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Abstract

Using the Stickelberger–Swan theorem, the parity of the number of irreducible factors of a self-reciprocal
even-degree polynomial over a finite field will be hereby characterized. It will be shown that in the case of
binary fields such a characterization can be presented in terms of the exponents of the monomials of the
self-reciprocal polynomial.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Fq denote the finite field of order q , where q is a prime power, and let Fq [x] denote the
ring of all polynomials over Fq in the variable x. For f (x), a polynomial of degree m over Fq

whose constant term is nonzero, its reciprocal is the polynomial f ∗(x) = xmf (1/x) of degree m

over Fq . A polynomial f (x) is called self-reciprocal if f ∗(x) = f (x). The reciprocal of an irre-
ducible polynomial is also irreducible. The roots of the reciprocal polynomial are the reciprocals
of the roots of the original polynomial, and hence, any self-reciprocal irreducible monic polyno-
mial (srim) of degree > 1 must have even degree, say 2n.

* Corresponding author.
E-mail addresses: oahmadid@uwaterloo.ca (O. Ahmadi), gerardov@servidor.unam.mx (G. Vega).
1071-5797/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ffa.2006.09.004

https://core.ac.uk/display/82377827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


O. Ahmadi, G. Vega / Finite Fields and Their Applications 14 (2008) 124–131 125
Self-reciprocal irreducible polynomials over finite fields have been studied by many authors.
In [3], Carlitz obtained the number of srim polynomials of degree 2n over a finite field for every n

using L-functions. In [4], Cohen obtained the same result by a simpler method. In [10], Var-
shamov and Garakov studied the construction of srim polynomials over binary fields. In [7],
Meyn generalized Varshamov and Garakov’s work and also gave a simpler proof of Carlitz’s
result. In [11], Yucas and Mullen classified srim polynomials based on their orders. In [11] and
[1], the weight of srim polynomials was studied. There are many other related papers in the lit-
erature. In this paper we study the parity of the number of irreducible factors of self-reciprocal
monic (srm) polynomials of even degree and we show that this number can be easily determined.
Since every srm polynomial whose number of irreducible factors is even is certainly reducible,
our result enables one to show easily that some families of srm polynomials are reducible.

2. Preliminary results

We will begin this section by recalling the discriminant and the resultant of polynomials over
a field. For a more detailed treatment see, for example, [2,6].

Let K be a field, and let F(x) ∈ K[x] be a polynomial of degree s � 2 with leading coeffi-
cient a. Then the discriminant, Disc(F ), of F(x) is defined by

Disc(F ) = a2s−2
∏
i<j

(xi − xj )
2,

where x0, x1, . . . , xs−1 are the roots of F(x) in some extension of K . Although Disc(F ) is de-
fined in terms of the elements of an extension of K , it is actually an element of K itself. There is
an alternative formulation of Disc(F ), given below, which is very helpful for the computation of
the discriminant of a polynomial.

Let G(x) ∈ K[x] and suppose F(x) = a
∏s−1

i=0(x − xi) and G(x) = b
∏t−1

j=0(x − yj ), where
a, b ∈ K and x0, x1, . . . , xs−1, y0, y1, . . . , yt−1 are in some extension of K . Then the resultant,
Res(F,G), of F(x) and G(x) is

Res(F,G) = (−1)st bs
t−1∏
j=0

F(yj ) = at
s−1∏
i=0

G(xi). (1)

The following statements are immediate from the definition of the resultant of two polynomi-
als.

Corollary 1. If F is as above, and G1,G2,G3,R ∈ K[x], then:

(i) Res(F,−x) = F(0).
(ii) Res(F,G1G2) = Res(F,G1)Res(F,G2).

(iii) Res(F,G3F + R) = al Res(F,R), where l = deg(G3F + R) − deg(R) and deg(·) denotes
the degree of a polynomial.

Corollary 2. If F is as above, and F ′ ∈ K[x] is the derivative of F , then

Disc(F ) = (−1)
s(s−1)

2 a−1 Res(F,F ′). (2)
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The next lemma directly follows from the two previous corollaries.

Lemma 3. [5] Let F be as above and suppose, furthermore that a = 1, F(0) �= 0 and c ∈ K .
Then

Disc(F ) = (−1)
s(s−1)

2 F(0)−1 Res(F, xF ′ − cF ).

The following results, called the Stickelberger and Stickelberger–Swan theorems, respec-
tively, are our main tools for determining the parity of the number of irreducible factors of a
polynomial over a finite field.

Theorem 4. [8] Suppose that the s-degree polynomial f (x) ∈ Fq [x], where q is an odd prime
power, is the product of r pairwise distinct irreducible polynomials over Fq . Then r ≡ s (mod 2)

if and only if, Disc(f ) is a square in Fq .

Theorem 5. [8,9] Suppose that the s-degree polynomial f (x) ∈ F2[x] is the product of r pairwise
distinct irreducible polynomials over F2 and, let F(x) ∈ Z[x] be any monic lift of f (x) to the
integers. Then Disc(F ) ≡ 1 or 5 (mod 8), and more importantly, r ≡ s (mod 2) if and only if,
Disc(F ) ≡ 1 (mod 8).

If s is even and Disc(F ) ≡ 1 (mod 8), then Theorem 5 asserts that f (x) has an even number
of irreducible factors and therefore is reducible over F2. Thus one can find necessary conditions
for the irreducibility of f (x) by computing Disc(F ) modulo 8.

3. The main results

We start with the following lemma which is probably well known but we include its proof for
the sake of completeness.

Lemma 6. Let K be a field and let F(x) ∈ K[x] be a self-reciprocal polynomial of degree 2n.
Then, for some G(x) ∈ K[x] of degree n, we have

F(x) = xnG
(
x + x−1). (3)

Proof. Let F(x) = ∑2n
i=0 aix

i ∈ K[x] be a self-reciprocal polynomial of degree 2n. Since F(x)

is self-reciprocal, we have a2n−i = ai for i = 0,1, . . . ,2n. From this we have

F(x) = anx
n +

n−1∑
i=0

ai

(
x2n−i + xi

)
,

and hence

F(x) = xn

(
an +

n∑
an−j

(
xj + x−j

))
.

j=1
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Now let F0(x) = 1 and Fj (x) = xj + x−j for j � 1. We claim that, for j � 0, there exists
Gj(x) ∈ K[x] such that Fj (x) = Gj(x + x−1). The claim is trivial for j = 0,1. On the other
hand, we have

(
x1 + x−1)j = xj + x−j +

j−1∑
l=0

blFl(x), (4)

for some b0, b1, . . . , bj−1 ∈ K . Thus the claim follows from Eq. (4) by induction. Finally if we
let

G(x) = an +
n∑

j=1

an−jGj (x),

we obtain Eq. (3). �
Remark. When F(x) is a self-reciprocal polynomial of degree 2n + 1, similar arguments can be
used to show that there exists a degree n polynomial G(x) ∈ K[x] so that

F(x) = (x + 1)xnG
(
x + x−1).

Now let F(x) and G(x) be as in Lemma 6 and let x0, . . . , xn−1, x−1
0 , . . . , x−1

n−1 be the roots
of F(x) in some extension of K . For simplicity, assume that a2n = a0 = 1. Using Lemma 3 with
c = n and using the fact that the roots of F(x) are nonzero, we have

Disc(F ) = (−1)n Res
(
F,

(
x2 − 1

)
xn−1G′(x + x−1)),

where G′ is the derivative of G. Thus using Corollary 1

Disc(F ) = (−1)n Res
(
F,x2 − 1

)
Res

(
F,xn−1G′(x + x−1)).

Applying Eq. (1), Res(F, x2 − 1) = F(1)F (−1) and if we let H = xn−1G′(x + x−1), then

Res(F,H) =
n−1∏
i=0

xn−1
i G′(xi + x−1

i

) n−1∏
i=0

x1−n
i G′(x−1

i + xi

)

=
(

n−1∏
i=0

G′(xi + x−1
i

))2

.

Comparing the right-hand side of the above equation with Eqs. (1) and (2), and using the fact
that the roots of G(x) are precisely x0 +x−1

0 , x1 +x−1
1 , . . . , xn−1 +x−1

n−1 we see that Res(F,H) =
Disc(G)2. Thus

Disc(F ) = (−1)nF (1)F (−1)Disc(G)2. (5)

We are now able to present our main results. Applying Theorem 4 and using the above identity
we have the following:
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Theorem 7. Let f (x) be a srm polynomial of degree 2n over Fq having r pairwise distinct
irreducible factors over Fq . Then r is an even number if and only if, (−1)nf (1)f (−1) is a
square in Fq .

For binary polynomials, since the coefficients are 0 or 1, we can relate the parity of the number
of irreducible factors of a polynomial to its monomials, as follows:

A self-reciprocal binary polynomial f (x) of degree 2n can be written as

f (x) = axn +
u∑

i=1

(
xei + x2n−ei

)
,

where each ei is an integer such that 0 < ei < n for i = 2,3, . . . , u, e1 = 0 and a ∈ F2. If a = 0,
then f (1) = 0 and f (x) is reducible and hence it is not interesting to study the parity of the
number of irreducible factors of such polynomials. Thus we assume that a = 1 and

f (x) = xn +
u∑

i=1

(
xei + x2n−ei

)
. (6)

Now let v be the number of i, i = 1,2, . . . , u, for which the exponent ei is an odd number. We
have the following theorem.

Theorem 8. Let f (x), u and v be as above and assume that f (x) has r pairwise distinct irre-
ducible factors over F2. Then r ≡ v + nu (mod 2).

Proof. Let F(x) be a self-reciprocal lift of f (x) to the integers where the coefficients of F(x) are
0 or 1. Now, applying Theorem 5 and using Eq. (5), we conclude that Disc(G) is an odd number,
and therefore, 4r + 1 ≡ (−1)nF (1)F (−1) (mod 8). Clearly, F(1) = 2u + 1 and F(−1) = 2u +
(−1)n − 4v. Thus the claim follows from the fact that if n is even, then (−1)nF (1)F (−1) ≡
−4v + 1 ≡ 4(v + nu) + 1 (mod 8) and, on the other hand, if n is odd then (−1)nF (1)F (−1) ≡
4(v − u2) + 1 ≡ 4(v + nu) + 1 (mod 8). �

Now it is natural to ask whether the above two theorems are valid if f (x) has repeated irre-
ducible factors. In fact this is the case and the rest of this section is devoted to its proof. First we
give the proof for binary srm polynomials and then we sketch the proof for srm polynomials over
finite fields of odd characteristic. We need the following lemma:

Lemma 9. Let f (x) ∈ F2[x] be as in Eq. (6). Then f (x) = f1(x) · · ·fp(x) where

(i) fj (x) = xnj + ∑uj

i=1 xeij + x2nj −eij ∈ F2[x], eij is an integer, 0 < eij < nj for j =
1,2, . . . , p and i = 2, . . . , uj , e1j = 0 for j = 1, . . . , p, and

(ii) fj (x) has pairwise distinct irreducible factors.

Equivalently, f (x) has a factorization into srm polynomials of even degree, where each srm
factor has pairwise distinct irreducible factors over F2, and does not have 1 as a root.
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Proof. Using Lemma 6, there exists an n-degree polynomial g(x) ∈ F2[x] such that f (x) =
xng(x +x−1). Now let g(x) = g1(x) · · ·gp(x), where each gj (x) is an irreducible polynomial of
degree nj over F2. If we let fj (x) = xnj gj (x + x−1), then f (x) = f1(x) · · ·fp(x) where each
fj (x) is an srm polynomial of degree 2nj which is either irreducible or is the product of two
distinct polynomials which are reciprocal of one another. We have fj (1) �= 0 since otherwise
we would have f (1) = 0. Therefore, each fj (x) is of the required form and this finishes the
proof. �

Now we are ready to state the generalization of Theorem 8.

Theorem 10. Let f (x) be in the form given in Eq. (6), v be the number of i, i = 1,2, . . . , u, for
which the exponent ei is an odd number, and let r be the number of irreducible factors (counted
with multiplicity) of f (x). Then r ≡ v + nu (mod 2).

Proof. Using Theorem 8 and Lemma 9 we just need to prove the following claim:

Claim. Let a(x) = xs + ∑ua

i=1 xai + x2s−ai and b(x) = xt + ∑ub

i=1 xbi + x2t−bi having ra and
rb irreducible factors, respectively, and let c(x) = a(x)b(x) = xs+t + ∑uc

i=1 xci + x2(s+t)−ci .
Suppose that va , vb and vc are the numbers related to the odd exponents of a(x), b(x) and c(x)

as v was related to odd exponents of f (x) after Eq. (6). Also assume that the theorem is true
for a(x) and b(x) or equivalently ra ≡ va + sua (mod 2) and rb ≡ vb + tub (mod 2). Then,
ra + rb ≡ vc + (s + t)uc (mod 2).

One might try to prove the above claim by computing c(x) and keeping track of its exponents,
but this seems rather cumbersome. We can instead lift the polynomials to the integers and prove
the claim.

Let A(x), B(x) and C(x) be the self-reciprocal lifts of the polynomials a(x), b(x) and c(x)

to the integers where the coefficients of A(x), B(x) and C(x) are 0 or 1. It follows from the
proof of Theorem 8 that 4(va + sua) + 1 ≡ (−1)sA(1)A(−1) (mod 8) and 4(vb + tub) + 1 ≡
(−1)tB(1)B(−1) (mod 8). Thus, since the theorem is true for polynomials a(x) and b(x), then
4ra + 1 ≡ (−1)sA(1)A(−1) (mod 8) and 4rb + 1 ≡ (−1)tB(1)B(−1) (mod 8). Using similar
arguments we see that in order to prove that the theorem is true for c(x), we need to prove that
4(ra + rb) + 1 ≡ (−1)s+tC(1)C(−1) (mod 8). Now we have

4(ra + rb) + 1 ≡ (4ra + 1)(4rb + 1)

≡ (−1)s+tA(1)A(−1)B(1)B(−1) (mod 8).

Hence, using the above equation we just need to show that

C(1)C(−1) ≡ A(1)A(−1)B(1)B(−1) (mod 8). (7)

Now let D(x) = A(x)B(x) − C(x). Then since A(x)B(x) and C(x) reduced modulo 2 result
in the same polynomial over F2, we have D(x) = 2E(x), where E(x) is a polynomial over the
integers. On the other hand, since A(x),B(x) and C(x) are self-reciprocal, it follows that

E(x) = wxs+t +
ue∑

wi

(
xfi + x2(s+t)−fi

)
, (8)
i=1
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where w, wi ’s and fi ’s are integer numbers, and 0 < fi < s + t for i = 1,2, . . . , ue. We have
A(1)B(1) = C(1) + 2E(1) and A(−1)B(−1) = C(−1) + 2E(−1), thus

A(1)B(1)A(−1)B(−1) = C(1)C(−1) + 2(X),

where X = 2E(1)E(−1) + E(1)C(−1) + E(−1)C(1). Hence, in order to prove Eq. (7), we
need to show that X is divisible by 4. Now, observe that E(1) = w + 2

∑ue

i=1 wi , E(−1) =
w(−1)s+t + 2

∑ue

i=1 wi(−1)fi , C(1) = 2uc + 1 and C(−1) = 2uc + (−1)s+t − 4vc. Thus

2E(1)E(−1) ≡ 2 odd(w) (mod 4) and

C(−1) ≡ C(1) + 2 odd(s + t) (mod 4),

where “odd” is the integer functions from Z into {0,1}, such that odd(x) = 1 if and only if, x is
an odd number. Considering the two previous congruences, we have

X ≡ 2 odd(w) + C(1)
(
E(1) + E(−1)

) + 2E(1)odd(s + t) (mod 4).

The integer X is now clearly divisible by 4, since C(1) is an odd number, E(1) + E(−1) ≡
2w odd(s + t + 1) (mod 4) and 2E(1) ≡ 2 odd(w) (mod 4). �

Using the above theorem we can show that some families of reciprocal polynomials are always
reducible. The following result is of this flavor.

Corollary 11. Let m > 1 be an integer. If m is odd or if m is even with m ≡ 0 or 6 (mod 8), then
f (x) = 1 + x + x2 + x3 + · · · + xm−1 + xm is reducible over F2.

When Fq is of odd characteristic we have the following generalization of Theorem 7.

Theorem 12. Let f (x) be an srm polynomial of degree 2n over Fq , having r irreducible factors
(counted with multiplicity) over Fq , and suppose that f (1)f (−1) �= 0. Then r is an even number
if and only if, (−1)nf (1)f (−1) is a square in Fq .

Proof. Similar to Lemma 9, we can prove that if f (1)f (−1) �= 0, then f (x) can be factored
into srm polynomials, where each srm factor has pairwise distinct irreducible factors. Then us-
ing the same arguments as in the proof of the previous theorem, we just need to show that if
Theorem 12 is true for a(x) and b(x), being of degrees 2s and 2t and having ra and rb irre-
ducible factors, respectively, then it is also true for a(x)b(x) having ra + rb irreducible factors.
But this claim is pretty straightforward, unlike the case for the binary field. We can prove the
claim in four different cases depending on the parities of ra and rb . First suppose that ra and rb
are odd numbers. Then (−1)sa(1)a(−1) and (−1)t b(1)b(−1) are not squares in Fq , and thus
(−1)s+t a(1)b(1)a(−1)b(−1) is a square in Fq . Now the claim follows in this case since ra + rb
is an even number. Other cases follow similarly. �
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