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ABSTRACT BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied
example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR
domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving
single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes);
and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in
agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct
membrane curvatures and bending dynamics.

INTRODUCTION

The morphology of living cells features a large variety of

membrane shapes, forming barriers, organelles, and com-

partments, which are sculpted actively by the cellular ma-

chinery to various levels of curvature (1–3). Generation of

membrane curvature is an essential step in cellular morpho-

genesis, typically achieved with the help of various proteins

that employ different mechanisms to perform this task (4–

13). In turn, the membrane curvature can affect structure and

function of the associated proteins (see, e.g., (14–17)). One

relatively well-studied family of membrane-sculpting pro-

teins are the BAR domains, which are found in many orga-

nisms and drive the formation of tubular and vesicular

membrane structures in a variety of cellular processes, in-

cluding fission of synaptic vesicles, endocytosis, and apo-

ptosis (18,19). In the in vitro experiments, BAR domains

bind to liposomes and convert low-curvature spheres to high-

curvature tubules (20). The structures of several types of

BAR domains have been resolved (21–29). They all form

dimers with a high density of positively charged residues on

one side of their surface. Recent molecular dynamics (MD)

simulations (30,31) have provided a dynamic picture with

atomistic details of how a single BAR-domain induces a local

curvature on a negatively charged membrane through elec-

trostatic interactions and matching of the protein shape by the

membrane.

Despite its vital role for cellular structure and function,

cellular membrane morphogenesis is only starting to be un-

derstood. This is due to the heterogeneity of the process,

where the constituent lipids exist in partially disordered

phases and participating proteins are distributed non-

uniformly, restricting the application of many experimental

imaging methods. However, MD simulations (32–34) can

offer a description of the process with single-atom resolution,

as shown here for the case of BAR domains, and in Chandler

et al. (13) for integral membrane proteins of bacterial pho-

tosynthetic chromatophores. Unfortunately, with current

computing capabilities, molecular dynamics is limited to

system sizes and timescales that are too small and too short

for many morphogenesis events. Thus, many aspects of

membrane morphogenesis in general, and action of BAR

domains in particular, remain largely unknown. Here, we

report a computational study of single and multiple amphi-

physin BAR domains interacting with negatively charged

membranes. To overcome the limitations of atomistic MD

simulations, we utilize coarse-grained modeling and a mul-

tiscale approach at four levels of resolution, which allows us

to reach timescales up to several microseconds.

Many questions remain unanswered about how multiple

BAR domains bend membranes, such as why the radii of

curvature of BAR domain-induced tubes and vesicles fall in a

wide range of values, while the intrinsic radius of curvature of

the protein itself is;110 Å (for amphiphysin BAR domain).

In principle, multiple BAR domains could act either indi-

vidually or in concert to bend membranes. The latter possi-

bility has been favored in the literature since cryo-electron

microscopy images of BAR domain-induced tubules allow

one to distinguish striations (20,21), presumed to be rows of

BAR domains. Recent work by Frost et al. (29) has shown for

the first time that BAR domains indeed align in rows, or

spirals, on the surface of the membrane tubules, as seen in

Fig. 1. The arrangement shown in Fig. 1 is formed by F-BAR

domains that polymerize and aggregate in a spiral to tubulate

the membrane; other members of the BAR domain family,

such as amphiphysin BAR domains, form similar arrange-

ments (20,29). Thus, the experimental evidence suggests that

BAR domains act concertedly in close, well-ordered forma-

tion, forming longitudinal lines around the tubules. Clearly,

differences in the formation lead to the observed variability in

the size of tubules, and one may wonder how lateral ar-

rangements of BAR domains in parallel rows determine the

tubule size. To investigate this, we set up two models for line
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formation (Fig. 2), one with laterally staggered lines, and the

other with nonstaggered lines. Results of our simulations

show a clear difference between curvatures induced by the

two formations on a membrane, with the staggered arrange-

ment producing a higher curvature than the nonstaggered one

(;300 vs. 1000 Å). An individual BAR domain in our

simulations produces a local membrane curvature with radius

in the range 100–500 Å. The dynamics of membrane bending

is also strongly influenced by the specific BAR domain ar-

rangement. A number of simulations were performed for

each arrangement studied, providing a sampling that eluci-

dates the variations in individual bending events.

The multiscale approach employed acts at four levels of

resolution: all-atom, single-residue, single-protein, and con-

tinuum. Coarse-grained (CG) MD techniques for biomole-

cules are currently under active development, but are usually

focused on applications to specific types of biological sys-

tems, such as membranes (35–47), or to specific proteins

(48–50), although recent studies have investigated peptide-

and protein-membrane systems or large number of different

proteins (17,51–63). At an even coarser level of description,

continuum models have been used to describe the elastic

properties, remodeling, and fusion of membranes (see, e.g.,

(64–68)), including those being bent by BAR domains (69).

Our four-level description is based on these models and on

our own coarse-graining approaches, which resulted recently

in the development of a residue-based CG model (51,57) and

a shape-based CG model (52,53). The latter was originally

developed for proteins only; here we describe an extension of

this model to lipids.

The atomistic description is provided through all-atom

MD simulations with the CHARMM force field (70). The

next level of coarseness is furnished by MD with residue-

based CG (51,57), which describes single residues by just a

few CG beads (e.g., an amino acid is represented by two

beads, one for the backbone and another for the side chain).

The shape-based CG model (52,53) uses CG beads to rep-

resent protein segments, whose dynamics is described using

MD simulations as well. For all three levels, MD simulations

are performed using NAMD (71). The fourth level of our

description involves a continuum elastic membrane model.

The models, at each level, are parameterized based on

properties from the higher-resolution models, as well as from

experimental data. Results from computations across all four

levels are consistent with experimental observations, when-

ever available, as well as with previous all-atom simulations

(30,31).

METHODS

BAR domain-membrane systems have been simulated using four levels of

description (Fig. 3): all-atom molecular dynamics (MD), residue-based CG

(RBCG) MD (57) with ;10 atoms being represented by a single CG bead,

shape-based CG (SBCG) MD (52) with ;150 atoms per CG bead, and a

continuum elastic membrane model. MD simulations were performed using

NAMD (71). Analysis and visualization were carried out with VMD (72).

Systems with one or six BAR domains were simulated. In the case of six

BAR domains, two arrangements of proteins were studied: a single row of six

FIGURE 1 Membrane tube formed concertedly by BAR domains. Shown

is a cryo-electron microscopy view of F-BAR domains that sculpt a tubular

membrane of ;670 Å diameter. A single F-BAR domain is marked by the

solid oval. The image is reproduced from Frost et al. (29).

FIGURE 2 Arrangements of BAR domains

studied. The systems studied by simulations are

periodic; the simulation box is highlighted as a

solid square, and a few periodic images are

shown in dimmed color; boundaries of periodic

cells are marked by dotted lines. (A) Non-

staggered one-row arrangement. (B) Staggered
two-row arrangement.
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BAR domains and two parallel rows of three BAR domains. Periodic

boundary conditions were assumed, resulting in the arrangements illustrated

in Fig. 2. Both arrangements involve parallel, longitudinal rows of BAR

domains, but one formation features laterally aligned rows (Fig. 2 A) and the
other one exhibits lateral staggering of the rows (Fig. 2 B). These staggered

and nonstaggered arrangements were simulated using RBCG and SBCG

models. We will employ the nomenclature one-row arrangement and two-

row arrangement for systems shown in Fig. 2, A and B, (e.g., refer to the

respective simulations as 6BAR-1row-RB and 6BAR-2row-RB).

The spacing between rows of BAR domains (70–100 Å) is similar to that

inferred from cryo-electron micrographs of tubules formed by amphiphysin

BAR domains (50–100 Å between those observed in (20,21)). The pitch of

the spiral in Fig. 1 is ;60 Å, but varies significantly from case to case (29).

Also, Fig. 1 shows F-BAR domains, which are different from amphiphysin

BAR domains investigated here (F-BAR domains are larger and produce

shallower curvature).

All-atom simulations

We performed an all-atom simulation of a single BAR domain on a patch of

DOPC/DOPS membrane. This simulation served mainly for the parameter-

ization of the CG models. The coordinates of Drosophila melanogaster
amphiphysin BAR domain were obtained from the Protein Data Bank (PDB

code 1URU (21)). The missing 35 residues near the N-terminus were mod-

eled according to the structure suggested in Gallop et al. (25), namely, as a

short helix and a flexible link, using the MOLEFACTURE plug-in of VMD

(72). The base system of 72 DOPC lipids (obtained from http://persweb.

wabash.edu/facstaff/fellers/ (73)) was replicated once along one dimension,

fully hydrated, and equilibrated for 15 ns. Then, 30% of the PC headgroups

were changed to PS headgroups randomly and uniformly. The DOPC/DOPS

system was equilibrated for 10 ns.

The equilibrated membrane patch was replicated to yield a patch with

initial dimensions of 460 3 98 Å2. A BAR domain was placed onto the

surface of the membrane with its N-terminal helices partially buried between

the lipid headgroups. The TIP3P water model (74) was used to solvate the

system and Na1 ions were subsequently added to neutralize the net charge,

resulting in a system of 671,331 atoms with dimensions 4403 973 155 Å3.

The system was equilibrated for 0.5 ns with the atoms of BAR domain being

harmonically constrained to their initial positions (the constraints’ spring

constant was 1 kcal/(mol Å2)), and then simulated for 25 ns without any

constraints (simulation 1BAR-AA).

The CHARMM (70,75) force field was used. Parameters for the charged

PS headgroup were generated by adding a carboxylate group to the phos-

phatidylethanolamine headgroup in CHARM27 (75). Periodic boundary

conditions were applied, and simulations assumed the NpT ensemble (tem-

perature 310 K and pressure 1 atm). A Langevin thermostat with a damping

coefficient of 0.5 ps�1 maintained temperature; pressure was maintained via

a Langevin-piston barostat with a piston period and damping time of 2 ps

each. Short-range nonbonded interactions were cut off smoothly between 10

and 12 Å. The PME algorithm was used to compute long-range electrostatic

interactions. The implementation of these algorithms in NAMD is described

in Phillips et al. (71). Simulations of membrane patches were performed with

an integration time step of 1 fs; a 2 fs time step was employed in simulation

1BAR-AA (see below).

Residue-based CG simulations

The residue-based CG (RBCG)method has been extensively applied to study

lipid-protein systems, namely, high-density lipoproteins (51,57–59), and,

thus, appears to be suitable for simulations of membrane sculpting by pro-

teins. The method was originally developed to extend Marrink’s CG lipid

model (37,40,46) to proteins (51). A correspondence of;10 atoms per bead

characterizes the level of coarse-graining (Fig. 3 A). A DOPC lipid is rep-

resented by 14 CG beads: one for the choline group, one for the phosphate

group, two for each of the glycerol groups, and 10 to represent the two hy-

drocarbon tails. Four water molecules are represented by a single CG bead;

an ion together with its first hydration shell (six water molecules) is repre-

sented by one CG bead; each amino acid is represented by two CG beads, one

for the backbone and one for the side chain (glycine is represented by a single

backbone CG bead). CG beads are assigned effective interaction potentials,

reproducing hydrophobic/hydrophilic properties, and time evolution is de-

scribed using classical MD. The RBCG model and parameters used in this

work are the same as those in the literature (57,58), except for a few features

specified in the following.

Originally, RBCG was parameterized to maintain only secondary struc-

ture of a protein and has been successful in describing the protein component

of HDL, which is a chain of a-helices, but it was not designed to maintain

tertiary structure of proteins. When RBCG was applied to simulate a BAR

domain, its tertiary structure was not preserved, because it is determined by

interactions such as hydrogen bonds, which are missing in the RBCG de-

scription. To overcome this limitation, we added potential energy terms for

harmonic bonds connecting the protein beads that otherwise are not bonded.

The flexibility of the protein’s tertiary structure observed in the all-atom

simulation of the BAR domain was matched in the RBCGmodel, using a set

of extra bonds and tuning their strength (implemented through a NAMD (71)

feature for adding extra bonded interactions). The constraints, or extra bonds,

FIGURE 3 Residue-based coarse-grained (RBCG) and

shape-based coarse-grained (SBCG) models. (A) Overlap

of all-atom and RBCG models for a DOPC lipid and

AWLFV peptide. RBCG uses ;10 atoms per CG bead; an

amino acid is represented by one bead for the backbone and

another one for the side chain. (B) SBCGmodel of a protein

segment, with;150 atoms per CG bead. Each CG bead has

the same color as the all-atom domain represented by the

bead. (C) Side- and top-views of the SBCG model of a

small DOPC membrane patch. Each SBCG molecule cor-

responds to 2.2 lipids on average and consists of two beads,

one representing the lipid heads (cyan) and the other the

lipid tails (white). (D) DOPC membrane represented by all-

atom, RBCG, and SBCG models. (E–G) BAR domain

viewed from top and side, in all-atom (E), RBCG (F), and

SBCG (G) representations. The BAR domain is a homo-

dimer; the monomers are shown in purple and green. In the

SBCG model, the two monomers are connected by bonds

(orange) to preserve the integrity of the dimer.
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were set between the beads representing the protein backbone. The main

purpose was to maintain the intrinsic bending of a-helices in the protein and

the distance between the a-helices. Extra bonds were established if two

backbone beads were in the same a-helix and on the same side of the helix,

within a distance of 4–20 Å from each other, or, if the two backbone beads

were at adjacent surfaces of two a-helices, with distances between the beads

ranging from 4–15 Å. The full list of these extra bonds is provided in Data S1

in the Supplementary Material. The strength was the same for all constraints,

K ¼ 5 kcal/(mol Å2), and the bond lengths were equal to the distances be-

tween the beads as found in the crystal structure. As a result, the protein was

not heavily constrained, yet the tertiary structure (the crescent shape) was

maintained.

The choice of constraint strength is illustrated in Fig. 4. Several quantities,

such as the characteristic distances and angles shown in Fig. 4 A as well as

Ca-RMSD (root mean-square deviation), are chosen to monitor the dy-

namics of the overall protein structure. The quantities chosen are: LCOM, the

distance between the centers of mass (COM) of the two monomers; LETE,

the end-to-end dimer distance between the COMs for clusters of atoms at

the ends of two monomers, the clusters being composed of residues 149–177

(we define the COM of this cluster for one monomer as the end point);

Lmonomer, the end-to-end distance for one monomer between its end point and

the COMof a cluster composed of residues 82–87, 90–95, and 230–235; udimer,

the dimer opening angle formed by the end point of onemonomer, COMof the

cluster of residues 37–125 and 199–242 from both monomers, and the end

point of the other monomer; umonomer, the monomer opening angle between

the end point, COM of residues 190–206, and COM of residues 199–242 in

the samemonomer. These quantities weremonitored in the all-atom simulation

of BAR domain on a patch of membrane (simulation 1BAR-AA), and in

equivalent RBCG simulations with different strength of the constraints. The

values were measured after the first 20 ns of simulations, to allow an

emerging structure to stabilize, and were averaged over the subsequent 5 ns.

The averages with the associated error bars are shown in Fig. 4, B–G (the

values for Lmonomer and umonomer were additionally averaged over the

quantities observed for the two monomers). The results show that the choice

of the spring constant K ¼ 5 kcal/(mol Å2) provides the weakest set of

constraints that maintains the dimer shape well. Simulations with weaker, or

no constraints, result in a significant change of the structure. Stronger con-

straints make the protein stiffer than in the all-atom simulation, as can be

seen, e.g., from the RMSD values (Fig. 4 B).

All-atom simulations of a BAR domain, both present and previous ones

(30,31), indicate that the interaction that drives membrane bending is of

electrostatic nature. In the previous RBCG simulations (37,51,57), electro-

FIGURE 4 Constraints are necessary to maintain the

tertiary structure and interdomain arrangement for the

RBCG model of BAR domain. (A) A BAR domain dimer

is shown in top and side view. Several distances and angles

are chosen that characterize the overall structure of the

protein. These are the distance between the centers of mass

of the two monomers (LCOM), end-to-end distance for the

whole dimer (LETE), end-to-end distance for one monomer

(Lmonomer), and the opening angles for the dimer and for the

monomer (udimer and umonomer). Averages of these values,

as well as of Ca-RMSD for the dimer, are shown in panels

B–G for, from left to right, the all-atom simulation (1st bar),

and RBCG simulations with K¼ 5 kcal/(mol Å2) (2nd bar),

K ¼ 25 kcal/(mol Å2) (3rd bar), K ¼ 0.5 kcal/(mol Å2) (4th

bar), and K¼ 0 (5th bar). Restraints with K¼ 5 kcal/mol Å2

provide the best agreement between the all-atom and

RBCG simulations, and, thus, was used further on.
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statics never played an important role, and the use of a relative dielectric

constant e¼ 20 was satisfactory. However, our attempts to obtain membrane

curvature in RBCG simulations of the BAR domain with e ¼ 20 failed.

Varying e, we found that RBCG simulations with e ¼ 1 furnished the best

agreement with the all-atom simulations, in terms of the observed membrane

curvature and the timescale over which it arises. Probably, the necessary

value of e is so low because the formation of curvature is driven by the

electrostatic interactions between the protein and charged lipid heads at a

short range, when no water or other atoms shield the charges. Longer-range

electrostatics seems to be not so important for this problem, and, although in

principle one should use higher values of e for the long range, even with e ¼
1 this long-range electrostatics is too weak to influence the system signifi-

cantly. Thus, e ¼ 1 is used in the RBCG simulations.

RBCG simulations were run with one BAR domain (simulation 1BAR-

RB) and with six BAR domains, for the nonstaggered arrangement (6BAR-

1row-RB) as well as for the staggered one (6BAR-2row-RB), with the

DOPC/DOPS membrane (30% DOPS, as in the all-atom simulation). RBCG

systems with a single BAR domain involved 74,916 beads with an initial size

of 470 3 98 3 160 Å3. To facilitate the global membrane curvature devel-

opment in the six-BAR domain simulations, the membrane was ruptured in

the longest dimension, namely, at both ends of the membrane; water pad-

dings of 50 Å were added. The system in simulation 6BAR-1row-RB con-

tained 223,017 CG beads, with a size of 1,1103 1243 202 Å3; the system in

simulation 6BAR-2row-RB contained 181,873 CG beads, with a size of

736 3 180 3 167 Å3. All RBCG simulations were carried out in the NpT

ensemble with the same parameters as those in the all-atom simulations. The

cut-off distances for nonbonded interactions were also the same as in the all-

atom simulations. Periodic boundary conditions were applied, using PME to

compute the long-range electrostatic interaction. A timestep of 20 fs was

used.

Shape-based CG simulations

The shape-based CG (SBCG) method has been developed to simulate pro-

teins and their assemblies (52), and has been applied to study viral capsids

(52) and the bacterial flagellum (53) on a timescale of tens of microseconds

and with the ratio of 200 or 500 atoms per CG bead. The SBCG tools are

available as a VMD (72) plug-in. In this study, we used 150 atoms per bead.

The shape of a protein in an SBCGmodel is represented by several CG beads

whose positions are assigned by a topology-conserving algorithm (76); the

beads are connected by harmonic bonds to maintain the protein shape. The

method was applied to coarse-grain BAR domain dimers, each dimer being

represented by 50 CG beads. The SBCG method was also extended to de-

scribe lipid membranes.

Each SBCG bead describes a domain of atoms in the molecule. The mass

of the domain and its charge are assigned to the bead, and time evolution of

the whole system is described using classical MD. Interactions between

beads are described by a CHARMM-like force field (70), i.e., bonded in-

teractions are represented by harmonic bond and angle potentials (but no

dihedral potentials), and the nonbonded potentials include 6-12 Lennard-

Jones (LJ) and Coulomb terms. For the same reasons as in case of the RBCG

model we set e ¼ 1.

The solvent is modeled through Langevin terms (fluctuating and frictional

forces), representing water viscosity. Frictional and fluctuating forces are

accounted for by a single parameter, the damping constant g (see (52)). To

select an appropriate value for g, we ran simulations of a single free-floating

BAR domain dimer with g ¼ 0.5, 2, and 5 ps�1. Ten 1-ms-long simulations

were carried out for each value of g and the diffusion constantD of the BAR

domainwas computed applying the Einstein relation to the protein’s center of

mass r~c;

Æ r~cðtÞ � r~cð0Þ½ �2æ ¼ 6Dt; (1)

where the average Æ. . .æwas taken over all simulations for given g. We found

D¼ 216 5, 56 2, and (1.96 0.5)3 10�7 cm2/s for g ¼ 0.5, 2, and 5 ps�1,

respectively. For the protein approximately the size of BAR domain (55,000

amu), experimental values of the diffusion constant are ;6 3 10�7 cm2/s

(77, 78). Accordingly, we choose g ¼ 2 ps�1.

The SBCG model of the BAR domain is built as described in Arkhipov

et al. (52). The BAR domain is a homodimer; each monomer was constructed

identically. However, using the SBCG model it was impossible to preserve

the stability and shape of the dimer by using nonbonded forces alone, since

the dimerization depends on interactions between the monomers, such as

specific hydrogen bonds and salt bridges, not accounted for in a straight-

forward SBCG model. The SBCG method in its present form is designed to

reproduce gross effects from electrostatic and hydrophobic/hydrophilic in-

teractions, but these are not sufficient to account for BAR domain dimer-

ization properly. Therefore, bonds between the monomers are introduced and

used in the SBCG simulations (Fig. 3 G). The same rule is applied for

connecting beads by bonds within one monomer and between the two

monomers: two beads are connected if the distance between them is,18 Å.

Interaction parameters were extracted from the all-atom structure andMD

simulation of a single BAR domain system. The procedure described in

Arkhipov et al. (52) was extended to introduce more specificity for each CG

bead. The nonbonded interaction strength eij for the pair of beads i and j was

computed as eij ¼ ffiffiffiffiffiffiffi
eiej

p
; where ei and ej are the strengths for each bead. The

value of ei was assigned for each bead i based on the hydrophobic solvent-

accessible surface area (SASA) for the protein domain represented by the

bead,

ei ¼ emax

SASA
hphob

i

SASA
tot

i

� �2

; (2)

where SASAhphob
i and SASAtot

i are the hydrophobic and total SASA of the

domain i, and emax ¼ 10 kcal/mol (in (52), ei ¼ const). SASA for a domain

was computed in the context of the whole protein, i.e., atoms that are at the

surface between two domains, but are buried inside the protein, do not

contribute to the computed value. This approach, when used in SBCG

simulations of single BAR domains on a membrane patch, provided results

that are in the closest agreement with all-atom simulations; other approaches,

such as using emax greater or smaller than 10 kcal/mol and using other powers

of SASA ratio instead of the square, or setting ei ¼ const gave worse

agreements between the all-atom and SBCG simulations. The idea behind

using the SASA to determine ei is to let hydrophobic beads aggregate and

hydrophilic beads dissolve in the solvent. For a pair of completely hydro-

philic beads, Eij¼ 0 holds—inwhich case the two beads are free to dissociate

unless they are bound to other particles; eij for two completely hydrophobic

beads is 10 kcal/mol, which is significantly higher than the thermal energy

(kBT � 0.6 kcal/mol at 300 K), but still permits thermal fluctuations.

The terms for bonded interactions in the SBCGmethod (52) are described

by potentials Vbond(r)¼ Kb(r – r0)
2 and Va(u)¼ Ka(u – u0)

2 for bond-length r

and angle u, where Kb, r0, Ka, and u0 are the force-field parameters. In many

CG approaches, such parameters are derived from all-atom simulations using

the Boltzmann inversion method: for each variable x (such as ith bond-length

ri), one obtains the distribution r(x) from the all-atom simulation, and uses

the Boltzmann relation rðxÞ ¼ r0exp½�VðxÞ=kBT� to obtain V(x). But, as the
example with the BAR domain in Fig. 5 A shows, this approach can be

grossly inadequate. The Boltzmann relation for a single variable holds only if

x is an independent variable, not affected by other potentials. For a network

of bonds, such as is often the case in SBCG protein models, the bond-lengths

and angles are not independent, and when parameters for each of them are

derived individually using Boltzmann inversion, the stiffness of the structure

is overestimated (dotted in Fig. 5 A). Therefore, we used Boltzmann inver-

sion only to obtain the initial values for force constants Kb and Ka, and then

scaledKb orKa repeatedly (and uniformly) until the stiffness of the CGmodel

became closer to that of the all-atommodel (compare solid and shaded curves

in Fig. 5 A). To judge how well the stiffness is represented for each set of

force constants tried, we extracted the force constants from CG simulations

using the Boltzmann relation above, and averaged them over all bonds (or

angles). The scaling was repeated until this average ÆKæCG reached the all-

atom average ÆKæAA, with an allowed deviation of 625% for ÆKæAA. Such
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scaled values were used in our actual simulations. This approach is similar to

the iterative Boltzmann inversion method suggested in the literature (79–81).

The latter method is used, for instance, in polymer coarse-graining (usually,

for nonbonded potentials) by iteratively tuning the CG potentials to match

the radial distribution functions observed in all-atom simulations. For r0 and

u0, Boltzmann inversion provides a very good guess, i.e., one which does not

require any further modification.

Lipids have not been previously modeled with SBCG, althoughmodels in

which a lipid is represented by just a few particles have been proposed before

(see, e.g., (60)). However, we desire to employ hundreds of atoms per bead,

while a single DOPC lipid consists of only 138 atoms. Since the lipid mol-

ecule is elongated, it is impossible to represent it by a single spherical bead.

Using a few beads per lipid would reduce the maximal possible time step in

the SBCG simulation, which would compromise the accessible timescales.

Thus, we abandon representing single lipid molecules as separate entities,

and, instead, represent each leaflet of a lipid bilayer by two layers of CG

beads: one for the lipid heads and one for the lipid tails (Fig. 3, C and D, and

Fig. 6), a head and a tail bead pair representing several lipid molecules. No

head-tail pair is connected to other pairs (nonbonded interactions only), but

the two beads within the pair are connected by a harmonic bond. Since the

leaflet thickness (including furthest-reaching heads) is ;25 Å, each bead

accounts for the part of the leaflet that is 12.5 Å in height, or for the volume

12.5 3 12.5 3 12.5 Å3 (since the bead has to be symmetric in each di-

mension). Thus, a two-bead CGmolecule (Fig. 6) stretching across the leaflet

accounts for the area 12.53 12.5 Å2 and occupies the volume of 12.53 12.53
25 Å3. With the DOPC area per lipid being ;70 Å2, each two-bead DOPC

molecule represents 2.2 DOPC lipids on average, or ;300 atoms. This

dictates the choice of 150 atoms per CG bead that we are using in this work.

The lipids are parameterized based on simulations of a DOPC membrane

patch. The length of the bond between the head and tail beads, r0, and the

bond strength, Kb, control the average membrane leaflet (or bilayer) thick-

ness, as well as root mean-square deviations (RMSDs) of the thickness (r0
mainly accounts for the thickness and Kb for the RMSD). As shown in Fig.

5, B and C, these values are quite sensitive to r0 and Kb used in SBCG

simulations, even within the variation of 0.5 Å for r0 and 0.1 kcal/(mol Å2)

for Kb. The values for r0 and Kb used in the actual simulations are 12 Å and

0.2 kcal/(Å2mol). Note that the leaflet thickness is defined here as a distance

between the centers of mass of the upper and lower parts of a lipid, averaged

over the leaflet, which is described by the distance between the head and tail

beads in the SBCG model (Fig. 5 B).

The LJ parameters for lipid beads are chosen to reproduce the area per

lipid (;70 Å2), but they also influence the bilayer thickness, due to the in-

teractions between the two leaflets. The LJ energy ei for a tail bead is set to 10

kcal/mol, and that for head beads to 0.1 kcal/mol; LJ radii are set to 6.8 Å for

both. However, it appears that for the head beads, values of ei in the range

3.0–20.0 kcal/mol (with LJ radii being 6.8 Å) result in approximately the

same area per lipid and bilayer thickness. The LJ radius has a much stronger

effect on these properties, e.g., an LJ radius of 6.3 Å results in an area per

lipid of;60 Å2. The area per lipid cited here was computed from the area per

two-bead SBCG molecule, assuming that such a molecule represents 2.2

lipids on average.

Each bead in the DOPCmodel has zero charge. For DOPS lipids, a charge

of �2.2jej is assigned to the head bead. The masses are 864.75 amu for the

DOPC head and tail beads, and 866.76 amu for the DOPS head bead. To

match the charge of the DOPS beads, we introduce ions, each with the charge

of 62.2jej and mass of 1000 amu, roughly corresponding to eight ions of

mixed nature (such as both Na1 and Cl�) with their hydration shells. For the
initial conditions in our simulations, ions (either positive or negative) are

distributed uniformly in the simulated volume (excluding the areas occupied

by lipids and proteins).

FIGURE 5 Tuning bonded forces in SBCG models. (A) Bond constants

Kb for all bonds in the SBCG model of the BAR domain. Using Boltzmann

inversion, Kb values are extracted from an all-atom simulation (solid

representation). These values of Kb are used in a SBCG simulation. The

Boltzmann inversion is performed on the resulting SBCG trajectory, but the

Kb values extracted are significantly higher (dotted) than those obtained from
the all-atom simulation. Then, Kb constants used for the SBCG simulation

are all multiplied by the same number (0.3 in this example), and a new

SBCG simulation is carried out with these constants. The Boltzmann

inversion performed on the new SBCG trajectory returns Kb values (shaded
representation) that are much closer to those found in the all-atom simulation.

Thus, the scaled constants are better suited for SBCG simulations. (B and C)

DOPC leaflet thickness (defined as the distance between the centers of mass

of the upper and lower parts of a lipid, averaged over the leaflet) and its

RMSD recorded in all-atom (solid representation) and SBCG (shaded

representation) simulations of a patch of DOPC bilayer. The all-atom and

SBCG simulations produce matching results when the SBCG bond param-

eters are r0 ¼ 12.0 Å and Kb ¼ 0.2 kcal/(mol Å2), which are the values used

in all further SBCG simulations. A variation of these parameters, such as

r0 ¼ 12.5 Å and Kb ¼ 0.3 kcal/(mol Å2), produce a noticeable deviation.
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SBCG simulations were carried out with a time step of 100 fs. A 30 Å

cutoff was used for the nonbonded interactions. Periodic conditions were

used in all SBCG simulations; the membrane was ruptured in the longer

dimension at the periodic cell boundaries, similarly to the RBCG simulations

6BAR-1row-RB and 6BAR-2row-RB. The membrane was a mixture of

DOPC and DOPS, with 30% of DOPS as in the all-atom and RBCG simu-

lations.

Bending rigidity of the model SBCG membrane

To estimate the bending rigidity of the SBCG model membrane, we employ

an approach recently suggested by Harmandaris et al. (45). In this approach,

simulations mimic a typical experimental setup, which obtains membrane

bending rigidity by measuring the force required to pull a membrane tube

from a vesicle. In the approximation of an elastic membrane described by the

Helfrich Hamiltonian (64), the curvature energy E of a cylinder of radius R

and length L is given by

E ¼ pkcL

R
; (3)

where kc is the bending modulus. The axial force F required to hold the

cylinder at given length and radius is assumed to be equal to the derivative

of E with respect to L, with the total area 2pLR being fixed, namely, F ¼
2pkc/R. This force can be directly measured in an experiment or in a simu-

lation (see (45) for details), and used to estimate the bending modulus as

kc ¼ FR

2p
: (4)

We simulated various membrane tubes, prepared as bilayer cylinders with

hollow ends, with radii varying between 50 and 200 Å (each tube contained

;5000 beads, no periodic conditions were used; see Lip-Bend simulations in

Table 1). The tubes were first equilibrated for 1 ms. Then, the simulations

were continued, while harmonic constraints were applied in the axial

direction to the beads at the tips of the tubes (see Fig. 7), with the spring

constant 0.01 kcal/(mol Å2). The axial forces from the constraints acting at

both ends of a tube were computed. The direction of force that corresponds to

extending the tube (the force acting against the shrinking of the tube’s length)

was chosen as the positive one. The forces from both ends, projected on the

appropriate direction for each end, were summed together, providing the full

force acting to extend the tube. The first 1 ms of the simulations was

disregarded, to allow for equilibration. Our approach differs slightly from

that of Harmandaris et al. (45); these authors extended simulated tubes

across a periodic box, and only the axial strain in the tubes was measured to

estimate F.

We used Eq. 4 to determine kc, employing average force ÆFæ and average
radius ÆRæ from each simulation (average over time for F, and over both time

and axial dimension for R). The obtained kc values are presented in Fig. 7 in

units of kBT (T ¼ 300 K). The experimental value of kc for pure membranes

(see, e.g., (82)) is;0.5–1.03 10�19 J, or 10–20 kBT; the overall average for
kc obtained from the simulations is 19.6 kBT, the average values from each

simulation being clustered in the range of 10–30 kBT with significant fluc-

tuations. The SBCG membrane model overestimates slightly kc, but, taking

into account the coarseness of the model, the agreement is satisfactory. The

applicability of the SBCG membrane model for simulations of membrane

reshaping phenomena is also indicated by the good agreement between the

all-atom and SBCG simulations of membrane bending by BAR domains,

described in Results.

FIGURE 6 SBCGmodel for lipids. A patch of DOPCmembrane is shown

from the top and from the side, in an all-atom as well as in SBCG

representations. The head and tail halves of the all-atom lipids are shown in

cyan and white, respectively. Each SBCG molecule represents ;2.2 lipids;

the head SBCG beads are in green, and the tail beads are in pink.

TABLE 1 Simulated systems

Name Method Nrun NBAR N Time Result

Lip-Bend SBCG 10 0 5000 4 ms Measurements of bending rigidity

Lip-SB SBCG 20 0 600 10 ms Self-assembly

1BAR-AA All-atom 1 1 671,331 25 ns Local curvature

1BAR-RB RBCG 3 1 74,916 50 ns Local curvature

1BAR-SB SBCG 5 1 1404 50 ns Local curvature

6BAR-1row-RB RBCG 1 6 223,017 20 ns Local, no global curvature

6BAR-2row-RB RBCG 1 6 181,873 50 ns Global curvature

6BAR-1row-SB SBCG 5 6 4436 5 ms Local curvature at first, global at ;1 ms

6BAR-2row-SB SBCG 5 6 3265 5 ms Global curvature

6BAR-EM EM ;100 6 — ;10 ms Global curvature

Name corresponds to a series of similar simulations, and Nrun stands for the number of simulations. Time is the simulated time for a single simulation in the

series. The only differences between the simulations listed under the same name were the initial velocities (which were randomly generated according to the

Maxwell distribution); for series Lip-Bend and Lip-SB, initial structures for some of the runs were different as well. NBAR is the number of BAR domains in

the simulated system, and N is the total number of particles (does not apply for EM). Lip-Bend are the simulations for measuring bending rigidity of the

SBCG DOPC membrane, Lip-SB are the simulations of DOPC lipids self-assembly, starting from a random mixture of SBCG lipids. 6BAR-EMs are the EM

computations reproducing the results of simulations 6BAR-2row-RB and 6BAR-2row-SB.
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Continuum elastic membrane model

Simulation of BAR domains and membranes can be speeded up even beyond

the SBCG models if one uses a continuum elastic membrane (EM) model.

We developed a simple string model, where the profile of the membrane

along its center line is represented by a continuous string in two dimensions

(instead of full three dimensions; the membrane is supposed to be fully pe-

riodic in the third dimension). The string dynamics is described by classical

mechanics and is solved numerically. For that purpose, the string of length L

is represented as a chain of pointlike elements i¼ 1, . . .,N, with the elements’

positions s being distributed along the string length (s 2 [0, L]). Positions of
each element at each time moment t are described by vectors r~iðtÞ ¼
ðxiðtÞ; yiðtÞÞ. The forces acting on each element arise due to three causes:

membrane stretching (f~stretch), membrane bending (f~bend), and damping from

the environment. Thus, the dynamics of each element is described as

r̈~iðs; tÞ ¼ + f~stretchðs; tÞ1+ f~bendðs; tÞ � gEMr~
�
iðs; tÞ: (5)

Here f~stretch and f~bend are not forces, but are proportional to forces (with the

proportionality being defined by the linear density of the string, which does

not enter the final equations). r~
�
and r̈~ are the 1st and 2nd derivatives with

respect to time t.

The stretching term is described by a harmonic spring acting between any

two adjacent elements in the chain,

f~stretch ¼ 6AstretchðjDr~j � DsÞ Dr~jDr~j; (6)

where Dr~ is the vector connecting the two elements, Ds ¼ L/(N – 1) is the

distance between the elements along the straight string at rest, and Astretch is a

constant.

The bending term is designed to maintain a straight membrane if no BAR

domains are present, or sculpt the membrane to acquire a certain curvature, if

BAR domains are present. The bending term is defined for each triple of

consecutive elements, with the absolute value of f~bend being the same for the

edge elements in the triple,

j f~bendj ¼ Abend Kðs; tÞ � K0½ �; (7)

where K0 is the assigned intrinsic curvature (K0 ¼ 0 if no BAR domain is

present), Abend is a constant, and

Kðs; tÞ ¼ jx9ðs; tÞy$ðs; tÞ � y9ðs; tÞx$ðs; tÞj
ðx9ðs; tÞ2 1 y9ðs; tÞ2Þ3=2 (8)

is the local curvature (x9 and x$ being the first and second derivatives with

respect to s). The values for K(s, t) are obtained numerically using Eq. 8 and

three-point centered finite difference approximations for x9, x$, y9, and y$.
The surface on which BAR domains are located is defined in the beginning of

a calculation, thereby determining the direction of a positive or negative

curvature. Directions of f~bend applied to the edge elements of the triple are

defined identically to the case of a bonded angle potential in an MD force

field, i.e., f~bend acts to close the angle formed by the triple if K(s, t), K0, and

to open the angle if K(s, t) . K0. The term f~bend for the central element is a

negative of the sum of f~bend from the two edges. Sums in Eq. 5 indicate that

each element is acted upon by more than a single f~bend and f~stretch: the terms

acting on each element are two f~stretch (one from the link with the previous

element and another from the link with the next one) and three f~bend (each

from the three triples that the element is a part of). The edge elements

experience fewer forces since they have fewer neighbors.

The EM model uses four parameters: K0, Astretch, Abend, and gEM. In

general, K0 can depend on s and t; in our computations, we set it to uniform

values chosen to reproduce the final curvatures of the membrane obtained in

RBCG and SBCG simulations of six BAR domains. The stretching param-

eter Astretch can be connected with the Young modulus for the membrane

extensibility; the experimental value (82) of the Young modulus of a

membrane at room temperature is approximately the same (within;3%) for

such lipids as DMPC, SOPC, etc., and we find that it corresponds to Astretch�
104 ns�2. The other two parameters, Abend and gEM, have to be chosen to

reproduce our CG simulations. In principle, Abend could be obtained using

experimental data for the membrane bending elasticity, but it may differ

significantly for the free membrane and the one covered with BAR domains.

One simulation with six BAR domains (6BAR-2row-RB) is chosen for the

parameterization, using the curvature values and the time dependence of the

membrane end-to-end distance for reference. The best-matching values, used

for further EM computations, are Abend � 7 nm2/ns2 and gEM � 0.06 ns�1.

Assessing the simulation timescales

Since the BAR domain systems are described at four levels of resolution, one

may wonder how times reported in simulations at different levels compare

with each other, and whether some type of time scaling links the dynamics at

different levels. The times reported are given by the number of integration

steps simulated, multiplied by the integration time step (in terms of the

chosen units of time). In fact, the convention of fixed units (t0¼ 1 fs, l0¼ 1 Å,

m0 ¼ 1 amu) is used in NAMD (71), the program we employed for all-atom,

RBCG, and SBCG simulations. For EM computations, we used units t0 ¼
1 ns, l0¼ 1 nm, andm0¼ 1 amu. Thus, the times reported for each simulation

(and across the resolution levels) can be compared directly.

FIGURE 7 Determination of the bending rigidity of the SBCG mem-

brane. Shown at the top is an example bilayer tube that emulates a tether

pulled from the membrane in experiments measuring the bending rigidity.

Tubes of various radii were simulated with harmonic restraints applied to the

ends of the tube (darker CG beads at the tips of the tube). The force

experienced by the restrained beads was computed and used to estimate the

bending rigidity, according to Eq. 4. Results of these measurements are

shown at the bottom, where the estimated bending rigidity (in units of

temperature, T ¼ 300 K) is plotted versus the average tube radius.
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RESULTS

We performed a number of all-atom, RBCG, SBCG, and EM

simulations, as listed in Table 1. In an all-atom simulation of

a single BAR domain with a patch of planar membrane,

1BAR-AA, the protein was found to curve the membrane, in

agreement with previous observations (30). Multiple RBCG

and SBCG simulations of the same process (1BAR-RB and

1BAR-SB) were found in good agreement with all-atom

simulations. RBCG simulations of multiple-BAR domain

systems showed that, over the timescale of ;50 ns, the

nonstaggered arrangement of BAR domains does not pro-

duce a global curvature, while the staggered arrangement

does. The SBCG simulations confirmed these conclusions,

but also allowed us to reach times of ;5 ms, at which the

global curvature developed for both arrangements, al-

though to a different extent (radius of curvature 1000 vs.

;300 Å).

Self-assembly properties of the model
SBCG membrane

For a validation of the new SBCG lipid model, we carried out

self-assembly simulations with DOPC, starting from a ran-

dom lipid mixture and using a number of different sizes of the

periodic cell (Lip-SB simulations). Depending on the size of

the periodic cell, the SBCG DOPC molecules assemble into

well-defined structures, as expected for lipid phases. For

example, 300 SBCG lipid molecules in a 1003 1003 100 Å3

periodic cell form multilamellar structures (Fig. 8 A). For
smaller box sizes (higher lipid concentration), the self-as-

sembly results in inverted hexagonal phase-like structures.

For larger cells, a single bilayer forms across the periodic cell,

often with a metastable lipid bridge (stalk) connecting the

periodic images of the bilayer. Such bridges have been ob-

served in lipid self-assembly simulations using, e.g.,Marrink’s

CG model (37). It may often take 100 nanoseconds to several

microseconds to dissolve these bridges. For even larger cell

size (such as 183 3 122 3 218 Å3 shown in Fig. 8 B) the
lipids aggregate into a number of micelles. In the simulation

demonstrated in Fig. 8 B, a relatively rare event happened

when several micelles fused quickly into a single complex

that formed a bilayer spanning the whole cell. The initial

formation of the structures described here happens usually on

timescales of 10–100 ns, which is then followed by a slower

stabilization of the structure and elimination of defects, tak-

ing hundreds of nanoseconds to tens of microseconds.

Thus, the SBCG model qualitatively captures the self-as-

sembly properties of lipids, with correct phases forming de-

pending on the lipid concentration. Notably, the lipid SBCG

model has been parameterized to reproduce the bilayer

properties, namely, thickness, and area per lipid. The chosen

parameters allow one to capture other properties of lipid

systems as well, such as the self-assembly dynamics and

bending elasticity of the membrane.

FIGURE 8 SBCG simulations of DOPC self-assembly. Formation of a

multilamellar structure is shown in panel A, and of a single bilayer in panel B.

In both cases, the system consists of 300 SBCG two-bead molecules,

corresponding to ;660 DOPC lipids, and the simulations start from a

randomized mixture of SBCG molecules. The periodic cell is 100 3 100 3
100 Å3 in panel A (shown as an open square), and 183 3 122 3 218 Å3 in

panel B (one cell is shown). In panel A, lamellar-like structures form quickly

and then stabilize with time, producing eventually stacks of bilayers. In

panel B, a number of large and small micelles forms first, but then almost all

lipids aggregate into a single bilayer extending over the entire size of the

periodic cell. A large micelle that has not fused with the bilayer can be seen

at the snapshots at the bottom.
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Single BAR domain simulations

In simulation 1BAR-AA we observed that a single BAR

domain induces local curvature on a patch of membrane (Fig.

9 A), in agreement with previous all-atom simulations (30).

All three RBCG simulations of a single BAR domain

(1BAR-RB) exhibited the same behavior (Fig. 9 B); the in-

duced curvature varied in each simulation, again in agree-

ment with previous studies (30,31). The same behavior was

observed in the SBCG simulations (1BAR-SB, Fig. 9 C). In
all cases, a bending mode developed underneath the BAR

domain-occupied region of the membrane and stabilized after

;25 ns. The bending mode in the RBCG and SBCG simu-

lations was more pronounced than that in our single all-atom

simulation 1BAR-AA; however, some of the earlier all-atom

simulations (30) generated a higher membrane curvature,

similar or even higher than those observed in our CG simu-

lations (Fig. 9 D).
The time evolution of the membrane curvatures is shown

in Fig. 9 D. The curvature displayed is the overall curvature

of the membrane underneath the BAR domain, calculated by

fitting the profile of the corresponding membrane section to a

circle. This definition of curvature is different from that used

in Blood and Voth (30), which employed the point curvature

for the membrane directly beneath the center of the BAR

domain. The two black circles in Fig. 9 D illustrate the cur-

vature reached in the simulations reported in Blood and Voth

(30), when calculated by our method; the data were taken

from the membrane profiles in Fig. 3b of Blood and Voth

(30), averaged from 20 to 27 ns. One can see that earlier all-

atom simulations produced higher curvatures than 1BAR-

AA (orange curve). However, in other simulations by Blood

et al. (31) the authors observed a curvature significantly lower

than that found in Blood and Voth (30), suggesting that single

BAR domains induce a wide range of membrane curvatures,

varying from case to case, as well as over time for a single

case. The curvature observed in our simulations 1BAR-AA,

1BAR-RB, and 1BAR-SB falls in the same range and varies

among the simulations. Thus, the RBCG and SBCG models

reproduce the phenomenon that a single-BAR domain in-

duces a membrane curvature, with the magnitude and vari-

ation of the curvatures, as well as the timescale of curvature

generation, agreeing well with characteristics seen in all-

atom simulations.

Simulations of six-BAR domain systems

Systems with six BAR domains considered here would

amount to a few million atoms in the all-atom representation,

making long-enough all-atom MD unfeasible. Thus, we

employed RBCG and SBCG simulations. Six BAR domains

were placed on an initially planar membrane (Fig. 10), in a

nonstaggered arrangement (simulations 6BAR-1row-RB and

6BAR-1row-SB; see Fig. 2 A), and in a staggered arrange-

ment (6BAR-2row-RB and 6BAR-2row-SB; Fig. 2 B).

Results of these simulations are shown in Fig. 10. The

RBCG systems were composed of ;200,000 particles. The

simulations were stopped at 20 ns for 6BAR-1row-RB and at

50 ns for 6BAR-2row-RB, since the membrane edges from

the neighboring periodic images came within the cutoff dis-

FIGURE 9 Single BAR domain simulations. (A–C) Snapshots from all-

atom simulation 1BAR-AA, one of RBCG simulations 1BAR-RB, and one

of the SBCG simulations 1BAR-SB. Negatively charged PS lipid head-

groups are shown in red, and neutral PC headgroups are shown in cyan. The

protein consists of two monomers, shown in green and purple. (D) Time

evolution of membrane curvature. The two black dots are the curvatures

from two all-atom simulations reported in Blood and Voth (30), averaged

from time 20–27 ns. The black curve is from simulation 1BAR-AA; red,

orange, and magenta are from simulations 1BAR-RB; the rest (turquoise,

blue, green, deep green, cyan) are from simulations 1BAR-SB.
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tance due to large changes in the dimensions of the periodic

cell, kept flexible to maintain constant pressure.

In the simulations with the nonstaggered arrangement

(6BAR-1row-RB, 6BAR-1row-SB), BAR domains induced

a local, but no global curvature. In the simulations with the

staggered formation (6BAR-2row-RB, 6BAR-2row-SB), a

global bending mode developed, with the radius of curvature

reaching ;400 Å. This radius is comparable to experimen-

tally observed values (21). Fig. 11 shows the membrane

curvature versus time as seen in the RBCG and SBCG sim-

ulations. The plotted curvatures are those developed under

individual BAR domains in RBCG simulations and overall

curvatures. Curvatures under individual BAR domains in

SBCG simulations show the same trend as those in RBCG

simulations, and are not depicted. The local curvatures ob-

served are close to those in simulations of single BAR do-

mains (Fig. 9 D), and exhibit a similar scatter from one

simulation to another. In simulation 6BAR-1row-RB (Fig.

11 A), the highest local membrane curvature (radius of 150 Å)

occurs at the edge of the membrane patch, i.e., beneath BAR

domains 1 and 6 shown in Fig. 10 A. This is probably due to
the fact that the edge of the membrane is more flexible than

the middle since the edge is unrestrained and does not interact

with other BAR domains. In simulation 6BAR-2row-RB

(Fig. 11 B), high local curvatures also occur at the edge of

the membrane beneath BAR domains 1 and 5.

In case of the nonstaggered arrangement of BAR domains,

the membrane directly beneath each BAR domain is pulled

in by the concave charged surface of a protein, while the

membrane between two adjacent BAR domains remains in its

original, planar conformation. Thus, a ripple-shaped mem-

brane (Fig. 10, A and C) develops in ;15 ns and remains

stable. For BAR domains in the staggered arrangement, the

membrane beneath each BAR domain is also bent locally, but

because the membrane between two adjacent BAR domains

in one row is covered by another BAR domain from the next

row, the bending results in a uniform curvature (Fig. 10, B
and D).

Due to the reduction in the number of particles and the

increase of the integration time step in going from the RBCG

to the SBCG model, we were able to simulate the dynamics

of six BAR domains on a longer timescale, namely, up to

5 ms, as shown in Fig. 12 (see also Movie S1and Movie S2 in

Supplementary Material). The SBCG simulations reproduce

the results of the RBCG simulations over 50 ns ideally, but

reaching further in time reveal global curvature arising also in

the case of the nonstaggered BAR domains arrangement. Up

to 100–400 ns, the membrane remains globally flat, but then

starts to curve (Fig. 12 C). The bending reaches its maximum

at 1.5 ms, with a radius of global curvature of;700–1200 Å.

The radius converges to a value of ;1000 Å at 2.7 ms when
the membrane in all five simulations 6BAR-1row-SB stops

bending. In contrast, the membrane in the staggered system

reaches a global curvature radius of 300–400 Å during the

first 300 ns of simulation, and does not exhibit significant

further changes thereafter.

The differences between the curvatures reached and the

dynamics of bending between simulations with a single BAR

domain, with nonstaggered six BAR domains, and staggered

six BAR domains indicate that the distribution of BAR do-

mains on the membrane determines the membrane curvature.

The observed values of the radius of curvature range from

100 to 150 Å for local bending produced by individual BAR

domains to 1000 Å in the case of global curvature in simu-

lations 6BAR-1row-SB. This agrees well with experimental

observations that BAR domains may produce tubes with a

wide spectrum of curvatures (21). In simulations 6BAR-

2row-SB, the global curvature radius reaches;250 Å, equal

to the value observed in one of the micrographs in Peter et al.

(21). Interestingly, simulations of the systems with exactly

the same initial structure produce different membrane shapes,

which is true for all our simulations as well as previous sin-

gle-BAR domain all-atom simulations. The final structure is

always slightly, but noticeably different from one simulation

to another, and the radii of bent membranes, although close to

each other (within 30–50%), are never exactly equal. How-

FIGURE 10 Membrane curvature in-

duced by multiple BAR domains. (A)

Six BAR domains in the nonstaggered

arrangement in RBCG simulation

6BAR-1row-RB. (B) Six BAR domains

in the staggered arrangement in RBCG

simulation 6BAR-2row-RB. Upper and

middle panels in panels A and B show

side- and top-views of the initial setup.

Lower panels are snapshots after 20 or

50 ns. (C) BAR domains in the SBCG

simulations 6BAR-1row-SB. (D) BAR
domains in the SBCG simulations

6BAR-2row-SB.
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ever, the qualitative behavior is found to be the same in

simulations starting from the same structure, indicating that

certain arrangements of BAR domains can robustly bend

membranes into curved structures with a relatively well-de-

fined radius.

EM computations

The continuum EM model (see Methods) was parameterized

to reproduce the dynamics of the six-BAR domain system

with the staggered arrangements of the proteins. Typical re-

sults of the EM computations are shown in Fig. 13. Snapshots

of the membrane shape are shown in Fig. 13 A and corre-

spond well to the membrane evolution observed in sim-

ulations 6BAR-2row-SB. The membrane starts to bend

gradually and reaches a radius of;250–400 Å at;300 ns, at

which point the curvature stabilizes. Fig. 13 B compares the

end-to-end distances recorded in the five simulations 6BAR-

2row-SBwith the end-to-end distances obtained from the EM

computations (only the first 1 ms is shown since after 300–

500 ns the distance remains rather constant). Overall, the EM

model captures very well the membrane curvature dynamics

observed in the simulations.

In the EM model, four parameters are used: intrinsic cur-

vature K0, force constants Astretch and Abend, and a damping

coefficient gEM.We worked with the uniform values ofK0 set

for each element of the EM model; these values were tuned

according to the curvatures observed in each of the SBCG

simulation to reproduce their individual end-to-end dis-

tances, as shown in Fig. 13 B. Parameters Astretch, Abend, and

gEM were also set uniformly, but were not changed from one

computation to another. The final end-to-end distances ob-

tained in each simulation are apparently determined by the

final curvature, and are matched well by the EM model when

K0 is tuned, but the dynamics of the bending (the speed of

decay of the end-to-end distance) is reproduced well by the

EMmodel even without changing the other three parameters.

This means that the membrane stretching elasticity (de-

scribed by Astretch), as well as bending elasticity and bending

forces exerted by BAR domains (described together by

Abend), are the same in each simulation, and the variety of

curvatures observed in the simulations is due to small dif-

ferences accumulating throughout the trajectory (and arising

because of the thermal fluctuations and randomness of initial

velocities), rather than large-scale variations. The radii of

curvature observed in simulations 6BAR-2row-SB are the

same within;40% of the value, and the end-to-end distances

vary within ;100 Å around the average of 500 Å. These

difference can be tolerated in an EMmodel and, thus, one can

set the value ofK0 to an average constant. With such a choice,

namely, K0 ¼ 1/300 Å�1, and the other three parameters

being the same, we obtain a specific model that results in a

FIGURE 11 Time evolution of membrane

curvatures in the simulated six-BAR domain

systems. The shaded number n (1, 2, 3, 4, 5, or

6) denotes that the curve is for the membrane

beneath BAR domain n shown in Fig. 10, A and

B. (A) Local curvatures in simulation 6BAR-

1row-RB. (B) Local and global curvatures in the

staggered arrangement of BAR domain systems

at t , 50 ns. Numbered curves are for local

curvatures in the RBCG simulation 6BAR-

2row-RB. The thick curves (deep green, cyan,

blue, sage, and turquoise) are global curvatures

observed in each of the five SBCG simulations

6BAR-2row-SB, and the black curve is the

global curvature from 6BAR-2row-RB.

FIGURE 12 Six-BAR domain systems at t, 5 ms. (A and B) Snapshots at

5 ms for 6BAR-1row-SB (A) and 6BAR-2row-SB (B). (C) Time evolution of

global curvatures. The five curves at the bottom are for simulation 6BAR-

1row-SB, the five at the top for 6BAR-2row-SB.
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robust description of the staggered arrangement used in the

SBCG simulations.

Extensive computations were performed with the EM

model, sampling many possible values of parameters Astretch,

Abend, and gEM, with K0 being fixed. We found that multiple

sets of these three parameters, differing by orders of magni-

tude, could result in the same dynamics (same end-to-end

distance versus time curve). However, Astretch could be fixed

at �104 ns�2 by matching the experimentally known mem-

brane stretching elasticity, and then the values of Abend and

gEM that result in the correct dynamics are unique. In this

case, variation of Abend results in changing the speed with

which the end-to-end distance (or curvature) reaches a con-

stant value, or, in other words, the decay time of the curves in

Fig. 13 B. Deviation of gEM from the correct value results in

under- or overdamping. In the case of overdamping, the

correct values of the end-to-end distance and of the curvature

cannot be reached, even though K0 matches the desired

curvature, because the system loses too much energy too fast.

In the case of underdamping, correct curvature and end-to-

end distance are reached, but do not remain constant; instead,

these values oscillate with time, reflecting the oscillations of

the membrane shape around its equilibrium position. The

values that we found to match the results of SBCG simula-

tions well are Abend � 76 1 nm2/ns2 and gEM � 0.066 0.01

ns�1. In the vicinity of K ¼ K0, Abend can be related to the

membrane bending rigidity, or bending modulus, kc, which
determines the membrane free energy per unit area as EF ¼
kc(K – K0)

2/2. The value of kc can be estimated as kc
;3raAbend/K

2
0 ;where ra is the area density of the membrane.

For Abend ¼ 7 nm2/ns2, we get kc � 0.9 3 10�19 J. The ex-

perimental values of kc for free membranes (82), such as

DMPC, are kc � 0.5–1.0 3 10�19 J. Thus, our estimation

suggests that the rigidity of the membrane with staggered

arrangement of BAR domains is approximately the same, or

at the most twice higher than that of a free membrane. The

damping parameter gEM accounts for the solvent viscosity

and temperature T. Thus, the value gEM ¼ 0.06 ns�1 corre-

sponds to the membrane bending in water at T¼ 300 K, in the

case when the intrinsic membrane curvature (due to the ac-

tion of BAR domains) is K0 ¼ 1/300 Å�1.

DISCUSSION

We have developed and tested models describing interactions

of a membrane-sculpting protein, BAR domain (using am-

phiphysin BAR domain from Drosophila), with a lipid bi-

layer membrane, at four scales: atomic level, RBCG level

with;10 atoms represented by a CG bead and single-residue

resolution, SBCG level with;150 atoms per CG bead and a

group of beads per protein, and a mesoscopic continuum

level with the membrane and proteins represented through an

elastic membrane model. Each description level is parame-

terized based on the more detailed description of simple

systems. The all-atom MD used the CHARMM force field

(70,75), derived from quantum chemistry calculations. The

RBCG model is parameterized using experimental data

(this is done for lipids in the original Marrink model (37)),

structural considerations (57), and all-atom simulations (in

this study). The SBCG model is based on results of all-atom

simulations and on available experimental data, such as area

per lipid for membrane bilayers. The EM model is parame-

terized using SBCG simulations and experimental data

(Young modulus for membrane extensibility).

Our results reproduce, whenever available, experimentally

known features of membrane bending by BAR domains and

observations of alternative simulations, i.e., our all-atom,

RBCG, and SBCG simulations of a single BAR domain on a

membrane patch agree well with each other and with previ-

ous all-atom simulations (30,31), in terms of the value and

range of the induced membrane curvature and the timescale

of the bending. Our SBCG simulations of six BAR domains

reproduce the behavior observed in the analogous RBCG

simulations. The SBCG model has been used before for

studies of protein complexes (52,53), and here we have de-

scribed a new SBCG model for lipids and showed that the

model captures many features of lipid systems, such as the

characteristics of a bilayer (its thickness, area per lipid, and

fluctuations in these values), and self-assembly properties,

FIGURE 13 Membrane dynamics in EM computations. (A) Snapshots of

the membrane shape in a typical EM computation. (B) End-to-end distance

of the membrane over time. The fluctuating curves are taken from simula-

tions 6BAR-2row-SB, and smooth curves are from EM computations.
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including the formation of different phases depending on the

lipid concentration. Finally, the continuous EM model cap-

tures the membrane sculpting events observed in the simu-

lations with more detailed descriptions.

The simplified models used provide significant speed-ups

for computations. The RBCG model reduces the number of

particles in the system 10-fold, and allows one to use an in-

tegration time step of 20–25 fs, vs. 1 or 2 fs common for all-

atom MD. The SBCG model uses ;150 atoms per CG bead

and describes the solvent implicitly, thus reducing the system

size further, approximately fivefold (in our all-atom simula-

tions, ;80% of the atoms belong to water); thus, the overall

reduction in the number of particles is 750-fold. The EM

model employs a continuum description, typically with

;100 elements being enough to do computations with the

membranes of the size explored here (600–1000 Å long). The

speed-ups provided by the CG and EM models allowed us to

perform several simulations to sample the observed dynam-

ics. The simulated systems behaved somewhat differently in

each simulation, although overall trends remained the same;

this sampling resulted in a range of observed curvatures. The

models used in this study are not specific to the BAR domain-

membrane system and can be adapted to many other protein-

lipid systems, which can be accomplished through the

coarse-graining tools available in VMD (72).

Results of this study show that individual BAR domains

produce local membrane curvatures with the radii being in

the range from 100 to 500 Å, while multiple BAR domains

acting together may induce global curvatures with radii 250–

1000 Å. We sampled only two arrangements of BAR do-

mains, and other arrangements may result in a wider range of

values for the radius of global curvature. The two arrange-

ments studied (see Fig. 2) result in two distinct curvatures of

the sculpted membrane, ;1000 Å in the case of the non-

staggered formation, and ;250–400 Å in the case of the

staggered one. For the former arrangement, BAR domains

first induce local, but no global curvature, and the system

remains in this conformation for 100–400 ns. The SBCG

model allowed us to observe the dynamics on longer time-

scales, and to find that further on, the global curvature slowly

emerges, and stabilizes at t ;3 ms. For the latter arrange-

ment, the global curvature starts to develop from the begin-

ning. In both cases, the systems do not change much after

t ;3 ms.
The two arrangements studied were chosen to reproduce

qualitatively formations of BAR domains observed experi-

mentally (see Fig. 1). Such observations (29) show that BAR

domains form spiraling rows on the surface of membrane

tubules, and, together with our study, suggest that the lateral

alignment of these rows within the spiral determines the size

of the tubule. Then, the BAR domain arrangement that is

more favorable for forming narrow tubules (such as the

staggered arrangement in our study) may be exploited by

the cell for sculpting membranes, and one expects that the

amino-acid composition of BAR domains evolves to account

for this function. Indeed, at least F-BAR domains form the

spiraling rows by polymerizing through interactions between

very highly conserved residues on their surface (26,29).

These interactions seem to favor the staggered formation,

where centers of BAR domains in one lateral row are aligned

(longitude-wise) with ends of BAR domains in the neigh-

boring rows (see Figs. 1 and 2). In addition, the end-to-center

polymerization of BAR domains (as that in Fig. 1) enforces a

single row with no gaps left between the ends of BAR do-

mains, which may also favor stronger tubulation. Thus, the

experimental evidence and our study suggest that the col-

lective action of BAR domains to bend membranes is en-

hanced by arrangement in specific lattices. Such lattices (see

Fig. 1) are employed by the cell in many instances of mem-

brane morphogenesis.
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