Comparative Study of Hydrogen Sulfide Adsorption by using Alkaline Impregnated Activated Carbons for Hot Fuel Gas Purification

Russamee Sithikhankaewa, Somrudee Predapitakkunb, Ratanawan (Wibulswas) Kiattikomolb, Sudhibhumi Pumhiranb, Suttichai Assabumrungratc and Navadol Laosiripojanaa,*

aThe Joint Graduate School of Energy and Environment, CHE Center for Energy Technology and Environment, King Mongkut's University of Technology Thonburi, 126 Prachauthit Rd, Bangkok 10140, Thailand

bProcess Technology Research Department, PTT Research and Technology Institute, Phahonyothin Rd, Ayuthaya 13170, Thailand

cFaculty of Engineering, Chulalongkorn University, 254 Payathai Rd, Bangkok 10330, Thailand

Abstract

Biogas, natural gas, and synthesis gas from coal gasification contain hydrogen sulfide (H\textsubscript{2}S) that is highly toxic for human and corrosive for machine. H\textsubscript{2}S must be removed from fuel gases prior utilization. The objective of this research was to compare the adsorption of H\textsubscript{2}S by using commercial and alkaline impregnated activated carbons. The commercial and alkaline impregnated activated carbons were tested by the temperature program adsorption of H\textsubscript{2}S at 30 °C and 550 °C. At high temperature of adsorption, alkaline activated carbons adsorbed H\textsubscript{2}S significantly higher than commercial activated carbon (in the range of 3-29 times higher depending on modification method). Furthermore, the concentration of H\textsubscript{2}S came out at the outlet gas after treated by the KOH and Na\textsubscript{2}CO\textsubscript{3} impregnated activated carbons was less than 30 ppmv, which was safe for utilizing in mechanical and power engine.

Keywords: Activated carbon; Adsorption; Alkaline impregnation; Gas purification; Hydrogen sulfide.
1. Introduction

Biogas that produced from anaerobic digestion of biodegradable materials can be utilized for generation of electrical power and heat production. Generally, biogas (as well as natural gas and synthesis gas from coal gasification) contained hydrogen sulfide (H$_2$S) that was highly toxic for human body and corrosive for machine. The content of H$_2$S in biogas was about 0-1% and H$_2$S must be removed from fuel gases prior utilization [1].

Activated carbon that is a highly porous material was used for removal of impurities from gases and liquids including gas separation and purification, vehicle exhaust emission control, and environmental technology [2]. For low concentration H$_2$S removal, the adsorption by activated carbon was known as an efficient process [3-4]. Moreover, activated carbon has a high activity and long-lasting. In Thailand, it is inexpensive adsorbent as compared to inorganic adsorbents such as alumina, zeolite and metal oxide. It was produced from agricultural waste such as coconut shell, palm shell, and corncob.

The adsorption capacity of activated carbons was determined by their physical or surface property, but also influenced by their chemical property. Typically, the surface properties of activated carbon such as surface area, pore volume, and pore size affect on the adsorption capacity.

Activated carbon that was impregnated with alkaline material such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) was used for the H$_2$S removal at ambient temperature [5-6]. At surface of the impregnated activated carbon, acid-base reaction occurs. The advantages of impregnated activated carbon in the removal of H$_2$S are high efficiency and fast kinetically reaction. However, the adsorption of H$_2$S on alkaline impregnated activated carbon under the adsorption temperature program has not been investigated. Therefore, this research focuses on the effect of temperature toward H$_2$S adsorption characteristic and capacity. Commercial and four types of alkaline impregnated activated carbons were studied. In addition, the reaction of H$_2$S on the commercial and alkaline impregnated activated carbon at room and high temperature were proposed.

2. Experimental

2.1. Materials

Materials in this experiment were commercial and modified activated carbons. The granular commercial activated carbon (A) made from coconut shell. The parameters of surface properties for commercial activated carbon are shown in Table 1.

The commercial activated carbon was impregnated with alkaline compound such as KOH, NaOH, sodium carbonate (Na$_2$CO$_3$), and potassium iodide (KI) according to the following procedure. First, the A was soaked with this alkaline solution (10% w/v) for 30 minutes. Then, the sample was heated at 100 ºC to evaporate water. Finally, the sample was dried at 110 ºC for 24 h. Activated carbon which was impregnated with KOH, NaOH, Na$_2$CO$_3$, and KI was referred to A_100-KOH, A_100-NaOH, A_100-Na$_2$CO$_3$, and A_100-KI, respectively.
Table 1. Surface properties of the commercial activated carbon.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface area (m²/g)</td>
<td>1343</td>
</tr>
<tr>
<td>Pore volume (m³/g)</td>
<td>0.45</td>
</tr>
<tr>
<td>Pore size (nm)</td>
<td>0.67</td>
</tr>
</tbody>
</table>

2.2. Adsorption test apparatus

Schematic diagram of adsorption system as shown in Figure 1 consisted of gas supply unit, a fixed-bed reactor in the horizontal furnace, and gas monitor system. The mixture of He and H₂S gas that was controlled by mass flow controllers was pass through the fixed-bed reactor. The reactor (12.0 mm of internal diameter and 70 cm of length) was filled with adsorbent bed. The amount of activated carbon in the reactor was 1.0 g. The H₂S continuous monitor system used QRAE model PGM-50Q to measure concentration of H₂S from the outlet of reactor.

2.3. Temperature program adsorption of hydrogen sulfide

In Figure 1, the condition of H₂S adsorption was H₂S inlet concentration as 3000 part per million by volume (ppmv). The flow rate of inlet gas was 100 ml/min. The A, A₁₀₀-KOH, A₁₀₀-NaOH, A₁₀₀-Na₂CO₃, and A₁₀₀-KI were tested by the H₂S adsorption temperature program. The temperature program had 2 parts. The first part was processed at 30 ºC that H₂S gas was fed into the reactor and the concentration of H₂S was recorded until the concentration at the outlet reached to 3000 ppmv. The condition of the second part was the same as the first, but the temperature was programmed to increase from 30 to 550 ºC at a rate of 10 ºC/min. Then reactor temperature was held constant at 550 ºC. When the H₂S outlet concentration was 300 and 3000 ppmv, the breakthrough time and total adsorption time were recorded. The adsorption capacity of activated carbon was calculated using the integrated area above the adsorption curve; the difference between the inlet concentration and the outlet concentration curves, the flow rate, and the mass of activated carbon.

Fig. 1. Schematic diagram of adsorption system.
2.4. Sulfur analysis

The content of sulfur in fresh and exhausted activated carbons was analyzed with sulfur analyzer (TruSpec CHNSO, LECO). Samples were analyzed in triplicate.

3. Results and discussion

3.1. \(\text{H}_2\text{S} \) adsorption test at 30 °C

Performances of the commercial and alkaline impregnated activated carbons in \(\text{H}_2\text{S} \) adsorption process at 30 °C were shown in Table 2. Adsorption curve of \(\text{H}_2\text{S} \) by NaOH impregnated activated carbon at 30 °C was shown in Figure 2. At an initial time of adsorption, the concentration of outlet \(\text{H}_2\text{S} \) decreased suddenly from 3000 ppmv to about 10 ppmv. Then the concentration of \(\text{H}_2\text{S} \) increased continuously when the time was increased until the concentration at the outlet reached to 300 ppmv. At this point, the ratio of concentration of outlet \(\text{H}_2\text{S} \) per concentration of inlet \(\text{H}_2\text{S} \) was 0.1 so that this point indicates the breakthrough time. The breakthrough time of A_100-NaOH was 4 minutes. After that, the concentration of \(\text{H}_2\text{S} \) at the outlet increased continuously until the concentration of \(\text{H}_2\text{S} \) reached to 3000 ppmv. At this point, the outlet concentration is equal to the inlet concentration so that this point indicates the total adsorption time. The total adsorption time was 24 minutes (Table 2). The adsorption capacity of A_100-NaOH was 0.4 mg of \(\text{H}_2\text{S} \) per one gram of activated carbon.

![Fig. 2. Adsorption curve of \(\text{H}_2\text{S} \) at 30 °C by NaOH impregnated activated carbon.](image_url)

For the adsorption of \(\text{H}_2\text{S} \) by the commercial activated carbon, the concentration of \(\text{H}_2\text{S} \) came out at the outlet gas was almost 0 ppmv for 4 minutes. Then the concentration of \(\text{H}_2\text{S} \) increased continuously when the time was increased until the concentration at the outlet reached to 3000 ppmv. The breakthrough time and total adsorption time were 15 and 67 minutes, respectively. Adsorption capacity of the A was higher than that of the A_100-NaOH (4 times higher). From the result, NaOH might occupy a portion of the carbon pore volume and surface area, so physical adsorption of \(\text{H}_2\text{S} \) was limited.

The reactions of \(\text{H}_2\text{S} \) on the commercial and alkaline impregnated activated carbon at room temperature could be proposed as physical adsorption. For physical adsorption, a conceptual reaction of
H$_2$S adsorption was proposed. First, the H$_2$S transferred from the bulk stream into the pore or surface of the activated carbon. Then H$_2$S adsorbed on activated carbon (equation 1).

\[
H_2S (g) \rightarrow H_2S (ads)
\]

(1)

H$_2$S (g) and H$_2$S (ads) correspond to H$_2$S in gas and adsorbed phases.

Table 2. Adsorption time and adsorption capacities of activated carbons at 30 ºC.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Adsorption time (min)</th>
<th>Adsorption capacity (mg of H$_2$S/g of activated carbon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>67</td>
<td>1.67</td>
</tr>
<tr>
<td>A_100-NaOH</td>
<td>24</td>
<td>0.4</td>
</tr>
<tr>
<td>A_100-KOH</td>
<td>151</td>
<td>1.58</td>
</tr>
<tr>
<td>A_100-KI</td>
<td>145</td>
<td>1.56</td>
</tr>
<tr>
<td>A_100-Na$_2$CO$_3$</td>
<td>109</td>
<td>1.58</td>
</tr>
</tbody>
</table>

For the adsorption of H$_2$S by the A_100-Na$_2$CO$_3$, A_100-KOH, and A_100-KI, the concentration of H$_2$S came out at the outlet gas after treatment was less than 10 ppmv for 1-3 minutes. The breakthrough times of alkaline impregnated activated carbons were less than that of the commercial one. In detail, the breakthrough time of A_100-Na$_2$CO$_3$, A_100-KOH, and A_100-KI were 10, 2, and 2 minutes, respectively. However, the total adsorption times of alkaline impregnated activated carbons were significantly higher than that of the commercial one (2 times higher). Therefore, the adsorption capacities of alkaline impregnated activated carbons were slightly less than that of the commercial one (Table 2).

3.2. H$_2$S adsorption test at high temperature

Performances of commercial and alkaline impregnated activated carbons in H$_2$S adsorption process at high temperature are shown in Tab. 3 and Figures 3-5.

Table 3. Adsorption time and adsorption capacities of activated carbons at high temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Adsorption time (min)</th>
<th>Adsorption capacity (mg of H$_2$S/g of activated carbon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>472</td>
<td>1.41</td>
</tr>
<tr>
<td>A_100-NaOH</td>
<td>475</td>
<td>10.02</td>
</tr>
<tr>
<td>A_100-KOH</td>
<td>1530</td>
<td>40.46</td>
</tr>
<tr>
<td>A_100-KI</td>
<td>1174</td>
<td>4.45</td>
</tr>
<tr>
<td>A_100-Na$_2$CO$_3$</td>
<td>2554</td>
<td>29.5</td>
</tr>
</tbody>
</table>

Figure 3 shows adsorption curve of H$_2$S under temperature program by using the commercial activated carbon as an adsorbent. The temperature increased from 30 to 550 ºC at a rate of 10 ºC per minute. At temperature in the range of 30 - 150 ºC, the concentration of H$_2$S came out at the outlet gas was increased from 3000 to about 6610 ppmv, this result indicated that adsorbed H$_2$S on activated carbon was desorbed. At temperature between 150 - 550 ºC, the outlet concentration of H$_2$S was decreased from 6610 to about
187 ppmv. This phenomenon showed that H₂S was adsorbed on activated carbon. The adsorption capacity of the A was 1.41 mg of H₂S per gram of activated carbon.

For the A_100-NaOH, the concentration of H₂S came out at the outlet gas was decreased from 3000 to about 40 ppmv in the heating step (Figure 4). At 550 °C, the outlet concentration of H₂S was about 10 ppmv for 170 minute. The breakthrough time and total adsorption time were 252 and 475 minutes, respectively. The adsorption capacity of activated carbon was increased more than seven times after impregnation with 100% weight of NaOH.

![Fig. 3. Adsorption curve of H₂S at high temperature by commercial activated carbon.](image)

For the A_100-KOH, A_100-Na₂CO₃, and A_100-KI, the adsorbed H₂S on activated carbon was desorbed at temperature in the range of 30 - 140 °C. After that, the outlet concentration of H₂S was decreased that indicated that H₂S was adsorbed on activated carbon (Figure 5-7). Chemical adsorption of H₂S on activated carbon was mainly occurred but physical adsorption was partly.

![Fig. 4. Adsorption curve of H₂S at high temperature by NaOH impregnated activated carbon.](image)

For the A_100-KOH, A_100-Na₂CO₃, and A_100-KI, the adsorbed H₂S on activated carbon was desorbed at temperature in the range of 30 - 140 °C. After that, the outlet concentration of H₂S was decreased that indicated that H₂S was adsorbed on activated carbon (Figure 5-7). Chemical adsorption of H₂S on activated carbon was mainly occurred but physical adsorption was partly.

The breakthrough time of A_100-KOH, A_100-Na₂CO₃, and A_100-KI were 617, 182, and 71 minutes, respectively. The adsorption capacity of A_100-KOH and A_100-Na₂CO₃ was greater than the
A. The adsorption capacity increased more than 29 and 21 times after impregnation with 100% weight of KOH and Na₂CO₃, respectively (Table 3). The adsorption capacity of activated carbon was increased more than three times after impregnation with 100% weight of KI. The results clearly indicated that the breakthrough was delayed by alkaline impregnation.

Fig. 5. Adsorption curves of H₂S at high temperature by KOH impregnated activated carbon.

Fig. 6. Adsorption curves of H₂S at high temperature by KI impregnated activated carbon.
The reactions of H$_2$S on alkaline impregnated activated carbon at high temperature could be chemical adsorption as the main reaction and physical adsorption. For chemical adsorption, H$_2$S reacts with alkali at carbon surface. The reactions of H$_2$S and four kinds of alkaline are as follows:

1. KOH or NaOH

\[
\begin{align*}
H_2S (g) + AOH(q)-C & \rightarrow AHS (q) + H_2O \quad (2) \\
H_2S (g) + 2AOH(q)-C & \rightarrow A_2S (q) + 2H_2O \quad (3)
\end{align*}
\]

A was indicated as K or Na
AOH(q)-C is the KOH or NaOH impregnated on the activated carbon covered by the water film which was generated by the produced water from equation 2 and 3.

2. Na$_2$CO$_3$

\[
\begin{align*}
H_2S (g) + Na_2CO_3(q)-C & \rightarrow NaHS (q) + NaHCO_3 (q) \quad (4) \\
H_2S (g) + Na_2CO_3(q)-C & \rightarrow Na_2S (q) + H_2CO_3 (liq) \quad (5)
\end{align*}
\]

Na$_2$CO$_3$(q)-C is the Na$_2$CO$_3$ impregnated on the activated carbon.

3. KI

\[
\begin{align*}
H_2S (g) + KI(q)-C & \rightarrow KHS (q) + HI (g) \quad (6) \\
H_2S (g) + 2KI(q)-C & \rightarrow K_2S (q) + 2HI (g) \quad (7)
\end{align*}
\]
KI(q)-C is the KI impregnated on the activated carbon. The chemical adsorption was the endothermic reaction. Therefore, the chemical adsorption effected to increase adsorption capacity with increasing temperature in the reactor into high temperature.

Furthermore, the outlet concentration of H$_2$S after treated by the KOH and Na$_2$CO$_3$ impregnated activated carbons at temperature as 550 ºC was less than 30 ppmv, which is safe for utilizing in mechanical and power engine. The outlet concentration of H$_2$S after treated by the KI impregnated activated carbons at temperature as 550 ºC was less than 90 ppmv. Therefore, the KOH and Na$_2$CO$_3$ impregnated activated carbons are applicable for hot fuel gas purification.

3.3. Sulfur analysis

The contents of sulfur in the commercial and alkaline impregnated activated carbons before and after H$_2$S adsorption test were measured with a sulfur analyzer. The results were shown in Table 4. The contents of sulfur in fresh activated carbons were in the range of 0.30 - 0.60 %. After H$_2$S adsorption test, the content of sulfur in commercial activated carbon was increased to 3.80 %. The contents of sulfur in exhausted KOH and Na$_2$CO$_3$ impregnated activated carbons are significantly higher than that of the exhaust commercial activated carbon (2-6 times higher). The content of sulfur could be originate from H$_2$S that was adsorbed on surface of activated carbon and sulfur compound that was produced from chemical adsorption such as KHS, K$_2$S, NaHS, and Na$_2$S. This result was consistent with the adsorption capacities of KOH and Na$_2$CO$_3$ impregnated activated carbons that are high performance when using for H$_2$S removal at high temperature. It is indicated that chemical reaction between H$_2$S and KOH or Na$_2$CO$_3$ was mainly occurred at high temperature.

Table 4. Content of sulfur in fresh and exhausted activated carbons.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sulfur in fresh sample (%)</th>
<th>Sulfur in exhausted sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.60</td>
<td>3.80</td>
</tr>
<tr>
<td>A$_{100}$-NaOH</td>
<td>0.32</td>
<td>6.04</td>
</tr>
<tr>
<td>A$_{100}$-KOH</td>
<td>0.39</td>
<td>9.31</td>
</tr>
<tr>
<td>A$_{100}$-KI</td>
<td>0.30</td>
<td>20.97</td>
</tr>
<tr>
<td>A$_{100}$-Na$_2$CO$_3$</td>
<td>0.34</td>
<td>2.15</td>
</tr>
</tbody>
</table>

4. Conclusion

The commercial and alkaline impregnated activated carbons were tested by the temperature program adsorption of H$_2$S at 30 ºC and 550 ºC. At 30 ºC, the adsorption capacities of alkaline impregnated activated carbons were slightly less than the commercial one. Alkaline solid might occupy a portion of the carbon pore volume and surface area, so physical adsorption of H$_2$S was limited. The reactions of H$_2$S on the commercial and alkaline impregnated activated carbon at room temperature could be proposed as physical adsorption.

At high temperature of adsorption, alkaline activated carbons adsorbed H$_2$S significantly higher than commercial activated carbon (in the range of 3-29 times higher depend on modification method). In detail, 1 gram of activated carbon that was modified by KOH, Na$_2$CO$_3$, NaOH, and KI impregnation can
adsorb H_2S as 40.46, 29.50, 10.02, and 4.45 mg, respectively. The results clearly indicated that the breakthrough was delayed by alkaline impregnation.

The reactions of H_2S on the alkaline impregnated activated carbon at high temperature could be proposed as chemical adsorption that was the main reaction and physical adsorption that partly occurred. The chemical adsorption effected to increase adsorption capacity with increasing temperature in the reactor into high temperature. Furthermore, the concentration of H_2S came out at the outlet gas after treated by the KOH and Na_2CO_3 impregnated activated carbons was less than 30 ppmv, which was safe for utilizing in mechanical and power engine. Therefore, the KOH and Na_2CO_3 impregnated activated carbons were applied for hot fuel gas purification.

Acknowledgements

This research was supported by The Joint Graduate School of Energy and Environment, CHE Center for Energy Technology and Environment, PTT Research and Technology Institute, and PTT Public Company Limited. Financial support from The Thailand Research Fund through The Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0162/2550) and National Science and Technology Development Agency (Grant No. P-10-11166) are acknowledged.

References

