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Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from
their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit rip-
ening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed ded-
icated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope
membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes.
Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the spe-
cific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize re-
cent advances in our understanding of protein import regulation, particularly in relation to control by the
ubiquitin–proteasome system (UPS), and how such regulation changes plastid development. The diversity of
plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differen-
tiation and interconversion. The controllable turnover of TOC components by the UPS influences the develop-
mental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms
by which plastid protein import is controlled is critical to the development of breakthrough approaches to in-
crease the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid de-
velopment. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction: plastids and protein import

Plastids are a group of related organelles existing extensively
throughout plants and a variety of algae [1,2]. Among them, chloro-
plasts in the green tissues of plants and algae attract most attention
and are best studied, due to their well-known ability to photosyn-
thetically convert the energy of light into chemical bond energy. Be-
sides, chloroplasts are actually also responsible for many important
biosynthetic processes [3,4]. Other plastid types are widely distribut-
ed in non-green plant tissues, including the chromoplasts, which are
rich in carotenoid pigments and serve to attract animals to fruits and
flowers, and the amyloplasts, which are largely made up of starch
and play important roles in energy storage in seeds and tubers as
well as in plant gravitropism [3,5,6].

One remarkable feature of plastids is their dynamism in relation to
morphology and function. In response to developmental or environ-
mental signals, different plastid types can interconvert and such con-
version plays an import role in plant development, for example,
last Biogenesis.
during fruit ripening (when chloroplasts change to chromoplasts) and
senescence (when chloroplasts change to gerontoplasts) [6]. Evidence
indicates that such dynamic plastid development is regulated, at least
in part, through protein import, particularly at the TOC complex
(discussed in detail below), and by the ubiquitin–proteasome system
(UPS); these issues will be discussed in this review. In addition, plastids
are also well known for their ability tomove and redistribute inside the
cell [7]. The motility of these organelles is a critical response enabling
them to deal with the environmental changes. For example, the move-
ments of chloroplasts and amyloplasts function in strong-light avoid-
ance and gravity sensing, respectively.

Like mitochondria, chloroplasts are endosymbiotic organelles. They
are thought to have originated from an ancient photosynthetic prokary-
ote which is an ancestor of present-day cyanobacteria [8,9]. During
evolution, the endogenous gene expression system in the organelle
was retained, whereas the size of the organellar genomewas largely re-
duced such that it now expresses only ~100 different proteins [10,11].
Correspondingly, chloroplasts have developed sophisticated mecha-
nisms to import proteins from the cytosol.

Generally speaking, chloroplast import shares many similarities with
mitochondrial protein import. Although both organelles contain their
own genome, and can express some of their own proteins, the vast ma-
jority of the organellar proteins are imported post-translationally from
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the cytosol. For chloroplasts, over 90% of the 3000 organellar proteins are
encoded in the nucleus and synthesized by cytosolic ribosomes [12,13].
Similar to mitochondrial proteins, most chloroplast proteins are made
as precursors, having a cleavable targeting sequence at the amino-
terminal end called a transit peptide. The precursors are imported into
chloroplasts through the interaction of the transit peptide with two
translocons located in the outer and inner envelope membranes called
TOC and TIC (translocon at the outer/inner envelope membrane of chlo-
roplasts), respectively [14–21]. Their counterparts in mitochondrial pro-
tein import system are the TOM and TIM (translocase of the outer/inner
mitochondrial membrane) complexes [22–24]. Although protein import
is broadly similar between chloroplasts andmitochondria, the main con-
stituents of the respective import machineries do not share obvious
homology.

The precursor initially interacts with the chloroplast via its transit
peptide at the TOC complex, and then later it passes through the TIC
complex. Upon emergence from the TIC complex, the transit peptide is
cleaved and the mature protein domain assumes its native conforma-
tion or is further sorted to its destination via internal sorting pathways
[18,19,25–28]. As mentioned above, recent studies have found that the
regulation of protein import through the TOC complex contributes sig-
nificantly to plastid development. Consequently, here we focus mostly
on details pertaining to the TOC complex, and note that the TIC complex
and its regulation have been comprehensively reviewed elsewhere [18,
29]. The main components of the TOC complexes are discussed in detail
in the following sections, while a detailed list of the components is pro-
vided in Table 2 of Jarvis [18].

2. Import at the outer membrane

2.1. Overview of components at the outer membrane

Identification of the main envelope components involved in chloro-
plast protein import occurred about two decades ago. Proteins of the
TOC and TIC complexes were identified through extensive biochemical
studies conducted using isolated Pisum sativum (pea) chloroplasts by
researchers from independent laboratories [30–36]. The initially identi-
fied proteins included three from the TOC complex and one from the TIC
complex, and were Toc34, Toc159, Toc75, and Tic110, named by their
molecular weights [37].

All these proteins are integral membrane proteins. The three outer
membrane proteins form the core TOC complex, with Toc159 and
Toc34 being GTPase-regulated receptors and Toc75 forming a protein-
conducting channel. Using artificial lipid vesicles reconstituted with
these three proteins in vitro, it was shown that a rebuilt TOC complex in-
deed has the ability to bind precursors and to drive their translocation
through the membrane [38].

The core TOC complex particle was investigated by electron micro-
scopic analysis and estimated to have a height of 10–12 nmand a diam-
eter of 13 nm [39]. The structurewas also elucidated to possess a central
cavity surrounded by a thick ring wall, and a finger-like structure in the
centre which divides the central space into four pore-like domains [39].
It was speculated that one Toc159 molecule formed the central finger-
like structure and each pore-like domain is constituted by one Toc34
molecule and one Toc75 molecule; this agreed with the proposed stoi-
chiometry of Toc34, Toc75 and Toc159 as discussed below. Further stud-
ies usingmethods like gel filtration, density gradient centrifugation, and
blue native PAGE confirmed that the TOC core complex consists of
Toc159, Toc34, and Toc75, and indicated that its size was between
500 kD and 1 MD, in pea and Arabidopsis [39–41]. Moreover, it was
reported that the stoichiometry of the TOC complex components was
4–5:4:1 [39] or 3:3:1 [41], between Toc34, Toc75 and Toc159, respec-
tively. Differences between these stoichiometric estimates may be due
to use of different analytical techniques, the proteolysis of Toc159
(in the ~500 kD complex, Toc159 was present as the 86 kD degraded
fragment) [39], dynamic features of complex composition [42], the
presence of additional, unidentified TOC components, or the formation
of a TOC complex superdimer of 800–1000 kD [41]. Thus, the precise
composition of the TOC complex remains elusive.

Pea plants contributed greatly to the identification of themajor com-
ponents of the TOC complex. However, pea is not ideal for studying the
in vivo functions of individual TOC proteins. The use of Arabidopsis as a
model plant allowed such studies to be performed [43–45], which
gave rise to a more comprehensive understanding of the mechanisms
of protein import and their functions in plastid and plant development.

2.2. The receptor proteins

The initial events of chloroplast preprotein import occur at the
receptors in the outer membrane, which are the Toc159 and Toc34
proteins. The receptors are both membrane-embedded via a C-terminal
anchor, and both also contain a homologous GTP-binding domain pro-
truding into the cytosol. Both of them have the ability to recognize and
bind precursors directly [30,46,47]. Interestingly, genetic analyses indi-
cate that they are both encoded by a small gene family in higher plants
[18,48,49] (see below).

2.2.1. Toc159 gene family
Toc159 and Toc34 were first recognized by their association

with precursors in isolated pea chloroplasts [31,32]. Between them,
Toc159 is more complex in structure. It contains three domains, includ-
ing a large acidic (A) domain at the N-terminus and a central GTPase
(G) domain, both of which are cytosolic, as well as a large C-terminal
membrane (M) domain embedded in the outermembrane. Interesting-
ly, unlike other membrane-spanning protein domains, the Toc159
M-domain is not hydrophobic and lacks a clear transmembrane helix.
At first, Toc159 was reported to be able to shuttle between the chloro-
plast membrane and the cytosol [50,51], which led to the hypothesis
that it can serve as a receptor to bind cytosolic precursors and introduce
them to the chloroplast envelope. However, later investigation chal-
lenged the existence of this soluble form, as it has been reported that
under higher-speed centrifugation Toc159 is only found in the mem-
brane fraction but not in the soluble fraction [42], and that the soluble
form may in fact represent the free A-domain, as discussed below [52,
53].

The A-domain was identifiedwhen it was recognized that the initial
experiments had described an 86 kD fragment lacking the entire
A-domain, which indicated that the A-domain is extremely unstable
[33,54]. The significance of the A-domain is unclear. It has been shown
that isolated chloroplasts in which Toc159 A-domain has been
proteolysed import preproteins less efficiently compared with those
with intact Toc159 [54], suggesting that the A-domain plays a role
in the import process. However, the Toc159 knockout mutant (plastid
protein import 2, ppi2) phenotype in Arabidopsis thaliana can be entirely
complemented by truncated protein lacking the A-domain [52,53,55],
indicating that the A-domain might have only an accessory function
in vivo. Recently it has been shown that the A-domain can exist in the
cytosol in a highly-phosphorylated form, free from the other Toc159
domains, although the biological significance of this free A-domain has
yet to be elucidated [52].

The topology of Toc159 was investigated by protease treatment
using isolated chloroplasts, which can digest the protein part exposed
in the cytosol. A 52 kD M-domain fragment was identified after such
treatment, indicating that the M-domain is rooted in the membrane
and that the A- and G-domains are exposed to the cytosol [32,33,56].
It has been suggested that the M-domain is the minimal domain re-
quired for protein import. Similar to the A-domain-lacking Toc159 pro-
tein, the M-domain alone is capable of complementing the mutant
phenotype of ppi2 plants, albeit only partially [55]. In addition, in vivo
import assays using transiently expressed protoplasts of ppi2 plants
showed that the import defectwas also recovered byM-domain expres-
sion. Besides, in vitro import experiments using isolated chloroplasts
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indicated that preprotein import remained efficient even when just the
52 kD M-domain of Toc159 was retained after proteolysis [56].

The fully-sequenced Arabidopsis genome shows that there are
four homologs of Toc159, named atToc159, atToc132, atToc120 and
atToc90 (note that the “at” prefix denotes species of origin) [44,51,57].
The G- and M-domains of the different isoforms show high similarity,
but the A-domains differ largely in sequence. Among them, atToc159
has the biggest A-domain and atToc90 has only a truncated A-domain,
while the A-domains of atToc132 and atToc120 are more similar to
each other than to that of atToc159 [51]. The functions of the Toc159
family in vivo have been studied in detail, confirming that these factors
are indeed critical for chloroplast protein import. Moreover, themutant
phenotypes indicate that the receptors can be divided into sub-families
functionally, with preferences for different classes of preproteins
(discussed in detail in Section 2.4).

In Arabidopsis, atToc159 is the predominant isoform of the Toc159
family. Itsmutant, ppi2, appears albinodue to strongly disrupted chloro-
plast development, and it has themost severe visible phenotype among
the single mutants of the Toc159 family [44,57]. In contrast, mutation of
atToc132 or atToc120 causes only a weak phenotype or nomutant phe-
notype at all, respectively. However, double mutants lacking the latter
two components exhibit a severe albino phenotype comparable to
that of ppi2, indicating highly redundant roles of these two proteins in
chloroplast biogenesis [51,57]. The overexpression of atToc132 cannot
recover the defect of ppi2 plants, which suggests that the functions of
atToc159 and atToc132/120 are divergent [51]; domain swapping as-
says indicated that the different functions of atToc159 and atToc132
are largely dependent on their A-domains, as discussed in detail in
Section 2.4 [58]. By contrast, it seems that atToc90 shares overlapping
function with atToc159; whereas the knockout mutant of atToc90
alone does not cause any obvious phenotypes [57,59], toc90 knockout
mutations can slightly accentuate the phenotype of ppi2, and the over-
expression of atToc90 can partially rescue the phenotype of ppi2 [59,
60]. An interesting question is whether atToc90 also shares such func-
tional similarity with atToc132/120.

2.2.2. Toc34 gene family
Like Toc159, Toc34 is also regarded as a receptor, but it has a simpler

structure. Toc34 is anchored in the outer membrane by a very short,
C-terminal transmembrane helix, and the rest of the protein contains
a GTPase domain facing the cytosol, which shares about 30% identity
with that of Toc159. In general, GTPases can be grouped into two sub-
classes: conventional GTPases, and GTPases activated by nucleotide-
dependent dimerization (GADs) [61]. If the mode of action of Toc34
and Toc159 is similar to conventional GTPase systems, there should be
some accessory or regulatory partners, such as GTPase activating pro-
teins (GAPs) and guanine nucleotide exchange factors (GEFs). These
proteins stimulate GTPhydrolysis and replacement of GDPwithGTP, re-
spectively, and thus act to switch the activity of GTPase proteins [62].
However, to date, such factors have proved elusive in relation to the
chloroplast import system.

Alternatively, Toc34 might belong to the GAD class of GTPases,
which includes the signal recognition particle (SRP) and its receptor
of the ER translocation system [61,63]. This was suggested by filtra-
tion and pull-down assays which indicated that Toc34 can form
homodimers through its GTPase domain [64–66]. The possibility
was further supported by protein structure analyses using X-ray
crystallography performed on P. sativum Toc34 and atToc33 (the main
Toc34 homologue in Arabidopsis) [64,67]. The structural data not only
showed that there is a possible precursor-binding cavity inside
the Toc34 protein, but also indicated that the GTPase domain can act
as an interaction site for homodimerization. These results suggested
that each single Toc34 molecule within a dimer might activate the
interacting monomer [64].

However, assessments of the consequences of TOC receptor dimer-
ization based on in vitro biochemical analysis of an atToc33-R130A
mutant protein (intended to abolish dimer formation by disrupting
the conserved dimerizationmotif revealed by the crystal structure anal-
ysis), have led to contradictory results [65,66]. Although both Weibel
et al. [65] and Yeh et al. [66] confirmed that the mutation can abrogate
dimer formation, the former study did not find that it changed the effi-
ciency of GTP hydrolysis, while the latter study observed significantly
reduced GTPase activity. Later, Koenig et al. [67] observed a minor
GTPase activation upon dimerization, which led to the suggestion that
an additional factor such as a co-GAP is needed for homodimerization.
However, a more recent report overthrew the previous opinions and
suggested that Toc34 homodimerization actually does not stimulate hy-
drolysis, but instead limits the nucleotide exchange rate. It was found
that it is the disruption of the dimer that promotes GDP-GTP exchange,
which is triggered by preprotein binding [68,69]. This finding also af-
fects the previous opinion that transit peptides perform a GAP function
[70], which was suggested by the finding that preprotein binding can
strongly activate GTP hydrolysis [71,72].

Such inconsistencies also happen when assessing the function of di-
merization in vivo. Although chloroplasts isolated from plants express-
ing dimerization-defective atToc33 point mutants were shown to be
defective in preprotein translocation, specifically at the initial stage
[73], such mutations do not obviously influence chloroplast develop-
ment in planta and plant growth [74]. Thus, the exact function of
Toc34 dimerization needs to be further investigated. Interestingly,
both in vivo and in vitro experiments also detected the interaction of
Toc34 and Toc159, suggesting that these two receptors can formhetero-
dimers, possibly through the interaction of the homologous GTPase do-
mains [74–78]. This suggested the possibility that the existence of one
fully-functional GTPase domain in either receptor is sufficient to fulfil
the requirement of normal plant development.

In Arabidopsis, two Toc34-type proteins exist: atToc33 and atToc34.
The sequences of these two proteins are similar, but they do show sig-
nificant divergence at their C-terminal ends. In terms of expression
levels, in general atToc33 is the major isoform. Detailed in vivo analysis
of Toc34 function has been conducted with Arabidopsis mutants,
confirming its essential role in plastid import. The analysis of an
atToc33 loss-of-function mutant, ppi1, for the first time illustrated that
a core translocon component is as important in vivo as was suggested
by biochemical approaches [43]. The ppi1 mutant shows a clear defect
in chloroplast protein import, as indicated by the strikingly reduced
chlorophyll level, defective chloroplast ultrastructure, and, more direct-
ly, the reduced protein import efficiency in vitro [43,79]. By contrast,
ppi3, the mutant of the minor isoform, atToc34, looks normal in shoot
parts, although its root development is compromised [80]. Based on
the differences in their mutant phenotypes, it is also proposed that
atToc33 is more involved in the import of precursors of the photosyn-
thetic apparatus (so-called photosynthetic preproteins), whereas
atToc34 is mainly responsible for non-photosynthetic preprotein im-
port [81] (Fig. 1; discussed in detail in Section 2.4). However, such pref-
erence is not absolute, and it is also clear that atToc33 and atToc34 share
overlapping functions. This is indicated not only by their high similarity
in protein sequence (nearly 80% similarity in amino acids), but also by
genetic evidence: that is, that the ppi1 phenotype can be complemented
by the overexpression of atToc34 [43], and that the double knock-out of
these two genes causes embryonic lethality [80,82].

2.3. The channel protein and other TOC components

Toc75 is believed to form the channel of the TOC complex [31,83,84],
and it also shows ability to bind transit peptides directly [85]. Toc75 is a
typical β-barrel protein that is deeply buried within the outer mem-
brane. It belongs to the conserved Omp85 (outer membrane protein
85) superfamily of proteins, whose members occur widely in gram-
negative bacteria and the mitochondria of eukaryotes [86–88]. There
is another Omp85-related protein in the chloroplast outer envelope
membrane, termed OEP80 (outer envelope protein, 80 kD) [89,90].



Fig. 1.Model for the operation of substrate-specific plastid protein import pathways and their regulation by the SP1 ubiquitin E3 ligase. In Arabidopsis (and indeed in other plants where
genome sequence information is available), components of the TOC apparatus occur in different isoforms (e.g., atToc33 and atToc34), enabling the formation of different TOC complexes
with non-identical specificities for precursor protein substrates. Themain TOC component isoforms (those that predominate in chloroplasts) form complexes with preference for precur-
sors of the photosynthetic apparatus, or preproteins belonging to age-dependent group I [116]; whereas other TOC isoforms formcomplexeswith preference for housekeeping precursors,
or preproteins belonging to age-dependent group II [116]. Dotted crossing arrows indicate that these client preferences may not be strict. The balance between these import pathways
controls the composition of the organellar proteome, and in turn this controls the developmental fate and functions of the organelle. The SP1 E3 ligase is inserted in the plastid outer en-
velope membrane by two transmembrane domains (TMD1, TMD2). Its RING finger (RNF) domain faces the cytosol where it recruits E2 ubiquitin (Ub) conjugating enzyme in order to
mediate ubiquitination of TOC components, which are recognized by the SP1 intermembrane-space domain. Ubiquitinated TOC proteins are then degraded by the cytosolic 26S protea-
some (26SP). The SP1 protein plays a critical role in controlling the balance between the different substrate-specific protein import pathways, by facilitating the turnover of TOC compo-
nents and their replacement with alternative isoforms, leading to the reorganization of the import machinery. This figure is adapted from Ling et al. [112].
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Both of these chloroplast proteins, as typical Omp85 superfamily mem-
bers, contain two parts in structure: an N-terminal domain with three
POTRA (polypeptide transport associated) repeats, and a C-terminal
β-barrel domain as described previously [86,87,91,92]. While the
β-barrel domain of Toc75 acts in channel formation [85,86], the
POTRA domain may be responsible for the binding of TOC receptors
and/or preproteins [86]. On the other hand, OEP80 is not part of the
TOC complex, andmay be responsible for the biogenesis ofβ-barrel pro-
teins (e.g., Toc75) in the outer membrane, with a similar function to
its bacterial and mitochondrial counterparts, BamA and Sam50/Tob55
[89,93–95]. However, the precise acting mechanism of OEP80 still
remains to be determined.

Unlike the receptors, the channel protein Toc75 in Arabidopsis is
encoded by a single gene: atTOC75-III. Knockout mutations affecting
atTOC75-III result in a severe embryo lethality phenotype in Arabidopsis,
as plastid import is critical for early embryo development [82,96]. The
significance of Toc75 in chloroplast development was demonstrated
by the knockdown of atTOC75-III expression by RNA interference
(RNAi) and a hypomorphic toc75-III mutant allele, both of which lead
to reduced chlorophyll content in plants [94,97].

In Arabidopsis, OEP80 is also encoded by a single gene. And its neces-
sity in planta is revealed by oep80 knockoutmutants, which are embryo-
lethal [98]. Similar to the atTOC75-III RNAi lines, equivalent knockdown
lines of AtOEP80 showed a chlorotic phenotype, albeit with reduced se-
verity by comparison with the atTOC75-III lines [94]. Notably, it was
shown that the protein level of Toc75 is specifically down-regulated in
the AtOEP80 RNAi plants, which agreeswith OEP80's proposed function
in the insertion of Toc75 protein into the outer membrane.
Two other proteins, Toc12 and Toc64, were later identified as puta-
tive new components of the TOC complex. Toc12 was at first described
as a DnaJ-like protein docked in the outer membrane with a large solu-
ble part located in the intermembrane space [99]. However, its exis-
tence in the envelope is disputed after the finding that the originally
identified Toc12 protein in pea is actually a truncated stromal DnaJ-J8
protein with function that is not involved in protein import [100].

Toc64 was first identified in the isolated pea TOC complex, and was
assumed to be loosely associated with other TOC components [39,101].
A structurally similar protein called Tom70 is found in mitochondria,
and is known to be involved in mitochondrial protein import [102].
However, the role of Toc64 in chloroplast protein import is debatable.
In vitro biochemical studies indicated that Toc64might act as a receptor
for preproteins delivered by cytosolic factors, and might also assist
preprotein translocation [103]. However, the significance of Toc64 in
protein import is not evidenced by genetic experiments, as mutations
affecting Arabidopsis Toc64 homologues do not lead to any obvious de-
fects, under various conditions [104], strongly suggesting that Toc64 is
not essential for protein import in vivo. Similar results were also ob-
served for Toc64 knockout mutations in moss [105]. A possible scenario
is that Toc64 plays an accessory role in chloroplast import and only
shows significance under certain circumstances.

2.4. Diverse receptors and preproteins in plastid development

As stated previously (in Section 2.2), one of the outstanding features
of the TOC receptors is their diversity, which is in contrast to the Toc75
channel protein andmost TIC components. Correspondingly, preproteins



943Q. Ling, P. Jarvis / Biochimica et Biophysica Acta 1847 (2015) 939–948
also show clear diversity, ranging from photosynthetic preproteins
to non-photosynthetic or housekeeping preproteins, with the former
being much more important in chloroplasts than other types of plastids.
Therefore, when different receptors were recognized initially, it was
hypothesised that such diversity may contribute to the different protein
import requirements of different types of plastids [43]. Such specificity
was realized following the discovery that photosynthetic proteins are
preferentially imported into chloroplasts, whereas chloroplasts and
non-greenplastids are similarly receptive to non-photosynthetic proteins
[106,107]. Another potential explanation for the diversity of receptors is
the need to accommodate the differing import requirements of plastids
at different stages of plant development (see Section 4) [116]. The rele-
vant study also showed that preproteins which follow a common path-
way can compete with each other, and so receptor diversity may be a
mechanism to avoid such inefficiencies. Overall, a consensus exists that
the different TOC receptors enable an important regulatory mechanism,
mediated through the import of specific preprotein substrates, and this
is supported by an accumulating amount of evidence.

Genetic evidence from Arabidopsis first established the concept of
the existence of two groups of receptors: one including atToc159 and
atToc33, responsible for the import of photosynthetic preproteins; and
another including atToc132/120 and atToc34, responsible for the import
of non-photosynthetic, housekeeping preproteins [43,44,51,57,80,81].
This is clearly illustrated by the mutant phenotypes: ppi2 (toc159) and
ppi1 (toc33) mutants exhibit strong defects in chloroplasts as shown
by albino or chlorotic leaf phenotypes [43,57,81,108]; however, they
only havemild defects in root plastids, whereas the root developmental
defects aremore pronounced in toc132 toc120 and ppi3 (toc34)mutants
[57,80,108]. The finding that atToc132 plays a role in root gravitropism
further emphasizes its importance in root plastid development [97].

Such specificity of the receptors was also demonstratedmore directly
by in vitro import assays that assessed the uptake efficiencies of different
substrates by chloroplasts of the TOC receptor mutants. For example,
in vitro import assays using isolated ppi1 chloroplasts showed that import
rates of photosynthetic preproteins are specifically reduced compared
with those of a non-photosynthetic preprotein [81]. In addition, in vivo
import studies through protoplast transient expression similarly indicat-
ed the selective targeting of preproteins via atToc159 [47]. Such receptor-
specific import consequently influences the proteome and transcriptome
in the corresponding receptormutants. In general, the expression of pho-
tosynthetic genes/proteins ismarkedly reduced in ppi2 (toc159) and ppi1
(toc33), while the expression of non-photosynthetic genes/proteins is
relatively stable [44,57,81,109]. The reduced protein levels could be di-
rectly due to the defective import of photosynthetic proteins in themu-
tants, while the changed proteome may further prevent the futile
expression of genes (whichmight otherwise exceed the import capacity
of the plastids) through plastid-to-nucleus signalling pathways. By con-
trast, the channel protein of the TOC complex, Toc75, does not show
specificity in the import of photosynthetic or non-photosynthetic
preproteins, as judged by different aspects of its mutant analyses [94,
97].

Receptor specificity is also suggested by the corresponding gene
expression patterns. Although atToc159 and atToc33 are overall the
dominant isoforms in their families, their expression proportions are
variable in different tissues. For example, the expression levels of
atToc159 and atToc33 are strikingly high in leaves, while atToc132,
atToc120 and atToc34 tend to be expressed more in roots [81,110].
These tissue-specific expression patterns cope well with the hypothesis
that the functions of receptors are substrate specific, and also signify
that there is a huge requirement for the import of highly-abundant pho-
tosynthetic proteins in leaf chloroplasts. Furthermore, the tissue specific
organization of receptors might actually reflect plastid type specificity.
Because the whole set of plastid-encoded genes used for establishing
all plastids is the same in different plastids within a particular organism,
it is believed that imported proteins are responsible for controlling the
functions and developmental fate of each organelle [111]. The decisive
role of distinct receptors in plastid differentiation was underlined by
an investigation of relative receptor levels during plastid transitions;
more specifically, the in vivo importance of the reorganisation of
Toc159 family proteins for the transition from etioplasts to chloroplasts
during de-etiolation, in order to facilitate the import of photosynthetic
proteins, was described [112,113] (discussed in detail in Section 3.3).

A range ofmolecular and biochemical experiments also provided di-
rect evidence of the specificity of the receptors. The binding of different
isoforms of Toc34 and Toc159 to different classes of precursors proved
to be specific in in vitropull-down experiments [47,71]. Thiswas recent-
ly confirmed by a split-ubiquitin yeast two-hybrid analysiswhich tested
a variety of precursors [114]. In addition, co-immunoprecipitation as-
says indicated that atToc159 tends to be associated with atToc33,
whereas atToc132/120 preferentially interacts with atToc34 [51]. This
analysis also suggested that atToc159 and atToc132/120 exist in differ-
ent complexes in vivo, supporting a model in which two distinct TOC
complexes exist (one incorporating atToc159 and atToc33, and another
incorporating atToc132/120 and atToc34) and are involved in the im-
port of different subsets of proteins (Fig. 1). However, further work is
needed to verify the existence of such distinct complexes.Moreover, re-
cent evidence has suggested that the classification of substrates in this
model needs refinement, as discussed in detail in Section 3.4 [115,116].

Some evidence suggests that receptor-preprotein specificity is de-
termined by the interaction between the transit peptide and the recep-
tors [47,107], although the molecular mechanism is not clear yet. By
comparing the sequences of the transit peptides of two precursor
groups, it is difficult to identify the general defining elements [57,110].
However, a clue was discovered by analysing the Rubisco small subunit
precursor (pSSU), which indicated that some specificmotifs in the tran-
sit peptide help the selection of the atToc159-dependent import path-
way [117]. On the other hand, the specificity-determining domain of
the receptors has been revealed by a recent study: a significant role of
the Toc159 A-domain in controlling specific interactions with distinct
substrates was shown by analysing multiple Toc159 family A-domain
variants [58]. The responsibility of the A-domain for selectivity was sug-
gested by the fact that the presence of the atToc132 A-domain obstructs
partial complementation of the phenotype of ppi2 (toc159) Arabidopsis
plants, implying that the A-domain acts to confine interactions to a sub-
set of preproteins. In addition, both split-ubiquitin yeast two-hybrid and
in vitro binding assays demonstrated that the atToc132 A-domain has a
negative effect on the binding of photosynthetic proteins [114]. Inter-
estingly, spectroscopic analysis characterised the Toc159 A-domains as
being intrinsically disordered. Proteins with such characteristics are
usually involved in highly dynamic protein–protein interactions, sug-
gesting they might be ideal for precursor binding [118]. However, the
physiological significance of the Toc159 A–domain remains puzzling,
as its deletion does not influence plant development [52,53,55].

Asmentioned previously, different types of plastids can interconvert
during certain developmental stages. As different identities of plastids
have diverse proteomes, one can easily imagine that the types of TOC re-
ceptors will need to be altered to facilitate the import of the required
proteins [119–121]. Recent evidence indeed shows that the relative
abundances of the receptors are subject to change during plastid transi-
tions, through the action of an important protein degradation pathway:
the ubiquitin–proteasome system (UPS) [112,113].

3. The UPS and plastid dynamics

3.1. The ubiquitin–proteasome system (UPS)

Because of their importance, protein turnover systems are highly
developed in plastids, and can be divided into three major pathways.
Plastids contain intrinsic proteases inherited from their bacterial ances-
tors which serve in the quality control of organellar proteins [122].
Autophagy is another pathway which mainly contributes to nutrient
recycling by the bulk removal of whole or partial plastids through
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their delivery to the plant vacuole [123]. Finally, the UPS recently
emerged as an important protein turnover pathway affecting plastid
proteins.

The UPS is a major proteolytic system in eukaryotes [124]. It acts by
tagging targets with ubiquitin protein(s) through a cascade of reactions
involving three key enzymes: E1 (ubiquitin activating), E2 (ubiquitin con-
jugating), and E3 (ubiquitin ligating) enzymes. Then, the ubiquitinated
target protein is usually received by the 26S proteasome for degrada-
tion. Substrate specificity for ubiquitination is determined mainly by
the E3 ligases, which accounts for their dominance in number (there
are ~1400 in Arabidopsis, but only ~40 E2s and two E1s) [124]. There
are four classes of E3 ligases in plants, of which three comprise a single
proteinwith a distinct conserved domain; these are HECT (homologous
to the E6-AP carboxyl terminus), U-box, and RING (really interesting
new gene) E3 ligases. Another class is composed of a protein complex
and are called cullin-RING ligases (CRLs) [124]. In Arabidopsis, there
are nearly 500 proteins merely for a single class, the RING-type E3 li-
gases. The exceptional diversity of E3 ligasesmeans that they can specif-
ically recognize, and thus regulate, a wide variety of substrates, and so
their roles extend to almost all aspects of plant development, including
plantmorphology, hormone signalling, abiotic and biotic stress defence,
transcriptional regulation, chromatin remodelling and epigenetics.

The proteasome is a huge protein complex comprising two sub-
complexes: the 19S regulatory particle and the 20S core particle, which
are responsible for the recognition and degradation of ubiquitinated
substrates, respectively [125]. The UPS operates in different cellular
compartments, not only in the nucleus and cytosol where the protea-
some and free ubiquitin are easily accessible, but also in membrane-
confined organelles like the endoplasmic reticulum (ER). The cytosolic
UPSmachinery is central to the protein quality control in the ER, partic-
ularly because it does not contain internal proteases like the plastids. To
eliminate physical obstruction of the ER membrane, the ER-associated
degradation (ERAD) pathway adopts special components, such as the
AAA+ ATPase CDC48 and several integral membrane ubiquitination
enzymes, in order to extract specific substrates to be degraded by the
cytosolic proteasome [126]. Recent findings have turned a new page
in the field of UPS action: the endosymbiotic organelles [127]. The role
of the UPS in mitochondria has been extensively investigated in animal
and yeast in the past a few years. It turns out that UPS control is largely
concerned with mitochondrial dynamics, including fusion, fission,
mitophagy and mobility. Similar to ERAD, mitochondria employ cyto-
solic UPS components as well as some special constituents of the
outer membrane of mitochondria (OMM). Several E3 ligases have
been shown to act at the OMM, including resident components such
as MARCH5/MITOL, MULAN/MAPL/GIDE/Mul1 and RNF, and the cyto-
solic E3 ligase Parkin which can translocate to the OMM in response
to stress. These E3 ligases enable the UPS to control diverse targets in
the OMM under different cellular conditions.

3.2. The UPS and chloroplast precursor degradation

Although the UPS has been found to be extensively active in many
cellular compartments, knowledge on its role (if any) in controlling
plant plastids was lacking for a long time. The UPS was initially linked
to chloroplasts through the characterisation of a role for the cytosolic
E3 ligase CHIP in targeting two chloroplast precursor proteins (ClpP4
and FtsH1) for degradation under high-light conditions [128]. It became
clear from later work that CHIP (which is assisted by the Hsc70-4 chap-
erone) plays a more general role in the removal of un-imported chloro-
plast precursors by the proteasome [129]. It is proposed that this
regulation might serve as a general quality control pathway to clear ac-
cumulating cytosolic plastid precursors. As such precursors are thought
to be unfolded, accumulation of them in the cytosol might cause aggre-
gation, which would be toxic to the cells. Involvement of the protea-
some was also evidenced by a recent proteomic study that sought
novel proteasome-interacting proteins [130]. This work confirmed
that certain chloroplast precursors can interact with the proteasome
both in vivo and in vitro. Notably, transit peptides of those proteins are
essential for such interaction, which might be important to ensure
that the degradation is confined to un-imported precursors. Notwith-
standing these plastid-related proteasome functions in the cytosol, the
direct action of the UPS on chloroplasts was not revealed until recently.

3.3. The UPS and chloroplast resident proteins

The identification of a chloroplast resident ubiquitin E3 ligase for the
first time connected theUPS directly to chloroplasts. It is a RING-type E3
ligase, encoded by SUPPRESSOROF PPI1 LOCUS1 (SP1),whose name indi-
cates that it was found through a genetic screen for second-site suppres-
sors of ppi1 [112]. The screen aimed to elucidate the regulation of
protein import acting at the TOC complex, which was not well studied.
It demonstrated that the mutation of SP1 can specifically recover the
protein import defect of the ppi1mutant, to improve chloroplast devel-
opment and allow ppi1mutant plants to grow greener and larger. Inter-
estingly, the activity of SP1 seems to be specific to the TOC components,
as sp1 can also recover the mutant phenotype of a toc75-III mutant but
not TIC mutants. The E3 ligase activity of SP1 protein was verified and
shown to be dependent on its RING domain by in vitro and in vivo
data [112,131]. Florescent protein fusion and biochemical assays re-
vealed that SP1 is anchored in the outer envelope membrane (OEM)
by two transmembrane domains, thereby presenting a C-terminal
RING domain to the cytosol and a central domain in the intermembrane
space. Such topology is highly suitable for the control of OEM targets: a
cytosol-exposed RING domain is typically adopted by organellar
membrane-embedded E3 ligases, enabling access to the cytosolic UPS
components, while the intermembrane-space domain may contribute
to interactions with substrates in the OEM. Intriguingly, the sequence
and topology of SP1 are reminiscent of that of another E3 ligase,
MULAN, of mammalian mitochondria.

The specific suppression of ppi1 and toc75-III mutants mediated by
sp1 can be attributed to the increased accumulation of other TOC com-
ponents, which may partially compensate for the TOC mutations. This
conversely suggests the function of SP1 is to promote the degradation
of TOC proteins through the UPS, which was demonstrated by interac-
tion and ubiquitination assays both in vivo and in vitro [112]. As men-
tioned earlier, the TOC receptors may participate in determining the
developmental fate of plastids. Accordingly, when plastids interconvert
during processes such as de-etiolation or senescence, the relative pro-
portions of each receptor change correspondingly. Control by SP1 was
found to be important duringplastid transitions, as sp1mutations inhib-
it developmental processes requiring such transitions [112]. Remark-
ably, SP1 rapidly degrades atToc132 and atToc120 during de-etiolation
and thus enhances the proportion of atToc159, presumably in order to
facilitate the switch of TOC complexes to the form more suitable for
chloroplasts. Such TOC reorganization is required for changes in the
plastid proteome, as indicated by the fact that the rapid accumulation
of photosynthetic proteins during de-etiolation is dependent upon
SP1. This suggests a possible broader role of SP1 in other plastid transi-
tions, some of which may have agricultural applications, such as the
transformation of chloroplasts to chromoplasts during fruit ripening in
crops like tomato and citrus. Interestingly, there are two SP1 homo-
logues, SPL1 and SPL2, which share with SP1 similar sequence and
topology in the OEM, but their functions are likely to be divergent as re-
vealed by genetic data, perhaps to target different OEM components
[112].

Another role of the UPS in plastidsmight be to control their motility.
The redistribution of amyloplasts influenced by gravity is involved
in gravitropism, which is the perception of gravity by plant organs for
directional growth in order to efficiently receive light (in shoots),
water and nutrients (in roots) [7]. It was reported that the Arabidopsis
E3 ligase SGR9 (shoot gravitropism 9) plays an important role in
gravitropism through the control of amyloplast dynamics [132]. This
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was attributed to the ability of SGR9 to regulate dynamic interactions
between amyloplasts and actin filaments by sensing the gravity,
which is disrupted by the sgr9 mutation. Biochemical assays showed
that SGR9 has ubiquitin E3 ligase activity in vitro, suggesting that it
acts through the UPS [132]. However, one puzzle is the localization of
SGR9. Although fluorescent protein fusion analysis suggested amylo-
plast localization, detailed localization information is lacking. As SGR9
is predicted to have a cleavable transit peptide [133], it seems unlikely
that it is localized in the OEM [134]. And if SGR9 instead resides inside
the plastid, it would be isolated from the other UPS components in the
cytosol. Thus, identification of it substrate(s) and clarification of its
suborganellar localization will help to elucidate the molecular mecha-
nism of SGR9. Intriguingly, some TOC mutants also have altered
gravitropic responses [97], while biochemical studies indicated that
TOC proteins might be responsible for interactions between actin and
plastids [135]. This implies a direct interplay between the TOC import
machinery and the regulation of gravitropism, which might be SGR9
dependent.

As there is no ubiquitin or proteasome inside the plastid, the direct
UPS-mediated control of internal plastid proteinswould appear difficult
to achieve. Therefore, the regulation of the TOC import machinery is an
ideal agent tomediate proteome changes affecting thewhole organelle.
Since TOC proteins face the cytosol, they can rapidly respond to cellular
or environmental stimuli mediated by the UPS, ultimately leading to
adjusted plastid protein levels. This might be particularly important
during short transition processes, such as de-etiolation, where the
SP1-dependent degradation of the atToc132/120 receptors is so dra-
matic that it could not be accomplished by transcriptional down-
regulation (actually, the transcript profiles of Toc159 family genes are
relatively stable during de-etiolation, as shown by public microarray
data) [112,136].

Rapidity of action of such UPS control might be delivered by its
regulation at several levels. For example, the accumulation level of SP1
can be regulated both transcriptionally and post-translationally. The ex-
pression profile of SP1 from public microarray data indicates that it is
expressed most highly during senescence, which is reflected by the
mutant phenotype [112,136]. In addition, SP1 (and SPL1) transcripts
were also reported to be up-regulated by pathogen infection [137].
Autoubiquitination also influences SP1 and controls its protein level,
as revealed by the detection of SP1 polyubiquitination in vivo, which is
dependent on its intact RING domain [112]. Such autoubiquitination
may lead to proteasomal degradation, as SP1 protein accumulated fol-
lowing proteasome inhibitor treatment [112]. This may explain why
proteomic analyses of the chloroplast envelope have not uncovered
SP1 [138,139]. Autoubiquitination is also likely to occur at SGR9, as
it was shown that SGR9 protein can be stabilized in vivo by mutation
of its RING domain causing loss of E3 ligase activity [132]. Such
autoubiquitination and degradation can ensure the abundance of the
E3s themselves are tightly controlled, in order to avoid possible adverse
effects if they are over-produced. However, the molecular basis of plas-
tid E3 regulation is still unclear, and itwill be of interest to reveal its reg-
ulators such as transcription factors, partners and accessory proteins.

Advances in UPS research pertaining to mitochondria have revealed
a wide range of resident mitochondrial proteins as substrates, even in-
cluding proteins inside mitochondria [127]. Interestingly, a recent pro-
teomic study on purified chloroplast envelopes identified ubiquitin
and some ubiquitin ligases [139]. However, contamination cannot be
ruled out because of their high abundance. Moreover, modified proteo-
mic studies for the identification of ubiquitination targets have revealed
many chloroplast proteins to be ubiquitinated in vivo [140,141]; a
surprisingly high proportion of the ubiquitinated proteins identified is
predicted to be targeted into chloroplasts, including atToc159, atToc33
and atToc34 which had been identified previously in vivo [112,141].
For many of the proteins identified, a peptide from the transit peptide
sequence was detected, indicating that the corresponding proteins
are precursors localized in the cytosol, further confirming that the
ubiquitination of precursors occurs generally. However, many chloro-
plast proteinswere only identified after denaturation (reportedly to dis-
rupt membranes), but not in native conditions, which implies that at
least some of them are indeed chloroplast-localized ubiquitin conju-
gates. It will be interesting to investigate which of them are truly
ubiquitinated chloroplast resident proteins and what the significance
of such ubiquitination is.

3.4. Ubiquitination and protein import into complex plastids

Another newly-discovered active site of ubiquitination is in the
complex plastids, where it acts to control protein import. Unlike plant
chloroplasts, the complex plastids of different algal and parasite species
(for example, apicoplasts in apicomplexan parasites) evolved from
secondary endosymbioses and possess up to four membranes, and con-
sequently havemore complex protein targeting pathways [142]. Plastid
proteins cross the outermost plastid membrane through fusion of
endosomal vesicles derived from endoplasmic reticulum, and then
gain access to the inner membranes through different translocons.
The innermost two membranes are similar to chloroplast membranes,
and contain translocons homologous to the TOC and TIC machines. A
third translocon serving to transport proteins across the second outer-
most membrane (the periplastid membrane) is believed to employ
components similar to the ERADmachinery; for example, the core com-
ponent, CDC48 [143,144]. Surprisingly, the ubiquitination normally in-
volved in protein degradation in ERAD is retained in this import
system, including a whole series of E1, E2 and E3 ubiquitin enzymes
and a de-ubiquitination enzyme [145,146]. Importantly, biochemical
and genetic analyses indicate that such enzymes are indeed functional
and critical for the protein import system in complex plastids [146]. In
contrast to the ubiquitination which happens in primary plastids, like
plant chloroplasts, which plays a role in protein degradation [112], the
function of ubiquitination in complex plastids is proteasome indepen-
dent. Its precise role in protein import still remains to be characterised.

4. Other regulation of plastid protein import

Other regulatory mechanisms act to control the TOC components in
order tomeet changing demands for protein import during different de-
velopmental stages and under different growth conditions. For exam-
ple, it has long been known that the expression levels of atToc33 and
pea Toc75 are much higher during early developmental stages [43,83],
presumably to fulfil the massive requirement for protein import at
such times when chloroplast biogenesis activity is intense. Indeed, im-
port rates of several precursor proteins were highest in juvenile chloro-
plasts and gradually declined during the ageing of chloroplasts [147].
However, whether this was a general effect for all precursors or just
for some specific proteins was not clear, as only a few precursors were
analysed. A recent study using a more extensive number of chloroplast
preproteins depicted a more complex scenario of age-dependent regu-
lation of protein import [116]. In this study, it was confirmed that in
higher plants the import of different chloroplast preproteins is specifi-
cally regulated in accordance with developmental stages. The data
showed that chloroplast precursors can be divided into three groups
which display distinct preferences with regard to import into chloro-
plasts of different ages: group I precursors were more efficiently
imported into young chloroplasts, and so may be more important for
chloroplasts in rapidly dividing and expanding cells in young leaves;
group II precursors did not display preference in respect of chloroplast
age, suggesting that they are “housekeeping” proteins which maintain
basic chloroplast functions throughout development; group III precur-
sors were more prone to be imported into old chloroplasts, which is
controversial in relation to previous thinking [147]. It was also shown
that such selection is dependent on the transit peptide. Notably, the re-
placement of the transit peptide of a group III precursor with that of a
group I precursor resulted in a growth defect of the plants, suggesting
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that such age-related import control plays an important role in chloro-
plast development.

By considering earlier proteomic analyses of Arabidopsis TOC recep-
tor mutants, it was proposed that atToc159 is the receptor for group I
precursors, and that atToc132 is the receptor for group II precursors
[116]; clear indications as to the identity of the group III receptor were
not forthcoming. Thus, such development-based groupings of precur-
sors might complement the previous functional classifications, in
which “photosynthetic” and “housekeeping” preproteins correspond
to specific TOC receptors (Fig. 1). Indeed, recent investigations indicated
that the situation might not be that simple. A large-scale proteomic
study implied that the substrates of atToc159 may not be strictly
photosynthetic-related preproteins [115]. In addition, binding affinity
studies indicated that the Toc159 family proteins have different but
overlapping preferences for preproteins [114]. The new information
on age-dependent import suggests that the specific interactions of sub-
strate precursors and TOC receptors are rather complex, which might
reflect differing proteome requirements of different plastid types or
specific developmental stages of plastids.

Chloroplast protein import is also influenced by environmental cues.
It has been reported that import rates are negatively influenced by
temperature-stresses, accompanied by declining RNA and protein levels
of TOC/TIC components [148], butwhether this is due to active regulation
ormerely damaging effects of stress is unclear. If it is specific regulation, it
may function to inhibit photosynthesis in order to avoid productionof ex-
cessive reactive oxygen species which might do harm to the plant [149,
150]. Although the regulatory mechanism is not clear, transcriptional
control is one possibility. To date, CIA2 (chloroplast import apparatus
2) is the only transcription factor found to control chloroplast protein im-
port as well as the chloroplast translation system [151,152]. It is sug-
gested to regulate the expression of certain TOC components, and thus
to adjust import activity throughout development. Nonetheless, direct
protein level control is also possible, for example via the aforementioned
UPS or autophagy degradation pathways. Clearly, it will be of consider-
able interest to identify more regulators involved in chloroplast protein
import in the future.

5. Concluding remarks

Recent advances have given rise to a more profound understanding
of the molecular mechanisms underlying protein import into chloro-
plasts, particularly in relation to substrate-receptor specificity at the
TOC machinery and its role in plastid type differentiation. However,
most of our knowledge on protein import is about the chloroplast, and
our understanding with respect to other non-green plastids is rather
meagre. This might be due to the fact that most studies on protein im-
port were done in Arabidopsis, which limits the investigation of other
plastid types.With the prevalence of next generation genomic sequenc-
ing, we now have the opportunity to study the molecular basis of pro-
tein import in other important plastids, for example, chromoplasts. In
addition, models about substrate-receptor specificity can be verified
and generalized in different species. Currently, although such specificity
has been acknowledged, there is still discrepancy concerning the classi-
fication of different precursor proteins. By investigating more precur-
sors, a consensus may emerge. In addition, more and more evidence
indicates that protein import can be finely regulated in response to de-
velopmental and environmental cues. The UPS is one mechanism of
such regulation, and it is particularly important during plastid transi-
tions. However, compared with its role in mitochondria, our under-
standing of UPS control in plastids is limited. Recent proteomic studies
have found many ubiquitinated chloroplast proteins, implying broader
functions of the UPS in plastids. Identification of further relevant UPS
components will greatly enhance our understanding of the roles of the
UPS in plastids. One interesting area to investigate will be its role in
stress. Plants have a particularly high number of E3s, possibly to enable
more refined responses to stress conditions necessitated by their sessile
nature. Rapid action by the UPS may be an ideal regulatory pathway
to allow plants to adapt to the changing environment with regard to
their plastids. In addition, emerging studies have uncovered ubiquitin-
like modifiers which can act synergistically or antagonistically with
ubiquitination in plants [153], and their roles in plastids are unknown
and need to be discovered.
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