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Abstract

Bleher and Kuijlaars recently showed that the eigenvalue correlations from matrix ensembles with
external source can be expressed by means of a kernel built out of special multiple orthogonal poly-
nomials. We derive a Christoffel-Darboux formula for this kernel for general multiple orthogonal
polynomials. In addition, we show that the formula can be written in terms of the solution of the
Riemann-Hilbert problem for multiple orthogonal polynomials, which will be useful for asymptotic
analysis.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple orthogonal polynomials are polynomials that satisfy orthogonal conditions with
respect to a number of weights, or more general with respect to a number of measures. Such
polynomials were firstintroduced by Hermite in his proof of the transcendemcamd were
subsequently used in number theory and approximation theory, sq4#,8,8,10,12] and
the references cited therein. The motivation for the present work comes from a connection
with random matrix theory. In the random matrix model considerd@]ithe eigenvalue
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correlations are expressed in terms of a kernel built out of multiple orthogonal polynomials
with respect to two weights

w;(x) = e Vtax j=12, ai # ap. (1.2)

A Christoffel-Darboux formula was given [8] which leads to a description of the kernel
in terms of the Riemann—Hilbert problem for multiple orthogonal polynoniieds. It is
the aim of this paper to extend the Christoffel-Darboux formula to multiple orthogonal
polynomials with respect to an arbitrary number of weights. We also allow more general
weights than those irl(1).

Letm >2 be aninteger, and lat;, wo, ..., w, be non-negative functions ddsuch that
all momentsf_o"oo kaj(x) dx exist. Letn = (n1, n2, ..., ny,) be a vector of non-negative
integers. The (monic) multiple orthogonal polynomigl of type Il is a monic polynomial
of degredi| satisfying

/Pﬁ(x)kaj(x)dx:o fork=0,...,n; =1, j=1...,m. (1.2)

Here we define, as usudl, = ny +no + - - + ny,.

We assume that the system is perfect, i.e., that for everyN U {0})™, the polynomial
P; exists and is unique, sg8]. This is for example the case when the weights form an
Angelesco system or an AT system, see [.8]. However, see Remark 1.3 for a relaxation
of the perfectness assumption.

The multiple orthogonal polynomials of type | are ponnomiArflé) fork=1,...,m,
WhereA,%k) has degree{n; — 1, such that the function

m

0i(x) =Y AL (x)wi (x) (1.3)

k=1
satisfies

0 for j=0,...,|n|—2,

/x-/ 0;(x)dx = (1.4)
1 for j =n|—1.

The polynomialsaxf{‘) exist, are unique, and they have full degree
deg Af{‘) =n; —1,

since the system is perfect.
The usual monic orthogonal polynomiats on the real line with weight functiom (x)
satisfy a three term recurrence relation and this gives rise to the basic Christoffel-Darboux
formula
n—1
Z %P/(X)Pj(y)= hl Pn(X)Pn—l(y)_Pn—l(x)Pn(y)7
j=0 -1 r=y

(1.5)
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where
hj =/Pj(x)xjw(x)dx.
In order to generalize the formula.f) to multiple orthogonal polynomials, we consider
a sequence of multi-indice®, 71, ..., 1, such that foreach = 0,1, ..., n,
il = Jj, njp1=>1j, (1.6)

where the inequality is taken componentwise. This means that we can ga fran ;1

by increasing one of the componentsmgfby 1. We viewrig, n1, . .., n, as a path from
iio = 0 (the all-zero vector) to an arbitrary multi-indéx= 7i,.. This path will be fixed and
all notions are related to this fixed path. Given such a path, we define the polyndtials
and functionsQ ; (with single index) as

P; = Py, Qj= Qi 1.7
Our aim is to find a simplified expression for the sum

n—1

Kn(x,y) =) Pi(x)Q;(y). (1.8)

J=0

To do this, we introduce the following notation. We define for every multi-intlard every
k=1,...,m,

h) = / P (x)x ™ wy (x) dx. (1.9)
The number&g‘) are non-zero, since the system is perfect. We also use the standard basis
vectors

e =1(0,...,0,1,0,...,0), where lisin théth position (1.10)

Our result is the following.

Theorem 1.1. Letn € N and letno, 71, .. ., 11, be multi-indices such th41..6) holds Let
Pjand Q; be as in(1.7). Then we have i = ,,
n—1 m hg()
(x =) ZO Pi(x)Q;(y) = Pi(x) Q;i(y) — kzl h<k_> Pig (X) Qe (3. (1.11)
j= =1 Tii—e;

Itis easy to see thal (11) reduces to the classical Christoffel-Darboux formdl&)in
casen = 1. Form = 2 the formula was proven if3].

Remark 1.2. It follows from (1.1]) that the kernelX.8) only depends on the endpoihbf
the chosen path fro@toz and not on the particular path itself, since clearly the right-hand
side of (L.11) only depends on.
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This fact can be deduced from the fact that for any multi-indlexd fori # j, we have
= Pr(0) Qs 1) + Ppyg, (0 Qp 42, 0. (1.12)
The relation {.12 follows easily from Lemm&.6 below.

Remark 1.3. For convenience we have assumed that the system is perfect, so that all multi-
indicesn are normal. (A multi-index is normal iP; exists and is unique.) This assumption

is not really necessary. A closer inspection of the proof of Thedrdrim Section 3 reveals

that, besides the normality of the multi-indicés, for j = 0,...,n, andn + &, for
k=1,...,m,which appear in the statement of the theorem, we only use the normality of
the multi-indices

n+éi+éx+-+é, k=2,....m
and
n+eér4ex+---+e +eéy, k=1....m—2 j=k+2,...,m.
It might be possible to weaken the normality assumption even further, but we have not

tried to do so.

Remark 1.4. In [11], Sorokin and Van Iseghem proved a Christoffel-Darboux formula for
vector polynomials that have matrix orthogonality properties. As a special case this includes
the multiple orthogonal polynomials of type I and type Il, when one of the vector polynomials
has only one component. In this special case, their Christoffel-Darboux formula comes
down to the formula

n—1 n+m—1 n—1
=Y Pi®Q;(y) =Pix)Qu-1() — Y D cjkPix)0k(y) (1.13)
j=0 k=n j=0

where the constants ; are such that

k+1
xPr(x) = ZC,/.kPj(x),
j=0

see alsog.5) below. In the setting of11] it holds thatc; x = 0 if k> j +m + 1, so that
the right-hand side ofl(13 has 1+ %m(m + 1) terms. Note that in our formuld (11) the
right-hand side has only+ m terms.

Another Christoffel-Darboux formula for multiple orthogonal polynomials similar to the
one in[11] has been given recently [6].

Remark 1.5. As mentioned before, the formula.(1) is useful in the theory of random
matrices. Brézin and Hikanfb] studied a random matrix model with external source given
by the probability measure

ie—TV(V(M)—AM) dM (114)
Zy
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defined on the space ofx n Hermitian matriced/. Here we have that (x) = %xz, Aisa
fixed Hermitian matrix (the external source), @fdis a normalizing constant. For this case,
we canwriteM = H + A, whereH is a random matrix from the Gaussian unitary ensemble
andA is deterministic. Zinn—Justif15] considered the case of an arbitrary polynoriial
Thek-point correlation functiorR, (A1, . . ., Ax) of the (random) eigenvalues of a matrix
fromthe ensemblel(14) can be expressed ak ak determinantinvolving akerndl,, (x, y)

Ri (1, ..., k) = det(Ky (Ai, Aj)1<ij <k (1.15)

see[15]. Suppose that the external sousdasm distinct eigenvaluesy, ..., o, with
respective multiplicitiesi1, ..., n,. Letn = (n1, ..., ny). Then it was shown ifi3] that
the kernelk,, has the form1.8) built out of the multiple orthogonal polynomials associated
with the weights

wj(x) = e V=20, j=1...,m.

The Christoffel-Darboux formulal(11) gives a compact expression for the kernel.

There is another expression for the kerrieB) in terms of the solution of a Riemann—
Hilbert problem. This will be especially useful for the asymptotic analysis of the matrix
model (L.14). We will discuss this in the next section. The proof of Theofefrs presented
in Section3.

2. Link with the Riemann—Hilbert problem

Van Assche et al[14] found a Riemann—Hilbert problem that characterizes the mul-
tiple orthogonal polynomials. This is an extension of the Riemann—Hilbert problem for
orthogonal polynomials due to Fokas et[8]. We seeky : C\ R — C+Dxm+D gych
that
1. Yis analytic onC \ R,

2. forx € R, we haveY, (x) = Y_(x)S(x), where

1 wix) wa(x) -+ wp(x)
0 1 o .. 0
sm=0 0 1 -0 2.1)
0O O o ... 1
3. asz — oo, we have that

7" 0 0 0
0z™ O 0
0O 0 zm"™... 0

: (2.2)

o-(0(2)

wherel denotes thém + 1) x (m + 1) identity matrix.

0 0 0 -cgm
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This Riemann—Hilbert problem has a unique solution given by:

Pi(2) R;(2)
c1Pi—(2) 1R (2)
Y(z) = | c2Pi-2,() c2Rji5(z) || (2.3)

cm Pz, (2) ecmRy—g, (2)

where P;(z) is the multiple orthogonal polynomial of type Il with respect to the weights

w1, ..., wy, andR; = (R; 1, Ri 2. ..., Ri ) is the vector containing the Cauchy trans-
forms
1 P;(x)wi(x)
Ri (@) =~ / 1 dx
T X —Z
and
2mi )
Cj == j=1...,m. (2.4)
hﬁ—aj

VanAssche et aJ14] also gave a Riemann—Hilbert problem that characterizes the multiple
orthogonal polynomials of type I. Here we sekk C\ R — C™"+Dx0m+D gych that
1. Xis analytic onC \ R,
2. forx € R, we haveX, (x) = X_(x)U (x), where

1 00---0
—wi(x) 10---0

U(x): —wz(x) 01---0 , (25)
—w,.n(x)(')(.)uﬁil.

3. asz — oo, we have

7" 0 0--- 0
0 z4 0 --- 0

1
X(z) = (1+0<—)> 0 0% 0 (2.6)
4 . . .. .
0 0 O ...z"m
This Riemann—Hilbert problem also has a unique solution and it is given by

[ O(x) 2 2mi Aj(2)
kiggr [ Qiva, ()2 k1Azyz, ()
X(@) = | ket [ Qi ()25 koAiyz,(2) | 27

knger [ Qv ()25 ki Aiisz, (2)
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Whereﬁﬁ = (Aél), Aff), cey A,%’")) is the vector of multiple orthogonal polynomials of
type | with respect tavy, ..., wu, Qi(2) = Y 1 Aflf‘)(x)wk(x) and

ki=hY j=1...m. (2.8)

n >

It is now possible to write the kerndt, (x, y) in terms of the solutions of the two
Riemann-Hilbert problems, see a[8}. First, we observe that = Y ~'. If we look at the
j + 1, 1-entry of the prOdUCY_l(y)Y(x) = X'(y)Y(x), wherej = 1,...,m, then we
find by (2.3) and @.7)

P; (x)
. . _ c1P;i_g(x)
Y1)y 0)ljs11= [2m'A,§”<y) kAY) () - kmAY)S (y)] 2Pi-& )

cm Pri_g;, (x)

, m o p® ,

= 2mi (Pﬁ(x)A,%j)(y) > Pia®@al,m ], (29
k=1 "i—e,

where in the last step we used the expressi@m® and @.8) for the constants; andk;.

Multiplying (2.9) by w;(y), dividing by 2ri, and summing ovej = 1, ..., m, we obtain

the right-hand side ofl(11). Therefore we see that

m

1
@ =N, )= 5= Y wiMIY MY (0)]j411

2ni o]
1
1 . 0
=5 [0w) - wn WM YO @ | | (2.10)
0

It is clear that the right-hand side d.@0 is O forx = y, which is not obvious at all for
the right-hand side ofl(11).

In [4] the Riemann—Hilbert problen2(1) and @.2) is analyzed in the limit — oo for
the special case @f = 2,n1 = np, and weights

1.2 1.2
wl(x) — e—n(zx —ax)’ wz(x) — e—n(zx +ax)'

The corresponding multiple orthogonal polynomials are known as multiple Hermite poly-
nomials[2,13]. The Deift/Zhou steepest descent method for Riemann—Hilbert problems
can be applied to the asymptotic analysis 2fl and @.2), see[7] and references cited
therein.

3. Proof of Theorem1.1

For the proof we are going to extend the paghris, . . ., 1, by defining

Mpak — Mpik—1 = €k, k=12,...,m. (3.2)
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We will also extend the definitioril(7) by putting P; = P;, andQ;_1 = Qj, for j =
n+1,....n+m.

3.1. Biorthogonality and recurrence relations
The multiple orthogonal polynomials satisfy a biorthogonality relation.
Lemma 3.1. We have
/Pk(X)Qj(X)dx =0,
whered; « is the Kronecker delta

Proof. This is immediate from the definition4.(), the orthogonality conditionsl(4) of
the functionQ ; and (L.2) of the polynomialP, and the fact thaP, is a monic polynomial.

O
Becausex P, (x) is a polynomial of degrek + 1, we can expand Py (x) as
k+1
xPr(x) = ch,kPj(x). (3.2)
j=0

The coefficients can be calculated by Lem&aby multiplying both sides 0f3.2) with
Q;(x) and integrating over the real line. That gives us

Cjk = /ka(X)Q/(X)dX- (3.3)

The coefficients'; , are 0 if j >k 4 2.
Because 0f3.1) we canwritey Q ; (y) with j <n—1asalinearcombination @y, ..., Qnt4m-1
and we have by Lemma.1

n+m—1

YO = Y cjxQx(y) forj=0...n-1 (3.4)

k=0

Using the expansion8(2) and @.4) for x P (x) andy Q;(y) we can write

n—1 n—1 n—1
@ =D P@O( =Y xP(x)0k(y) = Y Pe(x)yQx(y)
k=0 k=0 k=0
n—1 k+1 n—1n+m—1
=Y D kPO =Y Y aiP0)Q; ().
k=0 j=0 k=0 j=0

A lot of terms cancel. Sincej y = 0 for j >k + 2, andc,, ,—1 = 1, what remains is

n—1 n+m—1 n—1

@ =D PO = Pix) Qi) — Y Y ¢jxPi(x) Q). (3.5)

k=0 k=n j=0
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We also used the fact th&, = P; andQ,,_1 = Qj. Note that 8.5 corresponds to the
Christoffel-Darboux formula dfL1], as mentioned in the introduction.
In the rest of the proof we are going to show that

n+m—1 n—1 m hgk)
Y D kPO =) i Pig (0 Qi () (36)
k=n j=0 =1 il

so that 8.5) then leads to our desired formulth.{1).
3.2. The vector space generated by the polynonfials,, ..., P;_;,

For fixedy, the right-hand side of3(6) belongs to the vector space spanned by the
polynomials of P;_;,, ..., P;_z, . In this part of the proof, we characterize this vector
space and show that the left-hand side36)(also belongs to this vector spa¢e

Lemma 3.2. The polynomialsP;_;,, ..., P;_;, are a basis of the vector space V of all
polynomialsr of degree<n — 1 satisfying

/n(x)xiwj(x)dxzo, i=0...,nj-2, j=1...,m. 3.7)

Proof. By the orthogonality propertied (2) of the polynomialsP; _;, fori = 1,...,m,
it is obvious that they belong %@. We are first going to show that the polynomias_;,
are linearly independent. Suppose that

arP;_z +aPi_z+ -+ anP;i_;, =0 (3.8)

for some coefficients ;. Multiplying (3.8) with w; (x)x"i~1, and integrating over the real
line, we obtaina/-h;’_)g_ = 0. Sincehflﬂ_)a # 0, we geta; = 0 for j = 1,...,m, which
J J
shows that the polynomials are linearly independent.
Suppose next that belongs tov. Put

b; = L ()2 " Yw; (x) dx
J h(fl)a J

e
and define the polynomiad; by

my=b1P;_z +boP; s+ -+ by Pi;, . 3.9
Thenni — 7 belongs to/ and

/ (m1(x) — n(x))x”-f_le(x) dx =0, j=1...,m. (3.10)
This means that; — = satisfies the conditions

/(nl(x)—n(x))xiw,-(x)dx=o, i=0,...,nj—1 j=1,...,m. (3.11)
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Becauser; — nis a polynomial of degreein — 1 and the system is perfect, it follows from
(3.1) thatny — = = 0. Thereforer = 71, andr can be written as a linear combination of
the polynomialsP; _;,, ..., P;_;,. O

The lemma follows.

Lemma 3.3. For everyk = n, ..., n +m — 1, we have that the polynomial

n—1

T (x) = Z cjkPj(x) (3.12)

belongs to the vector space V

Proof. Clearlyny is a polynomial of degree — 1. Using 8.2) we see that

k+1
M (x) = xP(x) = Y ¢jaPj(x). (3.13)
j=n
The representatior3(13 of n; and the orthogonality condition&.Q) show thatr; satisfies
the relations§.7), so thatr; belongs tov by Lemma3.2 [
Because of Lemma.3, the left-hand side 0f3.6) belongs toV for everyy, and so by
Lemma3.2, we can write

n+m—1 n—1

> Zc,kp D) =) b;(Piz,(x) (3.14)
k=n j=0

j=1
for certain functiong) ; (y). The nextlemma gives an expressiondqr We use the notation
5o = 0 (all-zero vector) and

Lemma 3.4. We have forj =1, ..., m,
s b0 = Z s Qs (). (3.15)

Proof. Rewriting the left-hand side 08(14) using .12 and (3.13 we obtain

m n+m—1 n+m—1 k+1
D biMPig )= > xP)Q()— Y. D cjxPi(x)Qk(y). (3.16)
j=1 k=n k=n j=n

Now multiply (3.16) with x"~w ; (x) and integrate with respect xoThen the left-hand
side gives

s b ). (3.17)
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The second sum in the right-hand side2fl@) gives no contribution to the integral because
of orthogonality, and the first sum gives
n+m—1

3 ( / Pk(x)x"fw,-mdx) )

k=n
= Z (f n+i— 1(x)xnjw (x) dx) Onti-1(y). (318)

Because of the choic8(1) and the definition1.7) we have
Prvic1= Pitsy, Onvi-1= Qiiys, i=1....m

Then we see that the integral in the right-hand sid8dfd) is zero ifi > j + 1 and otherwise
it is equal toh(’) .- Then .19 follows.  OJ

3.3. Completion of the proof of Theoreni

In view of (3.14 and 3.15 it remains to prove that

W Qe () = Zh,ﬁ’js Qi) (3.19)

for j =1,...,m, and then3.6) follows. .
To establish3.19 we need some properties of the numtieé@ and relations between

Q-functions with different multi-indices. We already noted th;%(i) # 0. We express the
leading coefficients of the polynomia,ls(%’) in terms of these numbers.

Lemma 3.5. The leading coefficient ortf{lz_ is equal toh%.
-] hy

Proof. Because of the orthogonality conditioris?) and (.4) we have that
1= [ Pa0) Qi (o) d
:/P,;(x)AgQE (w; (x) dx
= (leading coefficient Oﬂ,%jizj)/Pﬁ(x)x".iwj(x)dx
= (leading coefficient oﬂgﬂgj)h;j)
and the lemma follows. O

Lemma 3.6. Let j # k. Then we have for every multi-indéxhat
*) n
Pi(x) = h(ﬂkL)(PMEj — Pitg) = h(/) —— (Piye; — Pitg) (3.20)
n+eé; n—+ek
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and
0N W
0 = 05z, — Oia) = — Qs — Oi). (3.21)
hn —éx hﬁ*Ej

Proof. We know thatP; is a polynomial of degre#i| that satisfies the orthogonality
conditions (.2). It is easy to see thak;,;;, — P;1 is a polynomial of degregi| that
satisfies these same conditions. Because the system is perfect, we then have that

yPi(x) = Pﬁ+ej (x) — Py (x), (3.22)

for somey € R. Multiplying (3.22 with x"*wy (x) and integrating over the real line, we
find that

A (k) (k)
}}hﬁ _hn+e —0= hn—i—e/

This proves the first equality 08(20). The second equality follows by interchangijrand
k.
Next we show3.21). Itis easy to see th@g_gj — 05—, satisfies the same orthogonality

conditions (..4) asQj;. Since the degrees of the polynomialgigj (’) do not exceed

the degrees oﬁg) fori =1,...,m, it follows that

V05 = Qii-g; — Qii—¢; (3.23)

for somey € R. To computey, we are going to compare the leading coefficients of the
polynomials that come withy (x). Using Lemma3.5, we find that

, 1 1 0 1
G0 - 0]
hils by - hy

n—e; ek n— zjfck

This proves the first equality of3(21). The second equality follows by interchanging
andk. O
Now we are ready to complete the proof of Theorkem

Proof of Theorem1.1
In view of what was said before, it suffices to pro&l@. Fix j = 1,...,m. We are
going to prove by induction that far=0, ..., j — 1,

k

() ) ()
hﬁ] QﬁJFEj = Z nJ-H 1Q”+" + hn-Hk Qﬁ+§k+‘?/' (3.24)
i=1

Fork = 0, the sum in the right-hand side &.24) is an empty sum, and then the equality
(3.29 is clear.
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Suppose that3;24) holds for somé < j — 2. Taking @.21) with 7i + 5341 + ¢; instead
of n andk + 1 instead ok, we get

h)
= L n—+si Lo oL
Qﬁ+sk+1+ej = _T(QnJrskJrl - Qn+sk+e_,~)~
7i4-Sk1
Thus
h 0x _ 0; +hY. Qae (3.25)
n+sk n+Sgt+e; = n+sk Aitsie T 45 q < NHSkr1te; )

and using the induction hypothes&24) we obtain 8.24) with k replaced by + 1.
So (3.29 holds for everyk = 0,1, ..., j — 1. Takingk = j — 1 in (3.24, we obtain
(3.19 and this completes the proof of Theordm. [

References

[1] A.l. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998) 423—-447.

[2] A.l. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans.
Amer. Math. Soc. 355 (2003) 3887-3914.

[3] P.M. Bleher, A.B.J. Kuijlaars, Random matrices with external source and multiple orthogonal polynomials,
Int. Math. Res. Notices 2004 (3) (2004) 109-129.

[4] P.M. Bleher, A.B.J. Kuijlaars, Largelimit of Gaussian random matrices with external source, part |, preprint
math-ph/0402042, Comm. Math. Phys., to appear.

[5] E. Brézin, S. Hikami, Extension of level spacing universality, Phys. Rev. E 56 (1997) 264—269.

[6] J. Coussement, W. Van Assche, Gauss quadrature for multiple orthogonal polynomials, preprint
math.CA/0403533, J. Comput. Appl. Math., to appear.

[7] P. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes
in Mathematical, vol. 3, American Mathematical Society, Providence RI, 1999.

[8] A.S. Fokas, A.R. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity,
Commun. Math. Phys. 147 (1992) 395-430.

[9] K. Mahler, Perfect systems, Compositio Math. 19 (1968) 95-166.

[10] J. Nuttall, Asymptotics of diagonal Hermite—Padé polynomials, J. Approx. Theory 42 (1984) 299-386.

[11] V.N. Sorokin, J. Van Iseghem, Algebraic aspects of matrix orthogonality for vector polynomials, J. Approx.
Theory 90 (1997) 97-116.

[12] W. Van Assche, Hermite—Padé approximation and multiple orthogonal polynomials, preprint.

[13] W. Van Assche, E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math.
127 (2001) 317-347.

[14] W. Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, Riemann—Hilbert problems for multiple orthogonal
polynomials, in: J. Bustoz et al. (Eds.), Special Functions 2000: Current Perspectives and Future Directions,
Kluwer, Dordrecht, 2001, pp. 23-59.

[15] P. Zinn-Justin, Random Hermitian matrices in an external field, Nucl. Phys. B 497 (1997) 725-732.



	A Christoffel--Darboux formula for multiple orthogonal polynomials
	Introduction
	Link with the Riemann--Hilbert problem
	Proof of Theorem 1.1
	Biorthogonality and recurrence relations
	The vector space generated by the polynomials P"0245n-"0245e1,…,P"0245n-"0245em
	Completion of the proof of Theorem 1.1

	References


