

x
þ12x2e4tþ3x2e3t�xet

� �
¼� 15hx2tb

Cð1þbÞþ12hx2tb�1E1;b 4tð Þþ3x2htb�1E1;b 3tð Þþxhtb�1E1;b tð Þ:

ð42Þ

In the same way, umðx; tÞ for m ¼ 3; 4; 5; . . . can be obtained
using Mathematica 9.

Then the series solution expression by q-HAM can be writ-
ten in the form

uðx; t; n; hÞ ¼ x2 þ
X1
i¼1

uiðx; t; n; hÞ 1

n

� �i

ð43Þ

Eq. (43) is an appropriate solution to the problem (30) in terms
of convergence parameter h and n.
5.2. Numerical results

We present the numerical results obtained to demonstrate the
effectiveness of the modified Homotopy analysis method (q-

HAM) presented in this paper. The figures below show the
q-HAM and exact solutions of the time-fractional equations
considered for different values of n; a and h.

Remark 3. Fig. 1(a) displays the solution plot of the time-

fractional Gardner’s equation obtained by the q-HAM while
Fig. 1(b) displays the exact solutions for the same equation
when a ¼ 1. It should be noted that only three terms of the q-

HAM series solution is used for the plot. The results match
comparatively with results of other analytical methods.

Remark 4. Fig. 2(a and b) display the solution plot of
the time-fractional non-homogeneous problem in (28) for

different values of b. Here, the q-HAM solution and the exact
coincide.



Figure 2 (a) q-HAM/Exact solution plot for h ¼ �1; n ¼ 1 and b ¼ 1 and (b) q-HAM/Exact solution plot for h ¼ �1; n ¼ 1 and a ¼ 0:5.

Figure 3 (a) q-HAM solution plot and (b) exact solution plot where b ¼ 1; h ¼ �0:0025, and n ¼ 1.
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Remark 5. Fig. 3(a) displays the solution plot of the time-
fractional Buck-Master’s equation obtained by the q-HAM

while Fig. 3(b) displays the exact solutions for the same equa-
tion when b ¼ 1. It should be noted that only two terms of the
q-HAM series solution is used for the plot. The results match
comparatively with results of other analytical methods.
6. Conclusion

The major achievement of this paper is the demonstration of
the successful application of the q-HAM to obtain analytical

solutions of the time-fractional homogeneous Gardner’s
equation and time-fractional non-homogeneous differential
equations (including Buck-Master’s equation). Our results

confirm that the method is really effective for handling solu-
tions of a class of non-linear partial differential equations of
fractional order system both homogeneous and non-homoge-

neous. The comparison made with the exact solutions and
other analytical methods, enables us to see clearly the accuracy
of q-HAM in the sense that just three and two terms of the ser-

ies solutions are needed in the case of the homogeneous Gard-
ner equation and the non-homogeneous Buck-Master equation
respectively unlike other methods. We are able to obtain exact

solution in the case of the problem (28). This method is a
potential analytical method for further works on strongly
non-linear fractional differential equations both homogeneous
and non-homogeneous cases.
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