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Abstract：Considering the nonlinea r , time-varying and ripple coupling properties in the hydraulic servo system, 

a two-stage Radial Basis Function（RBF）neural network model is proposed to realize the failure detection and 

fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure de-

tection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal 

to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates ac-

curately the output of the system. By comparing the estimated outputs with the actual measurements, the resid-

ual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural net-

work can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. 

Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering 

algorithm and a self-adaptive adjustment algorithm of learning rate are presented, which obtain the optimum 

learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the con-

vergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in  

detecting and localizing the failure of the hydraulic position servo system. 

Key words：failure diagnosis；hydraulic servo system；two-stage RBF neural network；improved K-means 

clustering algorithm 

基于RBF神经网络的液压位置伺服系统故障诊断 . 刘红梅，王少萍，欧阳平超. 中国航空学报(英文

版),2006,19(4):346-353. 

摘   要：针对液压系统的非线性、时变、流固耦合的特点，提出双级径向基函数（Radial Basis 

Function，RBF）神经网络模型实现液压伺服系统故障检测与定位。采用第 1 级 RBF 网络作为液

压伺服系统的故障检测滤波器，通过实际系统与 RBF 观测器输出的残差实现液压伺服系统故障  

检测。利用第 1 级 RBF 观测器的输出残差和网络结构参数，应用第 2 级 RBF 网络实现液压伺服

系统典型故障定位。针对 K 均值聚类算法收敛速度慢的缺点，提出了改进 K 均值聚类算法和学   

习速率自适应调整算法，利用网络优化结构参数和学习率，加快神经网络收敛速度，减少运算    

量。实验结果表明，利用双级 RBF 神经网络能够有效地检测出液压位置伺服系统的故障，并能实

现系统的故障定位。 
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Due to the inherent nonlinearity existing in the 
hydraulic system, the failure mechanism become 
complex and the failure characteristics are difficult 
to extract. Model-based fault diagnosis method de-

pends heavily on the accuracy of the mathematical 
model. An accuracy mathematical model of the 
process, however, is difficult to avail because of the 
nonlinearity and ripple coupling in actual hydraulic 
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servo system. Therefore, Robustness of fault diag-
nosis method based on approximate linear model is 
worse[1]. 

Neural network has a strong nonlinear mapping 
ability and fault tolerance ability. It is easy for neu-
ral network to realize the nonlinear robust fault di-
agnosis[2]. Compared with BP neural network, Ra-
dial Basis Function (RBF) neural network has many 
advantages: faster convergence speed, less training 
iteration, stronger robustness and no local mini-
mum…etc. In RBF neural network, the Gaussian 
function and the Least Square (LS) criterion are 
generally selected as the activation function of net-
work and the objective function, respectively. Each 
node parameter of it can be adjusted iteratively by 
minimizing the LS criterion according to the gradi-
ent descent algorithm[2]. In addition, the RBF neural 
network observer can promptly approximate the 
control system model and precisely track the varia-
tion of model. So system faults can be detected ac-
cording to the variation of neural network observer. 

A failure observer based on RBF neural net-
work can only distinguish the occurrence of faults, 
that is to say, RBF observer can only detect the re-
sidual error curve but can not localize the fault. In 
order to overcome this limitation, a combination of 
RBF observer and RBF localizer is proposed in this 
paper, the input of the RBF localizer is the residual 
between the RBF observer outputs and system out-
puts. The combinated RBF neural network can real-
ize not only the fault detection, but also the fault 
localization in hydraulic servo system. 

Fault observer based on RBF Neutral network 
has a strong self-adaptability. However, the stability 
of the algorithm is difficult to guarantee. Especially 
the K-means clustering algorithm requires deter-
mining the number of the hidden nodes beforehand, 
whose initial clustering centers will also heavily 
affect the convergence speed of network. Therefore, 
an improved the K-means clustering algorithm and 
self–adaptive adjustment algorithm of learning rate 
are presented in this paper, which obtain the opti-
mum learning rate by adjusting the self-adaptive 
factor to guarantee the stability of the process, and 

adjust the connecting weights by the neural network 
self-adaptability. With the improved K-means clus-
tering algorithm, the fault diagnosis system has 
enough self-adjustability and stability to realize the 
fault diagnosis in hydraulic servo system. 

1  System Description 

A schematic diagram of the hydraulic position 
servo system which is composed of a servo valve, an 
actuator, a displacement sensor and a load is shown 
in Fig.1, where xf is the displacement of piston, FL is 
the load, KL is the load rigidity. 
 
 
 
 
 
 
 

In hydraulic servo system some possible faults 
are electric amplifier fault, servo valve fault, sensor 
fault, actuator fault…etc. The component faults af-
fect not only the output of components, but also the 
output of the whole system. When faults occur, the 
parameters of the mathematical model will change. 
Consequently, the fault observer-based method can 
be used for the fault diagnosis in hydraulic servo 
system. 

However, it is difficult to extract the failure 
characteristic because of the nonlinear characteris-
tics， such as load fluid performance of servo valve, 
the friction in mechanism, the fluid compressibility, 
the pump pulsation and the coupling between oil 
supply system and servo system, which make the 
failure mechanism of hydraulic system complex.  

RBF neural network has a strong nonlinear 
mapping ability and can approximate any nonlinear 
function. Consequently, a two-stage RBF network 
model is proposed to realize the fault detection and 
fault localization, as shown in Fig.2, in which the 
first-stage RBF neural serves as a failure observer, 
working concurrently with the actual system, ac-
cepts the input voltage signal to the servo valve and 

Fig.1  The hydraulic position servo system 
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the measurements of the ram displacements, then 
rebuilds the system states. The output of the system 
is accurately estimated. By comparing the estimated 
output with the actual measurements, the residual 
signal is generated and then analyzed to report the 
occurrence of faults.  
 
 
 
 
 
 
 
 
 
 
 

The second-stage RBF neural network accepts 
the residual error signal and network parameters 

iσ , ic and W of the first-stage RBF observer, and 
the fault localization and classification are realized 
according to the residual error and network parame-
ters of the first-stage RBF observer. 

2  Two-Stage RBF Neural Network Model 

2.1  RBF fault observer 

Suppose the hydraulic servo system can be de-
scribed as  
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        （1） 

where )(and)(),(),( tttt fUYX stand for the status 
vector, the output vector, the control input vector 
and the failure vector respectively, g and h are the 
nonlinear vector functions. 

Let the status observer be defined as  
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where )(and)(ˆ),(ˆ ttt fYX are estimated )(),( tt YX  
and )(tf  respectively. 

Define the status error to be  
)(ˆ)()( ttt XXe -=        （3） 

If 0)( =tf and 0)( ≠tf , satisfy 0)(lim =
∞→

t
t

e , then 

Eq.(2) is called the fault observer of Eq.(1)[3]. 
In order to describe effectively the nonlinearity 

in the hydraulic servo system, the RBF neural net-
work shown in Fig.2 is adopted as a fault observer, 
where ry and r respectively stand for the output dis-
placement of the ram and the input voltage signal to 
the servo valve and rŷ  is the estimated displace-
ment of the fault observer. 

The residual generation is based on comparison 
of actual and anticipated system response. The esti-
mated system response is generated by a RBF neural 
network observer. The residual error is defined as 
the difference between actual and estimated output  

  )(ˆ)()( ff kykyk −=ε           （4） 
Under normal operating conditions, the residual 

error is only due to unmodeled noise and distur-
bance and close to zero. But in the presence of some 
faults, the residual error deviates from zero in char-
acteristic ways. The faults can be detected by the 
residual error. 

2.2  RBF fault localizer  

The RBF observer trained with the normal 
samples can exactly track the system model in nor-
mal condition, and the normal system model is 
distributedly memorized in the connecting weights. 
In the same way, the RBF observer trained with the 
fault samples memorized the fault system model in 
the connecting weights. In the different fault condi-
tion, the system model changes in the different way, 
and the weights of RBF observer will change in the 
same way. Consequently, the RBF observer parame-
ters such as the connecting weights can be used for 
the fault diagnosis of hydraulic servo system. 

 The RBF observer trained with the normal 
samples has an ability of exactly tracking the system 
model in the normal condition. The difference be-
tween the estimated out of RBF observer and actual 
output of system is close to zero, and the difference 
is also called the residual error. But in the presence 
of faults, the difference will deviate from zero. 
Therefore, the faults could be detected by the resid-
ual error. 

In brief, the faults in hydraulic servo system can 

Fig.2  RBF neural network of the hydraulic servo system
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be localized according to the residual and the struc-
ture parameters of the first-stage RBF observer. 

The first-stage RBF observer trained with the 
normal samples tracks the system model, when the 
residual exceeds the threshold, it is ascertained that 
faults occur. In order to ascertain the concrete fault 
location, train the RBF observer with fault samples 
again, at this time, the connecting weights memo-
rized the fault model of system. When the fault 
mode is different, the distribution of connecting 
weights is different. Consequently the network pa-
rameters such as the weights of fault observer and 
the residual error of normal observer could be used 
for fault localization and fault classification. 

The second-stage RBF network is adopted as 
fault localizer and fault classifier. The residual error 
of system and parameters iσ , ic and W of the 
first-stage RBF observer trained in fault condition 
act as inputs. And the outputs are system states, in-
cluding normal condition, electric amplifier fault, 
the actuator fault and servo valve fault. 

 In order to exactly localize the faults in hy-
draulic servo system, the first-stage RBF observer 
and the second-stage RBF localizer should be 
trained sufficient in all possible fault conditions.  

2.3  RBF neural network mathematical model 

As shown in Fig.2, the RBF neural network is a 
three-layer feedforward network, including the input 
layer, the output layer and the hidden layer. The 
nodes in adjacent layers are full connected. 
xi(i=1,2,⋯,n) are inputs, hi(i=1,2,⋯,m) are activa-
tion functions of the hidden layer，and wi(i=1,2,⋯,m) 
are weights of output layer. 

In RBF neural network, the mapping between 
the input layer and the hidden layer is constructed 
by Gaussian radial basis function, and the mapping  
between the output layer and the hidden layer is 
constructed by linear function. The activation func-
tion of the hidden layer nodes locally responds to 
input signal. That is to say, its activation is maximal 
when an input is located at the RBF center, while the 
activation decreases monotonically when the dis-
tance between the RBF center and an input in-

creases. 
Let the input vector of the first-stage RBF net-

work observer be defined as 
T

f
T

21 )]1()1([][ −−== kykrxxX     （5） 

where r is a control signal, and fy  is a displace-
ment of the ram. 

Let the estimated output fŷ be defined as 
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where ][ 21 mwww=W  is a weight vector of 
network, and ][ 21 mhhh=H  is a radical basis 
function vector, and the Gaussian function be gener-
ally adopted as follows 
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where x is an input vector with n dimensions (here, 
n=2), ci is called the center vector of the ith node and 
has the same dimensions with x, iσ is called the 
bandwidth vector of ith node, m stands for the 
number of node, and ⋅  denotes the Euclidean 
norm[4]. 

Let the input vector of the second-stage RBF 
network localizer be defined as 

TT
4321 ][][ εwcσzzzzZ iii==   （5） 

where iσ  is the ith node bandwidth vector of the 
first-stage RBF observer, ci is the ith node center 
vector of the first-stage RBF observer, wi is the 
weights of the first-stage RBF observer, and ε is the 
residual error between the first-stage observer output 
and the system output.  

2.4  RBF neural network learning algorithm 

Traditional K-means clustering algorithm re-
quires determining the number of the hidden nodes 
in advance, and the choice of initial clustering cen-
ters heavily affects the learning speed of network. 

An improved K-means clustering algorithm of 
obtaining radial basis function centers is presented, 
which is an on-line self-adaptive clustering algo-
rithm, and need not determine the number of the 
hidden nodes in advance. The algorithm leaves out 
the iterative calculation of beforehand determining 
the number of the hidden nodes, and quickens the 
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clustering.  Self-adaptive adjustment algorithm of 
learning rate is presented to quicken the conver-
gence and to guarantee the stability of the process. 

Improved K-means clustering algorithm can be 
described as follows. 

(1) Choose an appropriate Gaussian function 
width r, and select the first sample X1 as the first 
clustering center C1, then C1= X1, and the number of 
clustering  is k=1.Thus the RBF network estab-
lished has only one hidden node, whose center is C1. 

(2) Calculate the distance between the second 
sample X2 and C1, if r<− 12 CX , then X2 is 

grouped under the 1st group and ).(
2
1

121 XXC +=  

If r>− 12 CX , then X2 is selected as the 2nd clus-
tering center 22 XC =  and 2k = . 

(3) When considering the ith sample Xi 
(i=3,4,⋯,N), the RBF has m hidden nodes, whose 
clustering centers are C1, C2⋯Cm. Calculate the dis-
tance between Xi and m clustering centers 

),,,2,1( mjji =−CX  suppose  =− hi CX  

jij
CX −min is the least distance,  if hi CX − <r, 

then Xi is grouped under hth class and .∑
∈

=
h

Ph
PX

XC  

And if hi CX − >r, then Xi is selected as a new 
clustering center Cm+1=Xi and k=k+1.  

(4) Go to (3), until all samples are classified and 
all clustering centers are determined. Adjust the 
centers according to the K-means clustering algo-
rithm again. Group all samples PPpP ,,,2,1( =X  
is the total of samples）according to the nearest 
clusters centers by using the minimum-distance 
Euclidean criterion. If 

i
n

pi
j
n

p CXCX −=− min          (8) 

then group pX  under jth class. 

(5) Adjust the centers of the radial-basis func-
tions using the update rule  

∑
∈

+ =
j

P
j

n
j

PN X
XC 11            (9) 

where Nj is the number of samples of jth group. 
(6) Go back to (4), and continue the procedure 

until .1 n
j

n
j CC =+  Now the clustering centers ob-

tained by K-means clustering algorithm can be used 
as centers of RBF network. 

(7)  For each clustering center Cj, jσ  can be 
calculated as follows 

∑ −−= )()(1
jPjP

j
j N

CXCXσ τ .     (10) 

(8) The weights of output layer are obtained 
based on LS. Let the objective function be defined 

∑
=

−−=
n

t
yyyy

N
E

1
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According to the LS algorithm, the equation for 
updating network connecting weights can be ob-
tained as follows[5] 

       
)1(
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In order to quicken the convergence, momen-
tum correction is added to Eq.(12) 
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where α  is the learning rate of network, 10 <<η  
is the momentum factor. 

Due to the learning rate affects heavily the 
convergence speed and convergence characteristics, 
it is difficult to choose. 

An improved learning algorithm by adding 
self-adaptive factor of learning rate is presented here 
and can be described as follows 
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Eτ , and ε  is 

an error coefficient. 
The momentum factor and learning rate 

self-adaptive factor are added to the network learn-
ing algorithm to quicken the convergence. Thus op-
timum learning rate is obtained by adjusting learning 
rate self-adaptive factor to ensure the convergence 
and the stability of algorithm. 

2.5  Decision making of fault in hydraulic system 

In normal operating conditions, the residual error 
is approximate to Gaussian flat noise. And its mean 
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is close to zero, the covariance matrix can be de-
scribed as[6]  

)]()([)( T kkEk εεU =           (17) 

where )(kε  is the residual error of system. 
When estimated covariance matrix )(kU  varies 

with time, )(kU  has different statistic characteris-
tic with different k , therefore, let another random 
variable be defined, 

)()()( 1/2 kkk εUξ -=         (18) 

where )(kξ  is approximate to random vector of 
flat noise whose mean is close to zero. 

Due to the inconvenience in calculating 1/2-U , 
let a random variable be defined as 

)()()()()( 1TT kkkkk εUεξξ −=        (19) 

where )()(T kk ξξ  subjects to 2
1−mX  distribution. 

The weighted square sum can be obtained as follows 
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where N is the length of data window, b(k) is less in 
normal operating conditions, but in the presence of 
faults, b(k) will increase, )(kξ  can not satisfy flat 
noise characteristic. 

Fault diagnosis strategy can be described as fol-
lows[7] 
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          (21) 

where α  is a fault threshold, w0 is the normal 
mode of hydraulic servo system, and w1 is the fault 
mode of hydraulic servo system.  

The choice of fault threshold is a difficult problem 
in fault diagnosis fields. If chosen too small, when the 
output noise of the sensor is much larger, it is easy to 
alarm by mistake. If chosen too large, it is difficult to 
detect the fault of less amplitude change and easy to 
fail to alarm[8]. This paper determines the threshold 
according to the off-line training error of samples and 
noise standard deviation. In order to eliminate the 
alarm by mistake caused by output noise of the sensor 
and learning error, the sum of the maximum off-line 
training error and three times of noise standard devia-
tion is selected as a fault threshold. 

3  Experimental Results 

Experiments were carried out to test the RBF 
fault detection strategy shown in Fig.3.  
 
 
 
 
 
 
 
 
 
 

 
In normal operating conditions, when experi-

mented by a sinusoidal input signal with frequency 
of 1Hz and amplitude of 20 mm, the estimated out-
put of trained RBF neural network are obtained, the 
residual error between actual and corresponding 
estimated output of RBF fault observer is shown in 
Fig.4. From Fig.4, it can be seen that the RBF neural 
network observer is effective in tracking the hydrau-
lic servo system. The residual error stays at a rela-
tively low level and is close to zero in normal oper-
ating condition. But the overall error of the residuals 
increases due to the uncertainty of system friction in 
experiment. 

 

 

 

 

 

 

 

 

（1）The fault experiment of electric amplifier 
According to fault the analysis of hydraulic 

servo system, it is known that the electric amplifier 
faults, the servo valve faults and the actuator faults 

≤ 

Fig.3  Hydraulic servo system test station 

Fig. 4  Experimental residual curve in 

normal condition 
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generally represent the sudden change of gain of 
transfer function in mathematical model. For exam-
ple, open circuit fault of electric amplifier, lock fault 
of servo valve and lock fault of the actuator…etc. In 
order to simulate these faults in actual experiments, 
the proportion coefficient Kp of PID controller can 
be set to simulate these faults. The following is the 
simulation of electric amplifier fault. The increment 
of proportion coefficient Kp simulates the drifting 
fault of amplifier.  In experiment the proportion 
coefficient Kp increased by 0.5 at the fifth second, 
and lasted two seconds. The residual errors suddenly 
increased and stayed at a recognizably higher level 
within 0.3 second. 

As shown in Fig.5, the residual between the 
actual and the corresponding estimated outputs of 
network deviates from normal level when electric 
amplifier fault occurs. Residual error exceeds the 
fault threshold, and is 20 times that in normal condi-
tion during 5th-7th second. Obviously, the occur-
rences of amplifier faults can be detected by residual 
error.  
 
 
 
 
 
 
 
 
 
 
 

（2）The leakage fault simulation 
The leakage fault is one of the faults often oc-

curring in hydraulic servo system. The slide valve 
abrasion in servo valve and the clearance between 
the ram and the actuator can cause leakage increase. 
To simplify, the problem, it is only considered that 
the leakage fault can be represented by the increase 
of flow-pressure coefficient Kce in mathematical 
model. Suppose flow-pressure coefficient is 
Kce=2.0373×10-11 in normal operating condition, 

and Kce is changed by ΔKce=2.0373×10-11 to simu- 
late leakage faults. Residual error shown in Fig.6 is 
generated through simulation. 
 
 
 
 
 
 
 
 

 

As seen from Fig.6, the residual error deviates 
from the normal level and is 40 times larger than 
that in normal operating condition. Consequently, 
occurrence of leakage faults can be detected by re-
sidual error. 

In order to test the localization ability of the 
second-stage RBF localizer, the residual error and 
the weight parameters of the first-stage RBF ob-
server in normal, electric amplifier fault and leakage 
fault conditions are respectively input to the trained 
second-stage RBF network. The second-stage RBF 
classifier identifies the fault mode according the 
input failure feature. The results of diagnosis are 
shown in Table 1. 

Table 1  Fault classification results 

Actual output of network 
Status 

1 2 3 4 

Normal 0.923 4 0.016 0 0.053 8 0.001 2 

Amplifier fault 0.049 9 0.945 1 0.001 4 0.051 5 

Leakage fault 0.033 8 0.000 5 0.878 8 0.049 2 

 

  As shown in Table 1, the outputs of the fault neu-
ral cell are larger, when using the RBF localizer to 
classify the faults.  

It is easy to see that the RBF network succeeds 
in mapping the failure feature into different faults 
mode, and realizes the faults classification in hy-
draulic servo system. 

Fig.5  Residual error between actual outputs and correspo-
nding RBF estimates in electric amplifier fault condi-
tion 

Fig.6  Residual curve of the leakage fault 
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4  Conclusions 

A two-stage RBF neural network model is pro-
posed to realize the failure detection and fault local-
ization. Network parameters are determined by im-
proving the K-means clustering algorithm, which 
obtains the optimum learning rate by self-adaptive 
adjustment algorithm. The residual errors between 
the actual measurement and the estimated output of 
the first-stage RBF observer are used for the fault 
detection in hydraulic servo system. According to 
the residual error and structure parameters of the 
first-stage RBF observer, the second-stage RBF lo-
calizer is used to realize the fault localization. 
Simulation and experiments indicate: 
（1）The RBF observer could identify the sys- 

tem model precisely. In normal condition, the 
nonlinearities and disturbance are memorized by 
network and distributed among connecting intensity 
of nerve cell, and there are some redundancies. 
Therefore the robustness is better. The residual error 
between the estimated output and actual output is 
close to zero in normal operating conditions. In the 
presence of some faults the residual error deviates 
from zero. When the residual error exceeds the 
threshold, it is ascertained that faults occur. 
（2） Using the residual error and structure 

parameters of the first-stage RBF observer to local-
ize the faults is effective in fault diagnosis of hy-
draulic servo system. 

（3）The learning rate of RBF neural network 
heavily affects the identification precision of system. 
In some cases, the RBF network may diverge be-
cause the learning rate is not properly chosen. The 
improved K-means algorithm and self-adaptive ad-
justment algorithm of learning rate with additional 
moment factor are presented to obtain the optimum 
learning rate, which can avoid the local minimum, 
guarantee instability and quicken the convergence. 
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