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Let � > 0 be a square-free integer congruent to 3 mod 4 and O K

the ring of integers of the imaginary quadratic field K = Q (
√−� ).

Codes C over rings O K /pO K determine lattices Λ�(C) over K . If
p � � then the ring R := O K /pO K is isomorphic to Fp2 or Fp ×Fp .
Given a code C over R, theta functions on the corresponding
lattices are defined. These theta series θΛ�(C)(q) can be written in
terms of the complete weight enumerators of C . We show that
for any two � < �′ the first �+1

4 terms of their corresponding
theta functions are the same. Moreover, we conjecture that for
� >

p(n+1)(n+2)
2 there is a unique symmetric weight enumerator

corresponding to a given theta function. We verify the conjecture
for primes p < 7, � � 59, and small n.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let � > 0 be a square-free integer congruent to 3 modulo 4, K = Q(
√−� ) be the imaginary

quadratic field, and O K its ring of integers. Codes, Hermitian lattices, and their theta-functions over
rings R := O K /pO K , for small primes p, have been studied by many authors, see [1,4,5], among oth-
ers. In [1], explicit descriptions of theta functions and MacWilliams identities are given for p = 2,3.
In [6] we explored codes C defined over R for p > 2. For any � one can construct a lattice Λ�(C)

via Construction A and define theta functions based on the structure of the ring R. Such construc-
tions suggested some relations between the complete weight enumerator of the code and the theta
function of the corresponding lattice. In this paper we give complete proofs of some of the theorems
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in [6]. Furthermore, we study the weight enumerators of such codes in terms of the theta functions
of the corresponding lattices. This paper is organized as follows.

In Section 2 we give a brief overview of the basic definitions for codes and lattices and define theta
functions over Fp . We define the theta series θΛa,b (q) for all cosets in pO K and determine relations
among such theta series. Two such theta series θΛa,b (q) and θΛm,n (q) are the same when (m,n) is
congruent modulo p to one of the ordered pairs (a,b), (−a − b,b), (−a,−b), (a + b,−b). This implies

that we have at most (p+1)2

4 theta series, and when � > 12p2 + 1 we have exactly (p+1)2

4 theta series.
In Section 3 we define theta functions on the lattice defined over R := O K /pO K . We prove in [6]
that such a theta series is equal to the evaluation of the complete weight enumerator of the code on
the theta series of cosets of pO K . We also define the symmetric weight enumerator of a code and
show that such a theta series is equal to the symmetric weight enumerator evaluated on the theta
series of certain cosets of pO K .

In Section 4, we address a special case of a general problem of the construction of lattices: the
injectivity of Construction A. For codes defined over an alphabet of size four (regarded as a quotient
of the ring of integers of an imaginary quadratic field), the problem is solved completely in [7]. We
expect that similar results as for p = 2 hold also for odd primes. However, we are not able to get
explicit bounds for p > 2. In Section 5 we display some computational results for p = 3. Such results
confirm our results of Section 4. We compute the theta series for p = 3, n = 3,4,5, and � � 59. We
conjecture that for � >

p(n+1)(n+2)
2 for each given theta series there exists at most one symmetric

weight enumerator polynomial corresponding to this theta series.

2. Preliminaries

Let � > 0 be a square free integer and K = Q(
√−� ) be the imaginary quadratic field with discrim-

inant dK . Recall that dK = −� if � ≡ 3 mod 4, and dK = −4� otherwise. Let O K be the ring of integers
of K . A lattice Λ over K is an O K -submodule of K n of full rank. The Hermitian dual is defined by

Λ∗ = {
x ∈ K n

∣∣ x · ȳ ∈ O K , for all y ∈ Λ
}
, (1)

where x · y := ∑n
i=1 xi yi and ȳ denotes component-wise complex conjugation. In the case that Λ is

a free O K -module, for every O K basis {v1, v2, . . . , vn} we can associate a Gram matrix G(Λ) given
by G(Λ) = (vi .v j)

n
i, j=1 and the determinant det Λ := det(G) defined up to squares of units in O K .

If Λ = Λ∗ then Λ is Hermitian self-dual (or unimodular) and integral if and only if Λ ⊂ Λ∗ . An
integral lattice has the property Λ ⊂ Λ∗ ⊂ 1

detΛ
Λ. An integral lattice is called even if x · x ≡ 0 mod 2

for all x ∈ Λ, and otherwise it is odd. An odd unimodular lattice is called a Type 1 lattice and even
unimodular lattice is called a Type 2 lattice.

The theta series of a lattice Λ in K n is given by

θΛ(τ ) =
∑
z∈Λ

eπ iτ z·z̄,

where τ ∈ H = {z ∈ C: Im(z) > 0}. Usually we let q = eπ iτ . Then, θΛ(q) = ∑
z∈Λ qz·z̄ . The one-

dimensional theta series (or Jacobi’s theta series) and its shadow are given by

θ3(q) =
∑
n∈Z

qn2
, θ2(q) =

∑
n∈Z

q(n+1/2)2 =
∑

n∈Z+ 1
2

qn2
.

Let � ≡ 3 mod 4 and d be a positive number such that � = 4d − 1. Then, −� ≡ 1 mod 4. This implies

that the ring of integers is O K = Z[ω�], where ω� = −1+√−�
2 and ω2

� +ω� +d = 0. The principal norm
form of K is given by

Q d(x, y) = |x − yω�|2 = x2 + xy + dy2. (2)
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The structure of O K /pO K depends on the value of � modulo p. For ( a
p ) the Legendre symbol,

O K /pO K =

⎧⎪⎨
⎪⎩

Fp × Fp if (−�
p ) = 1,

Fp2 if (−�
p ) = −1,

Fp + uFp with u2 = 0 if p | �.
(3)

In this paper we will focus on the cases when p � �.

2.1. Theta functions over Fp

Let q = eπ iτ . For integers a and b and a prime p, let Λa,b denote the coset a − bω� + pO K . The
theta series associated to this coset is

θΛa,b (q) =
∑

m,n∈Z

q|a+mp−(b+np)ω�|2 =
∑

m,n∈Z

qQ d(mp+a,np+b) =
∑

m,n∈Z

qp2 Q d(m+a/p,n+b/p). (4)

For a prime p and an integer j, consider the one-dimensional theta series

θp, j(q) :=
∑
n∈Z

q(n+ j/2p)2
. (5)

Note that θp, j(q) = θp,k(q) if and only if j ≡ ±k mod 2p.

Lemma 1. One can write θΛa,b (q) in terms of one-dimensional theta series defined above in Eq. (5). In partic-
ular,

θΛa,b (q) = θp,b
(
qp2�

)
θp,2a+b

(
qp2) + θp,b+p

(
qp2�

)
θp,2a+b+p

(
qp2)

. (6)

Proof. We use the fact that Q d(m,n) = m2 + mn + dn2 = (m + n
2 )2 + �n2

4 .

θΛa,b (q) =
∑

m,n∈Z

qQ d(mp+a,np+b)

=
∑

m,n∈Z

q(mp+a+ np+b
2 )2+ �(np+b)2

4

=
∑
n∈Z

q�
(np+b)2

4
∑
m∈Z

q(mp+a+ np+b
2 )2

=
∑
n∈Z

q�p2( n
2 + b

2p )2 ∑
m∈Z

qp2(m+ 2a
2p + n

2 + b
2p )2

=
∑

n even

q�p2( n
2 + b

2p )2 ∑
m∈Z

qp2(m+ n
2 + 2a+b

2p )2 +
∑

n odd

q�p2( n
2 + b

2p )2 ∑
m∈Z

qp2(m+ n
2 + 2a+b

2p )2

= θp,b
(
qp2�

)
θp,2a+b

(
qp2) + θp,b+p

(
qp2�

)
θp,2a+p+b

(
qp2)

.

This completes the proof. �
It would be interesting to determine what happens to the distribution of points on these cosets

as � increases. In other words, is there any relation among θΛa,b (q) as � increases?
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Lemma 2. For any integers a,b,m,n, if the ordered pair (m,n) is congruent modulo p to one of (a,b),

(−a − b,b), (−a,−b), (a + b,−b), then θΛm,n (q) = θΛa,b (q).

Proof. We aim to find sufficient conditions on a,b,m,n so that θΛm,n (q) = θΛa,b (q). By Lemma 1,

θΛm,n (q) = θp,n
(
qp2�

)
θp,2m+n

(
qp2) + θp,n+p

(
qp2�

)
θp,2m+n+p

(
qp2)

and

θΛa,b (q) = θp,b
(
qp2�

)
θp,2a+b

(
qp2) + θp,b+p

(
qp2�

)
θp,2a+b+p

(
qp2)

.

In particular, if we have

θp,n
(
qp2�

) = θp,b
(
qp2�

)
, (7)

θp,2m+n
(
qp2) = θp,2a+b

(
qp2)

, (8)

θp,n+p
(
qp2�

) = θp,b+p
(
qp2�

)
, (9)

θp,2m+n+p
(
qp2) = θp,2a+b+p

(
qp2)

(10)

(that is, equating the first terms, equating the second terms, etc.) then we will have θΛm,n (q) =
θΛa,b (q).

Similarly, if we change the order of the terms in θΛa,b (q) to obtain

θΛa,b (q) = θp,b+p
(
qp2�

)
θp,2a+b+p

(
qp2) + θp,b

(
qp2�

)
θp,2a+b

(
qp2)

,

we will have θΛm,n (q) = θΛa,b (q) if

θp,n
(
qp2�

) = θp,b+p
(
qp2�

)
, (11)

θp,2m+n
(
qp2) = θp,2a+b+p

(
qp2)

, (12)

θp,n+p
(
qp2�

) = θp,b
(
qp2�

)
, (13)

θp,2m+n+p
(
qp2) = θp,2a+b

(
qp2)

. (14)

Eqs. (7)–(10) are satisfied if

θp,n(q) = θp,b(q) and θp,2m+n(q) = θp,2a+b(q). (15)

Eqs. (11)–(14) are satisfied if

θp,n(q) = θp,b+p(q) and θp,2m+n(q) = θp,2a+b+p(q). (16)

That is, if Eq. (15) or (16) holds, then θΛm,n (q) = θΛa,b (q).
From Eq. (15), we have four subcases corresponding to n ≡ ±b mod 2p and 2m + n ≡

±(2a + b) mod 2p. If n ≡ b mod 2p, one finds that m ≡ a mod p or m ≡ −a − b mod p. If n ≡
−b mod 2p, one finds that m ≡ a + b mod p or m ≡ −a mod p.

From Eq. (16), we have four subcases as well, corresponding to n ≡ ±(b + p) mod 2p and 2m+n ≡
±(2a + b + p) mod 2p. If n ≡ b + p mod 2p, then either m ≡ a mod p or m ≡ −a − b mod p. And if
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n ≡ −b − p mod 2p, then either m ≡ a + b mod p or m ≡ −a mod p. Therefore, if n ≡ b mod p, then
m ≡ a mod p or m ≡ −a − b mod p. If n ≡ −b mod p, then m ≡ a + b mod p or m ≡ −a mod p. �

The Klein 4-group generated by matrices

(−1 0
0 −1

)
and

(
1 1
0 −1

)

acts on (Z/p Z)2. The orbits form equivalence classes on Z2. This equivalence is given by

(a,b) ∼ (m,n) if (m,n) ≡ (a,b), (−a − b,b), (−a,−b), or (a + b,−b) mod p.

By Lemma 2, if (a,b) ∼ (m,n), then

θΛa,b (q) = θΛm,n (q).

Then we have the following result:

Corollary 3. For any odd prime p, the set {θΛa,b (q): a,b ∈ Z} contains at most (p+1)2

4 elements.

Proof. We will prove this by showing that there are (p+1)2

4 equivalence classes under the relation ∼.

This will imply that there are at most (p+1)2

4 theta functions. Note that (a,b) ∼ (a + mp,b + np) for
any m,n ∈ Z. Thus, it is enough to consider only a,b ∈ {0, . . . , p − 1}.

Consider the equivalence class of (a,b), which is

{
(a,b), (−a − b,b), (−a,−b), (a + b,−b)

}
.

This set contains either 1, 2, or 4 elements. (If two elements are equal, then the two remaining
elements are also equal.) If b = 0, the set contains (a,0) and (−a,0), which are equal if a = 0 and non-
equal if a 	= 0 (using the fact that p is odd). Thus, if b = 0, there is one equivalence class corresponding
to a = 0 and there are p−1

2 equivalence classes containing elements with a 	= 0.
If b 	= 0, then b 	≡ −b mod p, so (a,b) and (−a,−b) are distinct mod p. This means there are

either 2 or 4 elements in the equivalence class of (a,b). Further, (a,b) and (−a − b,b) are congruent
mod p if and only if (−a,−b) and (a + b,−b) are congruent mod p if and only if 2a ≡ −b mod p.
Thus, if 2a ≡ −b mod p, the equivalence class of (a,b) has 2 elements. There are p − 1 pairs (a,b)

with b 	= 0 and 2a ≡ −b mod p, which gives p−1
2 equivalence classes. There are (p − 1)2 remaining

pairs (a,b) for which b 	= 0 and 2a 	≡ −b mod p. The equivalence classes for these pairs contain 4

elements, leading to (p−1)2

4 equivalence classes. Summed up, we have 1+ p−1
2 + p−1

2 + (p−1)2

4 = (p+1)2

4

equivalence classes, meaning there are at most (p+1)2

4 theta functions. �
The next result determines in what cases we have exactly (p+1)2

4 theta functions.

Theorem 4. For any odd prime p and any d > 3p2 , the set {θΛa,b (q): a,b ∈ Z} spans a (p+1)2

4 dimension
vector space in Z�q�. Hence, Lemma 2 is an “if and only if” statement for large enough d.

Proof. We prove this by calculating the minimal exponent appearing in the power series of θΛa,b (q)

for any a,b ∈ Z. We will find that there are (p+1)2

4 different such minimal exponents, indicating that

there is no linear relationship between the (p+1)2

4 corresponding theta series. From Corollary 3, there
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are at most (p+1)2

4 such series, so we can then conclude that there are exactly (p+1)2

4 such series. Let
a,b ∈ Z with 0 � a < p and 0 � b < p. Expanding θΛa,b (q), one finds that

θΛa,b (q) = θp,b
(
qp2�

)
θp,2a+b

(
qp2) + θp,b+p

(
qp2�

)
θp,2a+b+p

(
qp2)

=
∑
n∈Z

qp2�(n+b/2p)2 ∑
m∈Z

qp2(m+a/p+b/2p)2

+
∑
n∈Z

qp2�(n+1/2+b/2p)2 ∑
m∈Z

qp2(m+1/2+a/p+b/2p)2

=
∑
n∈Z

q(�/4)(2pn+b)2 ∑
m∈Z

q(1/4)(2pm+2a+b)2

+
∑
n∈Z

q(�/4)(2pn+p+b)2 ∑
m∈Z

q(1/4)(2pm+p+2a+b)2
.

Using the fact that 0 � b < p, the term with the smallest exponent in the first summation is
q(�/4)b2

and the term with the smallest exponent in the second summation is either q(1/4)(2a+b)2

or q(1/4)(2a+b−2p)2
(depending on how big 2a + b is). Thus, the term with minimal exponent in the

product of the first two summations is either

q(�/4)b2 · q(1/4)(2a+b)2
or q(�/4)b2 · q(1/4)(2a+b−2p)2

.

Using the fact that � = 4d − 1, this term is either

qa2+ab+db2
or q(a−p)2+(a−p)b+db2

.

Working analogously with the product of the second pair of summations, one finds the term with
smallest exponent there is either

qa2+a(b−p)+d(b−p)2
or q(a−p)2+(a−p)(b−p)+d(b−p)2

.

Thus, in the theta series θΛa,b (q), the smallest power of q is the minimum of

a2 + ab + db2, (a − p)2 + (a − p)b + db2,

a2 + a(b − p) + d(b − p)2, (a − p)2 + (a − p)(b − p) + d(b − p)2.

Let min(θΛa,b (q)) denote this minimal exponent. Suppose that min(θΛa,b (q)) = min(θΛm,n (q)) for some
integers a,b,m,n ∈ {0,1, . . . , p − 1} and some value of d. Then, min(θΛa,b (q)) = u2 + uv + dv2, where
u = a or u = a − p and v = b or v = b − p. Similarly, min(θΛm,n (q)) = x2 + xy + dy2 where x = m
or x = m − p and y = n or y = n − p. Note that we have |u|, |v|, |x|, |y| � p. We have two cases to
consider, either v2 	= y2 or v2 = y2.

If v2 	= y2, then, solving for d, we find that d = u2+uv−x2−xy
y2−v2 . Thus,

|d| � |u2 − x2| + |uv| + | − xy|
|y2 − v2| � p2 + p2 + p2

|y2 − v2| � 3p2.

If v2 = y2, then given that u2 + uv + dv2 = x2 + xy + dy2, we find that y = ±v . If y = v , then we
find u2 + uv = x2 + xv , so u2 − x2 + uv − xv = 0, so (u − x)(u + x + v) = 0. Thus, x = u or x = −u − v .
Similarly, if y = −v , then u2 + uv = x2 − xv , which implies that x = −u or x = u + v .
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Using the facts that u ≡ a mod p, v ≡ b mod p, x ≡ m mod p, and y ≡ n mod p, we find that
(m,n) is congruent modulo p to one of the ordered pairs (a,b), (−a − b,b), (−a,−b), (a + b,−b).
Hence, if d > 3p2, then θΛa,b (q) = θΛm,n (q) if and only if (a,b) ∼ (m,n). By the above corollary, there

are precisely (p+1)2

4 equivalence classes. Hence, there are precisely (p+1)2

4 theta functions. Further-
more, since these theta functions all have different leading exponents, they are linearly independent.
This completes the proof. �
Remark 5. The bound for d given in Theorem 4 is not sharp. For instance, using a computer algebra

package, one finds that for d = 2, there are (p+1)2

4 equivalence classes for all primes p � 19.

3. Theta functions of codes over OK /pOK

Let p � � and R := O K /pO K = {a + bω: a,b ∈ Fp, ω2 + ω + d = 0}. We have the map

ρ�,p : O K → O K /pOk =: R.

A linear code C of length n over R is an R-submodule of Rn . The dual is defined as C⊥ =
{u ∈ Rn: u · v̄ = 0 for all v ∈ C}. If C = C⊥ then C is self-dual. We define

Λ�(C) := {
u = (u1, . . . , un) ∈ On

K :
(
ρ�,p(u1), . . . , ρ�,p(un)

) ∈ C
}
.

In other words, Λ�(C) consists of all vectors in On
K in the inverse image of C , taken componentwise

by ρ�,p . This method of lattice construction is known as Construction A.
For notation, let ra+pb+1 = a − bω, so R = {r1, . . . , rp2 }. For a codeword u = (u1, . . . , un) ∈ Rn and

ri ∈ R, we define the counting function ni(u) := #{i: ui = ri}. The complete weight enumerator of the
R code C is the polynomial

cweC (z1, z2, . . . , zp2) =
∑
u∈C

zn1(u)
1 zn2(u)

2 . . . z
np2 (u)

p2 . (17)

We can use this polynomial to find the theta function of the lattice Λ�(C). For a proof of the following
result see [6].

Lemma 6. Let C be a code defined over R and cweC its complete weight enumerator as above. Then,

θΛ�(C)(q) = cweC
(
θΛ0,0(q), θΛ1,0 (q), . . . , θΛp−1,p−1(q)

)
.

Remark 7. The connection between complete weight enumerators of self-dual codes over Fp and
Siegel theta series of unimodular lattices is well known. Construction A associates to any length n
code C = C⊥ an n-dimensional unimodular lattice; see [3] for details.

For p = 2, we have

θΛ�(C)(q) = cweC
(
θΛ0,0(q), θΛ1,0(q), θΛ0,1 (q), θΛ1,1(q)

)
.

Since θΛ0,1 (q) = θΛ1,1 (q) (by Lemma 2), we can define the symmetric weight enumerator sweC by

sweC (X, Y , Z) = cweC (X, Y , Z , Z)

to get

θΛ�(C)(q) = sweC
(
θΛ0,0(q), θΛ1,0(q), θΛ0,1(q)

)
.

These three theta functions are referred to as Ad(q), Cd(q), and Gd(q) in [2] and [7].
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More generally, for odd p, the complete weight enumerator takes p2 arguments corresponding
to the p2 lattices Λa,b(q) and their theta functions. By Theorem 4, for � large enough, there are

only (p+1)2

4 different theta functions among these p2 lattices. As above with p = 2, we define the
symmetric weight enumerator of a code in terms of the complete weight enumerator, using the same
variable for lattices that have the same theta series.

For the case where p = 3, from Remark 2.2 in [6], we have four theta functions corresponding to
the lattices Λa,b , namely θΛ0,0 (q), θΛ1,0(q), θΛ1,1 (q), θΛ0,1 (q). We define the symmetric weight enu-
merator to be

sweC (X, Y , Z , W ) = cweC (X, Y , Y , Z , W , Z , Z , Z , W ).

One then has

θΛ�(C)(q) = cweC
(
θΛ0,0(q), θΛ1,0 (q), . . . , θΛ2,2(q)

)
= sweC

(
θΛ0,0(q), θΛ1,0(q), θΛ1,1(q), θΛ0,1(q)

)
.

Example 8. Let C1 be the length-2 repetition code {(x, x): x ∈ R} for p = 3. The complete weight
enumerator of this code is

cweC1(z0, . . . , z8) = z2
0 + z2

1 + · · · + z2
8,

and the symmetric weight enumerator is

sweC1(X, Y , Z , W ) = X2 + 2Y 2 + 4Z 2 + 2W 2.

Using a computational algebra package, one can calculate θΛ�(C)(q) for each �. We display the cases
when � = 7,11.

θΛ7(C)(q) = 1 + 2q2 + 4q4 + 4q5 + 10q8 + 4q9 + 16q10 + 8q11 + 8q13 + 2q14

+ 24q16 + 12q17 + 12q18 + 16q19 + 28q20 + 20q22 + 16q23 + 16q25

+ 28q26 + 16q27 + 4q28 + 20q29 + 24q31 + 42q32 + 32q34 + 4q35

+ 28q36 + 24q37 + 40q38 + 56q40 + 28q41 + 32q43 + 56q44 + 24q45

+ 52q46 + 32q47 + 62q50 + · · · ,
θΛ11(C)(q) = 1 + 2q2 + 4q5 + 4q6 + 2q8 + 4q9 + 8q10 + 8q12 + 8q15 + 8q16

+ 4q17 + 24q18 + 4q20 + 8q21 + 2q22 + 20q24 + 16q25 + 12q26

+ 24q27 + 16q28 + 12q29 + 24q30 + 8q31 + 10q32 + 8q34 + 8q35

+ 36q36 + 8q38 + 16q39 + 8q40 + 20q41 + 24q42 + 16q43 + 32q45

+ 8q46 + 8q47 + 40q48 + 8q49 + 22q50 + · · · .

It will be the goal of our next section to study how the corresponding theta function of a given
code differs for different levels �.
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4. Theta functions and the corresponding complete weight enumerator polynomials

For a fixed prime p, let C be a linear code over R = Fp2 or Fp × Fp of length n and dimension k.
An admissible level � is an integer � such that O K /pO K is isomorphic to R. For an admissible �,
let Λ�(C) be the corresponding lattice as in the previous section. Then, the level � theta function
θΛ�(C)(q) of the lattice Λ�(C) is determined by the symmetric weight enumerator cweC of C evaluated
on the theta functions defined on certain cosets of O K /pO K . We consider the following questions.
How do the theta functions θΛ�(C)(q) of the same code C differ for different levels �? Can non-
equivalent codes give the same theta functions for all levels �?

We give a satisfactory answer to the first question (cf. Theorem 11, Lemma 12) and for the second
question we conjecture that:

Conjecture 9. Let C be a code of size n defined over R and θΛ�(C)(q) be its corresponding theta function for
level �. Then, for large enough �, there is a unique symmetric weight enumerator polynomial which corresponds
to θΛ�(C)(q).

Let C be a code defined over R for a fixed p > 2. Let the complete weight enumerator of C be the
degree n polynomial cweC = f (x1, . . . , xp2 ). Then from Lemma 6 we have that

θΛ�(C)(q) = f
(
θΛ0,0(q), . . . , θΛp−1,p−1(q)

)

for a given �. First we want to address how θΛ�(C)(q) and θΛ�′ (C)(q) differ for different � and �′ . The
proof of the following remark is elementary.

Remark 10. For n 	= 0, Q d(m,n) � d.

Then we have the following theorem.

Theorem 11. Let C be a code defined over R. For all admissible �, �′ with � < �′ the following holds

θΛ�(C)(q) = θΛ�′ (C)(q) + O
(
q

�+1
4

)
.

Proof. From Section 3, we have the map ρ�,p : O K → O K /pO K → R and

Λ�(C) = {
u = (u1, . . . , un) ∈ On

K :
(
ρ�,p(u1), . . . , ρ�,p(un)

) ∈ C
}
.

We denote ui = ai − biω� for ai,bi ∈ Z with i = 1, . . . ,n and d = �+1
4 . Then

θΛ�(C)(q) =
∑

u∈Λ�(C)

qu·ū =
∑

u∈Λ�(C)

qu1ū1+···+unūn

=
∑

u∈Λ�(C)

qQ d(a1,b1)+···+Q d(an,bn)

=
∑

u∈Λ�(C),
bi=0 for all i

qQ d(a1,b1)+···+Q d(an,bn) +
∑

u∈Λ�(C),
bi 	=0 for some i

qQ d(a1,b1)+···+Q d(an,bn)

=
∑

u∈Λ�(C),
b =0 for all i

qa2
1+···+a2

n +
∑

u∈Λ�(C),
b 	=0 for some i

qQ d(a1,b1)+···+Q d(an,bn).
i i
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Note that this first summation does not depend on d (or �). In the second summation, each ter-
m’s exponent contains a term of the form Q d(ai,bi) where bi 	= 0. By the lemma above, we have
Q d(ai,bi) � d. Since all of the terms in the exponent are added, each term in the second summation
has exponent at least d. Hence, the second summation is O(qd). Thus, we have

θΛ�(C)(q) =
∑

u∈Λ�(C),
bi=0 for all i

qa2
1+···+a2

n + O
(
qd).

Similarly,

θΛ�′ (C)(q) =
∑

u∈Λ�′ (C),

bi=0 for all i

qa2
1+···+a2

n + O
(
qd′)

.

For admissible �, �′ with � < �′ , we conclude that

θΛ�(C)(q) − θΛ�′ (C)(q) = O
(
qd).

This completes the proof. �
We have the following lemma.

Lemma 12. Let C be a code of size n defined over R and θ(q) = ∑
λiqi be its theta function for level �. Then,

there exists a bound B�,p,n such that θ(q) is uniquely determined by its first B�,p,n coefficients.

Proof. We want to show that if θ(q) − θ ′(q) = O(qB�,p,n ), then θ(q) = θ ′(q). Fix p,n, �. There are
finitely many codes C over R of length n. Denote them by C1, . . . , Cm , for some integer m. To each
code Ci , there is a corresponding theta function θCi (q).

Let

S = {
r ∈ Z�0: θCi (q) − θC j (q) = O

(
qr) and θCi (q) 	= θC j (q)

}

and let B�,p,n = 1 + max S . Since S is finite, B�,p,n is well defined. Furthermore, if θCi (q) − θC j (q) =
O(qm) for some m � B�,p,n , this implies that m /∈ S , so we must have θCi (q) = θC j (q). �

For notation, when p and n are fixed, we will let B� = B�,p,n .
To extend the theory for p = 2 to p > 2 we have to find a relation between the theta function

θΛ�(C)(q) and the number of symmetric weight enumerator polynomials corresponding to it.
Fix an odd prime p and let C be a given code of length n over R. Choose an admissable value

of � such that there are (p+1)2

4 independent theta functions (as in Theorem 4). Then, the symmetric

weight enumerator of C has degree n and r = (p+1)2

4 variables x1, . . . , xr .

Lemma 13. A homogeneous polynomial of degree n in r = (p+1)2

4 variables has s := (n−1+ (p+1)2

4 )!
n!·( (p+1)2

4 −1)!
monomials.

Proof. We need to count the number of monomials of a homogeneous degree n polynomial in r =
(p+1)2

4 variables which is

s = (n + r − 1)!
n!(r − 1)! = (n − 1 + (p+1)2

4 )!
n! · ( (p+1)2

4 − 1)!
This completes the proof. �
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Denote by P (x1, . . . , xr) a generic r-nary degree n homogeneous polynomial. Assume that there
is a length n code C defined over R such that P (x1, . . . , xr) is the symmetric weight enumerator
polynomial. In other words,

sweC (x1, . . . , xr) = P (x1, . . . , xr).

Fix the level �. Then, by replacing x1, x2, . . . , xr with the r different theta series corresponding to the
lattices Λa,b(q), we compute the left side of the above equation as a series

∑∞
i=0 λiqi . By equat-

ing both sides of
∑∞

i=0 λiqi = P (x1, . . . , xr), we get a linear system of equations. Since the first
λ0, . . . , λB�−1 determine all the coefficients of the theta series then we have to pick B� equations
(these equations are not necessarily independent).

Consider the coefficients of the polynomial P (x1, . . . , xr) as parameters c1, . . . , cs . Then, the linear
map

L� : Cs → CB�−1

(c1, . . . , cs) → (λ0, . . . , λB�−1)

has an associated matrix M� . For a fixed value of (λ0, . . . , λB�−1 ), determining th rank of the matrix
M� would determine the number of polynomials giving the same theta series. There is a unique
symmetric weight enumerator corresponding to a given theta function when

null(M�) = s − rank(M�) = 0.

Conjecture 14. For � � p(n+1)(n+2)
n − 1 we have null M� = 0, or in other words

rank(M�) = (n − 1 + (p+1)2

4 )!
n! · ( (p+1)2

4 − 1)!
.

The choice of � is taken from experimental results for primes p = 2 and 3. More details are given
in the next section.

It is obvious that Conjecture 14 implies Conjecture 9. If Conjecture 9 is true then for large enough �

there would be a one to one correspondence between the symmetric weight enumerator polynomials
and the corresponding theta functions. Perhaps, more interesting is to find � and p for which there is
not a one to one such correspondence. Consider the map

Φ(�, p) = (
λ0(�, p), . . . , λB�−1(�, p)

)
,

where λ0, . . . , λB�−1 are now functions in � and p. Let V be the variety given by the Jacobian of the
map Φ . Finding integer points �, p on this variety such that � and p satisfy our assumptions would
give us values for �, p when the above correspondence is not one to one. However, it seems quite
hard to get explicit description of the map Φ . Next, we will try to shed some light over the above
conjectures for fixed small primes p.

5. Bounds for small primes

In [7] we determine explicit bounds for the above theorems for prime p = 2. In this section we
give some computation evidence for the generalization of the result for p = 3. We recall the theorem
for p = 2.

Theorem 15. (See [7, Thm. 2].) Let p = 2 and C be a code of size n defined over R and θΛ�(C)(q) be its
corresponding theta function for level �. Then the following hold:
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(i) For � <
2(n+1)(n+2)

n − 1 there is a δ-dimensional family of symmetric weight enumerator polynomials

corresponding to θΛ�(C)(q), where δ � (n+1)(n+2)
2 − n(�+1)

4 − 1.

(ii) For � � 2(n+1)(n+2)
n − 1 and n < �+1

4 there is a unique symmetric weight enumerator polynomial which
corresponds to θΛ�(C)(q).

These results were obtained by using the explicit expression of theta in terms of the symmetric
weight enumerator valuated on the theta functions of the cosets.

Next we want to find explicit bounds for p = 3 as in the case of p = 2. In the case of p = 3 it
is enough to consider four theta functions, θΛ0,0 (q), θΛ1,0(q), θΛ0,1 (q), and θΛ1,1 (q) since θΛ2,0 (q) =
θΛ1,0 (q), θΛ2,2 (q) = θΛ1,1 (q) and θΛ0,2 (q) = θΛ1,2 (q) = θΛ2,1 (q) = θΛ0,1 (q). If we are given a code C
and its symmetric weight enumerator polynomial, then we can find the theta function of the lattice
constructed from C using Construction A. Let θ(q) = ∑∞

i=0 λiqi be the theta series for level � and

p(x, y, z, w) =
∑

i+ j+k+m=n

ci, j,kxi y j zk wm

be a degree n generic 4-nary homogeneous polynomial. We would like to find out how many polyno-
mials p(x, y, z, w) correspond to θ(q) for a fixed �. For a given � find θΛ0,0 (q), θΛ1,0 (q), θΛ0,1 (q) and
θΛ1,1 (q) and substitute them in the p(x, y, z, w). Hence, p(x, y, z, w) is now written as a series in q.

We get infinitely many equations by equating the corresponding coefficients of the two sides of the
equation

p
(
θΛ0,0(q), θΛ1,0 (q), θΛ0,1(q), θΛ1,1(q)

) =
∞∑

i=0

λiq
i .

Since the first λ0, . . . , λB�−1 determine all the coefficients of the theta series then it is enough to pick
the first B� equations. The linear map

L� : (c1, . . . , c20) → (λ0, . . . , λB�−1)

has an associated matrix M� . If the nullity of M� is zero then we have a unique polynomial that
corresponds to the given theta series. We have calculated the nullity of the matrix and B� for small n
and �.

Example 16 (The case p = 3,n = 3). The generic homogeneous polynomial is given by

P (x, y, z) = c1x3 + c2x2 y + c3x2z + c4x2 w + c5xy2 + c6xz2 + c7xw2 + c8xyz

+ c9xyw + c10xzw + c11 y3 + c12 y2z + c13 y2 w + c14 yz2 + c15 yw2

+ c16 yzw + c17z3 + c18z2 w + c19zw2 + c20 w3. (18)

The system of equations can be written by the form of

A�c = �λ

where �c = ( c1 c2 · · · c20 )t , �λ = (λ0 λ1 · · · λ15 )t . In the case of � = 7 the matrix M7 has
null(M7) = 4. We have a positive dimension family of solution set. The case of � = 11 the matrix
M11 has null(M11) = 1. For any case where � � 19 the nullity of the matrix is 0. Hence, for every
given theta series, there is a unique symmetric weight enumerator polynomial.
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We summarize the results in the following table:

� n = 3 n = 4 n = 5

B� null M� B� null M� B� null M�

7 16 4 26 9 33 24
11 19 1 30 5 42 14
19 22 0 38 0 60 0
23 25 0 37 0 58 0
31 31 0 41 0 60 0
35 34 0 48 0 61 0
43 40 0 55 0 69 0
47 43 0 60 0 74 0
55 49 0 70 0 86 0
59 52 0 75 0 92 0

It seems from the table that the same bound of B� = 2(n+1)(n+2)
n as for p = 2 holds also for p = 3,

n = 3.
We have the following conjecture for general p,n and �.

Conjecture 17. For a given theta function θΛ�(C)(q) of a code C for level � there is a unique symmetric weight

enumerator polynomial corresponding to θΛ�(C)(q) if � � p(n+1)(n+2)
n .

It is interesting to consider such question for lattices O K /pO K independently of the connection to
coding theory. What is the meaning of the bound B� for the ring O K /pO K ? Do the theta functions
defined here correspond to any modular forms? Is there any difference between the cases when the
ring is Fp × Fp or Fp2 ?
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