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The present study aims to predict the heat transfer characteristics around a square cyl-

inder with different corner radii using multivariate adaptive regression splines (MARS).

Further, the MARS-generated objective function is optimized by particle swarm optimi-

zation. The data for the prediction are taken from the recently published article by the

present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict

the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015) 1e13]. Further,

the MARS model is compared with artificial neural network and gene expression pro-

gramming. It has been found that the MARS model is very efficient in predicting the heat

transfer characteristics. It has also been found that MARS is more efficient than artificial

neural network and gene expression programming in predicting the forced convection

data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, research on fluid flow and heat transfer charac-

teristics over a cylindrical bluff body attracts tremendous

attention of researchers, as it has overwhelming engineering

significance for nuclear reactors, heat exchangers, natural

circulation boilers, solar heating systems, electronic cooling,

dry cooling towers, flow dividers, probes, vortex flow meters,

sensors, etc. The common geometrical shape of a cylindrical

bluff body may be circular, sharp and rounded cornered
om (P. Dey).

sevier Korea LLC on beha
mons.org/licenses/by-nc
square cylindrical, triangular, etc. A square cylinder is the

most common sharp-edge body and has widely been inves-

tigated in the study of fluid flow and heat transfer. Preceding

studies were carried out by numerical, theoretical, and

experimental methods. Based on the Reynolds and Prandtl

numbers, various flow regimes were recognized in the

available studies [1e10]. Also, there are various available

studies associated with the circular cylinder that accom-

plished by the both numerically and experimentally [11e16].

Currently, fluid flow studies have found that the fluid forces
lf of Korean Nuclear Society. This is an open access article under
-nd/4.0/).
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acting on a square cylinder can be reduced by rounding the

corners [17,18].

Soft computing methods have extensively been used in

many areas ofmechanical engineering due to their capacity of

calculation and data handling. Different strategies are utilized

as a part of the forecast, among them artificial neural network

(ANN) and gene expression programming (GEP) being the

foremost strategies in use. In order to avoid solution methods

that are time consuming and need high numbers of iterations,

ANN andGEP have increasingly been preferred by researchers.

GEP is another framework having the upsides of both genetic

programming and genetic algorithm (GA) to assessmoremind

boggling capacities to display a declaration of the connection

between the input and output data [19]. GEP is more useful in

predicting the output than ANN, as was recently discovered

[20,21]. The GEPmodel has also been successfully employed to

predict various engineering parameters [22e24]. Both models

have been effectually applied, even though they have some

disadvantages. One of the main disadvantages of ANN is it

does not disclose any mathematical relation between the

input and output variables of the system. The disadvantage of

GEP is that it can generate a highly nonlinear mathematical

relation between the input and output data. The multivariate

adaptive regression splines (MARS) model has some advan-

tages over ANN and GEP [25,26].

Recently, different optimization techniques, such as GA,

particle swarm optimization (PSO), etc., have been applied

successfully for optimizing heat transfer [27,28]. GA has been

used by different researchers to optimize the convective

thermal performance of fin and plate fin heat exchangers. To

date, PSO has been applied to thermodynamic optimization of

a cross-flow plate fin heat exchanger [29]. A comparison study

of GA and PSO has been performed recently [30], and it was

found that PSO is more efficient than GA for optimizing the

geometry of a longitudinal fin.

Numerical, analytical, and experimental studies require

much accomplishment time, and ANN and GEP have some

disadvantages, therefore, the MARS model has been used in

the present study to predict the heat transfer characteristics

around a rounded cornered square cylinder including a

square and a circular cylinder. To the best of the authors'
knowledge, this is the first study on the application of MARS

for the prediction of heat transfer characteristics. A total of 36

data records are collected from the recent paper published by

the present authors. Further, the present prediction models

are compared with the published ANN and GEP models. The

relation between the input and output generated by theMARS

model is then used in the PSO tool for optimizing the heat

transfer rate.
2. Multivariate adaptive regression splines

MARS, a nonlinear and nonparametric regression organiza-

tion, was first presented by Fridedman [31] as a supple process

that replicates interactions between inputs and outputs with

fewer variables. This technique creates no ambiguity about

the functional connection between the dependent and inde-

pendent variables; MARS develop this relationship from a
group of coefficients and basis functions that are engaged

from the regression data. MARS produce basis functions by

examining them in a stepwisemethod. Each spline function is

defined on a given interval and the end points of the interval

are called “knots.”AMARSmodel is completed in two steps. In

the first step, the model is built and basis functions are added

to grow the complexity until extreme complexity is attained.

In the next step, a backward calculation is done to remove the

minimum substantial basis function from the model.

The principle of the MARS system is built on piecewise

linear basis functions of the following forms:

jx� tjþ ¼ maxð0; x� tÞ ¼
�
x� t x> t
0 x � t

(1)

jt� xjþ ¼ maxð0; t� xÞ ¼
�
t� x x< t
0 x � t

(2)

where t represents the “knots.” The above formulations serve

as the basis functions for linear or nonlinear development

that estimates the function f(x).

If a dependent variable (i.e., the outcome) “y” is dependent

on “M” terms, then theMARSmodel can be summarized in the

following equation:

y ¼ fðxÞ ¼ b0 þ
XM
i¼1

biHki

�
xvðk;iÞ

�
(3)

where b0 and bi are the basis function parameters of the

model, and the function H can be defined as follows:

Hki

�
xvðk;iÞ

� ¼ Y
k

�ikhki (4)

where xv(k,i) is the predictor in the kth of the ith product. For

order of interactions K ¼ 1 the model is additive, and for K ¼ 2

the model is pairwise interactive [31].
2.1. Input and output parameters

It is necessary to have a set of data to train the predictive

models, and some portion of that set is further used to test

the trained models to verify their accuracy. In the present

study, the input parameters are the nondimensional corner

radius (r) of the square cylinder and Prandtl number (Pr). Six

values of “r” were selected: r ¼ 0.5 (circular cylinder), r ¼ 0.51,

r ¼ 0.54, r ¼ 0.59, r ¼ 0.64, and r ¼ 0.71 (square cylinder); the

values of Pr varied as 0.01, 0.1, 1, 10, 100, and 1,000 at Reynolds

number (Re) ¼ 100. By combining all the inputs, a total of 36

data (6 values of “r” � 6 values of “Pr”) were found. All the 36

data sets were collected from the authors' published article

[32], where the data sets were established by solving the heat

transfer problem numerically using the finite volumemethod

(FVM) code. The governing equations associated with the

heat transfer problemwere the NaviereStokes equations and

the energy equation. The problem was solved in a two-

dimensional unsteady laminar flow regime. A number of

trials were performed to find a quite accurate data set to

train the model. After achieving quite satisfactory accuracy,

70% of the total data were selected for training and the

remaining 30% for testing the model. The single output of the

present study, the heat transfer characteristics around the

http://dx.doi.org/10.1016/j.net.2016.06.011
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cylinder, was calculated using the average Nusselt number

(Nuavg).
2.2. Statistical error analysis

The error between the numerical and predicted values is

calculated as adjusted R2 (Adj.R2), mean absolute error (MAE),

mean absolute percentage error (MAPE), and root mean

squared error (RMSE), which are expressed as follows:

Adj: R2 ¼ 1�
P
i

ðNi � PiÞ2
�

n� p� 1

P
i

�
Ni �N

�2�
n� 1

(5)

MAE ¼ 1
n

Xn

i¼1

jNi � Pij (6)

MAPE ¼ 1
n

Xn
i¼1

jNi � Pij
Ni

� 100 (7)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðNi � PiÞ2
s

(8)

where

n ¼ sample size

p ¼ total number of regressors in the training model

Ni ¼ actual value

Pi ¼ predicted value

N ¼ 1
n

Xn

i¼1

Ni
3. PSO model

PSO is an evolutionary computation technique and a

population-based swarm intelligence algorithm to solve the

global optimization problem that was developed by Kennedy

and Eberhart in 1995 [33]. It is an arithmetic calculation

technique that starts with a crowd of grain called the swarm

and mainly based on social models, such as fish schooling,

bird flocking, and swarm theory [29], where the concomitant

of the swarm's behavior, i.e., maintaining optimal distances

between individual members and their neighbors, are the

main factors. The position of each particle is optimized by

improving its position as designed for the objective function

within the search area.

Therefore, the velocity of a particle is an important factor

of PSO, which is optimized in each iteration by comparison

with the previous one to lead the particle to its best position.

In every iteration, each particle in a swarm achieves the best

solution (fitness) possible so far, called pbest. Another “best”

value that a particle obtained so far in the population tracked

by the particle swarm optimizer which is global best, called

gbest. The velocity of each particle in a swarm is given by the

following equation [33]:

Viþ1 ¼ wVi þ c1r1ðpbesti � XiÞ þ c2r2ðgbesti � XiÞ (9)
Xiþ1 ¼ Xi þ Viþ1 (10)

where

Vi þ 1 ¼ new velocity for each particle based on the previous

velocity (Vi)

W ¼ inertial coefficient (0.8e1.2)

c1 and c2 ¼ cognitive coefficient and social coefficient,

respectively (0e2)

r1 and r2 ¼ random values for each velocity update (0e1)

Xi þ 1¼ newposition for each particle based on the previous

position (Xi)
4. Objective function

In the present work, six cases of corner radii were simulated,

with the maximum heat transfer rate being found at r ¼ 0.51.

The main objective of the present work is to determine the

optimal value of the corner radius that maximizes the heat

transfer rate around the cylinder. Here, the objective function

was generated by the MARS model and reported as follows:

Maximize; heat transfer rate ¼ Max Nuavg ¼ Min

�
1

Nuavg

�
(11)

Subjected to the following inequality constraints:

0:5 � r � 0:71 and 0:01 � Pr � 1;000
5. Results and discussion

5.1. Prediction of heat transfer characteristics with
different Pr values

In this part of the prediction, the model was acquired using

the corner radius “r” and Prandtl number “Pr” as the inputs,

and the average Nusselt number “Nuavg” as the output. Then

the obtained model was tested using the testing input and

output data. Various parameters affect the MARS model, such

as the maximal number of basis functions, generalized cross-

validation penalty per knot, maximum degree of self-

interactions, threshold, prune, etc. All the parameters were

varied within limits and the number of combinations was

found to build the model. Then every model's efficiency was

checked by calculating the Adj.R2, MAE, MAPE, and RMSE. The

different parameters that were used to train the MARS model

are given in Table 1. After having quite satisfactory accuracy

of the predicted heat transfer coefficient, the estimated co-

efficients and basis functions are summarized in Table 2. The

variation between theNuavg predicted by theMARSmodel and

the actual value is depicted in Fig. 1. Fig. 1A clearly depicts that

the predicted values are nearly equal to the actual values, and

Fig. 1B shows the efficiency of the MARS model to predict the

Nuavg.

http://dx.doi.org/10.1016/j.net.2016.06.011
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Table 2 e Parameters of the MARS model for Nuavg with
different Pr values.

BF Coefficients

Intercept 170.03

BF1 ¼ max(0, Pr e 10) 14.917

BF2 ¼ max(0, 10 e Pr) �15.735

BF3¼ BF1* max(0, r e 0.52) 1.5606

BF4 ¼ max(0, 100 e Pr) �0.11845

BF5 ¼ max(0, Pr e 100)* max(0, r e 0.54) 0.64371

BF6 ¼ max(0, Pr e 100)* max(0, 0.54 e r) �0.43587

BF7 ¼ max(0, Pr e 1) �3.321

BF8¼ BF7* max(0, r e 0.52) 10.02

BF9¼ BF7* max(0, 0.52 e r) �11.848

BF10 ¼ max(0, Pr e 0.1) �11.82

BF11 ¼ BF10* max(0, r e 0.54) �12.267

BF12 ¼ BF10* max(0, 0.54 e r) 12.172

BF, basis function; MARS, multivariate adaptive regression splines;

Nuavg, average Nusselt number; Pr, Prandtl number.

Table 1 e Different parameters of the MARS model.

Parameters Values

Max functions 10e40

Generalized cross-validation penalty per knot 0, 2e4

Self-interactions No

Max interactions 2e4

Threshold 1.0000ee04

Prune Yes

MARS, multivariate adaptive regression splines.
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The regression equation of Nuavg, which is a function of “r”

and “Pr”, can be generated easily using Table 2 and Eq. (3) as

follows:

Nuavg ¼ 170:03þ 14:917� BF1� 15:735� BF2þ 1:5606� BF3

� 0:11845� BF4 þ 0:64371 � BF5� 0:43587 � BF6

� 3:321 � BF7 þ 10:02 � BF8� 11:848 � BF9

� 11:82 � BF10� 12:267 � BF11 þ 12:172 � BF12

(12)

Using Eq. (12), Nuavg can easily be predicted; the variation

between the predicted data and the actual data is presented in

Fig. 1.
5.2. Comparing MARS-based Nuavg with those of GEP
and ANN models

Further, to evaluate the capability of the MARS model to es-

timate the heat transfer characteristics around a cylinder, its

outcomes are compared with those of ANN and GEP models

[32]. The ANN and GEP models in the authors' previous work

[32] were trained and tested for different Re and Pr values, but

in Table 3 of that work, themodels were tested for different Re

values at Pr ¼ 0.7 and for different Pr values at Re ¼ 100. The

MAPE values of the ANN and GEP models, as given in that

table, have been considered for comparison with the corre-

sponding values of the present MARS model. The authors
have also checked the ANN and GEP models only with

different Pr values at Re ¼ 100 values, and the deviation of the

Adj.R2 values between the two replicas is very negligible

(<0.3%). The error between the prediction efficiencies of

differentmodels is examined by the statistical data Adj.R2 and

MAPE, as presented in Table 4.

It clearly shows that the MARS model is a more efficient

prediction tool than either of the two remaining tools, having

an Adj.R2 value of 0.99999. The prediction accuracy of the

MARS model is higher than that of GEP and ANN for different

Pr conditions. TheMARSmodel also has the leastMAPE for the

present model.

5.3. Optimization of heat transfer

Once the objective function is generated by MARS, it is

optimized using the PSO algorithm. The PSO algorithm is

written in MATLAB to maximize the objective function. A

number of trials were performed to obtain the least numbers

of populations, generations, and various parameters

adequate for PSO. The algorithm and different parameters

used in PSO are encapsulated in Table 5. The optimized

result provided by the PSO model is Nuavg ¼ 36.93294 at

r ¼ 0.52 and Pr ¼ 1,000. Then, a confirmatory test was

accomplished by the FVM-based code on the geometry of

r ¼ 0.52 at Pr ¼ 1,000, and the value of Nuavg was found to be

36.59598. However, the maximum heat transfer rate was

already achieved at r ¼ 0.51 and Pr ¼ 1,000, which is

Nuavg ¼ 37.68012. Therefore, the PSO model was slightly

modified to skip the data of r ¼ 0.52, and then the model was

rebuilt to achieve the next optimized result. The best and

mean fitness of Nuavg optimization calculated by PSO are

presented in Fig. 2. The optimized value of the corner radius

calculated by the PSO code is compared with the FVM-

calculated data [32] and tabulated in Table 3. It is notice-

able that PSO can optimize the objective function minutely to

give the optimized parameters, but totally relies on the effi-

ciency of the predicted objective function and appropriate-

ness of the MARS model. As a MARS model is just a

regression model so it does not take the physics into account

in itself. If the data set is not enough and not fully repre-

sentative of the phenomenon, the prediction of the MARS

model is associated with more uncertainty.
6. Conclusion

In this study, the efficiency of MARS in predicting heat

transfer characteristics has been investigated. Further, pre-

sent models were also examined with existing GEP and ANN

models. All the prediction models were developed to predict

the average Nusselt number “Nuavg” for different corner radii

of a square cylinder (“r”) and Prandtl number “Pr.” Themodels

were trained and tested with the data collected from the au-

thors' recently published article. The MARS model is more

efficient than ANN and GEP having an Adj.R2 of 0.99999 for

different Pr models at a constant Re value of 100.

Further, this predicted model is used in the PSO tool as the

objective function for maximizing the heat transfer rate. The

http://dx.doi.org/10.1016/j.net.2016.06.011
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Fig. 1 e Variation between the predicted and actual data for different Pr values by the MARS model. (A) The discrepancy

between the actual and predicted data. (B) Fitting line plot between the actual and predicted data. Adj.R2, adjusted R2; MARS,

multivariate adaptive regression splines; Nuavg, average Nusselt number; Pr, Prandtl number.

Table 3 e Optimization results.

Corner radius (r) at Pr ¼ 1,000 Nuavg Percentage
variation with

FVM

FVM [32] 0.51 37.68012

PSO 0.51 36.35647 3.51

FVM, finite volume method; Nuavg, average Nusselt number; PSO,

particle swarm optimization.

Table 4 e Calculated values of Adj.R2 and MAPE for
different models.

r Re Pr Model Adj.R2 MAPE

0.50, 0.51, 0.54,

0.59, 0.64, 0.71

100 0.01, 0.1, 1, 10,

100, 1,000

ANN [32] 0.98263 3.354

GEP [32] 0.99997 1.248

MARS 0.99999 1.159

Adj.R2, adjusted R2; ANN, artificial neural network; GEP, gene

expression programming; MAPE, mean absolute percentage error;

MARS, multivariate adaptive regression splines; Pr, Prandtl num-

ber; Re, Reynolds number.

Table 5 e Parameters used in PSO.

Parameter Value

Population size 40

Generation 500

W 0.9

c1 1.25

c2 0.5

Swarm velocity 1

PSO, particle swarm optimization.

Fig. 2 e Optimization of the objective function using PSO.

PSO, particle swarm optimization.
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PSO-generated optimized cylinder corner radius is 0.51 at

Pr ¼ 1,000; comparing this value with FVM, it has been found

that the PSO tool can efficiently maximize the heat transfer

rate.
Thus, for a simple and easily understandable regression

relation between a small amount of input and output data,

MARS can be utilized for predicting the heat transfer charac-

teristics where ANN has failed to achieve marked accuracy.

Therefore, theMARS and PSO codes can be applied to different

heat transfer problems in different nuclear engineering areas

for efficient prediction and optimization, and can also be

useful for various scientific applications where energy man-

agement plays a vital role in improving the energy economy.
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