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Abstract
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1. Introduction

1.1. The problem

Let M be a smooth connected completen-dimensional Riemannian manifold wit
boundary∂M . When∂M �= ∅, M denotes the interior andM = M ∪ ∂M . Let � denote
the (negative) Laplacian onM .

Consider a positive control timeT and a non-empty open control regionΓ of ∂M . Let
1]0,T [×Γ denote the characteristic function of the space–time control region]0, T [ × Ω .
The heat equation onM is said to benull-controllable in time T by boundary controls
on Γ if for all φ0 ∈ L2(M) there is a control functionu ∈ L2

loc(R;L2(∂M)) such that the
solutionφ ∈ C0([0,∞),L2(M)) of the mixed Dirichlet–Cauchy problem:

∂tφ − �φ = 0 in ]0, T [ × M, φ = 1]0,T [×Γ u on ]0, T [ × ∂M, (1)

with Cauchy dataφ = φ0 at t = 0, satisfiesφ = 0 at t = T . Thenull-controllability costis
the best constant, denotedCT,Γ , in the estimate:

‖u‖L2(]0,T [×Γ ) � CT,Γ ‖φ0‖L2(M)

for all initial data φ0 and controlu solving the null-controllability problem describe
above. The analogous interior null-controllability problem from a non-empty open
setΩ of M is also considered:

∂tφ − �φ = 1]0,T [×Ω u onRt × M, φ = 0 onRt × ∂M,

φ(0) = φ0 ∈ L2(M), u ∈ L2
loc

(
R;L2(M)

)
.

(2)

WhenM is compact (for instance a bounded domain of the Euclidean space), L
and Robbiano have proved (in [7] using local Carleman estimates) that, for allT and
Γ there is a continuous linear operatorS :L2(M) → C∞

0 (R × ∂M) such thatu = Sφ0

yields the null-controllability of the heat equation (1) onM in time T by boundary con-
trols onΓ . They have also proved the analogous result for (2) which implies that int
null-controllability holds for arbitraryT and Ω . (We refer to [6] for a proof of null-
controllability for more general parabolic problems using global Carleman estimates

The null-controllability of the heat equation whenM is an unbounded domain of th
Euclidean space is an open problem which Micu and Zuazua have recently under
in [13]. On the one hand, it is only known to hold whenM \Ω is bounded (cf. [1]). On the
other hand, its failure can be much more drastic than in the bounded case (whenM is the
half space andΓ = ∂M , it is proved in [11,12] that initial data with Fourier coefficien
that grow less than any exponential are not null-controllable in any time, whereas the
initial data with exponentially growing Fourier coefficients that are null-controllable).

The geometric aspect of the open problem in [13] is addressed here with exam
null-controllability with unbounded uncontrolled region, and lack thereof including w
the distance to the controlled region is finite (cf. Theorem 1.4(iii)). The geometric n
sary condition in Theorem 1.11 grasps at some notion of “controlling capacity” of a s
that would yield a necessary and sufficient condition for interior null-controllability.
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1.2. Elementary examples

Before stating the results in full generality, we give elementary examples.
The simplest (bounded) case to study is whenM is a segment andΓ is one of the end

points. It is well known that this problem reduces by spectral analysis to classical res
non-harmonic Fourier series. For further reference, we introduce the optimal fast c
cost rate for this problem:

Definition 1.1. The rateα∗ is the smallest positive constant such that for allα > α∗ there
existsγ > 0 such that, for allL > 0 andT ∈]0, inf(π,L)2], the null-controllability cost
CL,T of the heat equation (1) on the Euclidean intervalM =]0,L[ (i.e. � = ∂2

x ) from
Γ = {0} satisfies:CL,T � γ exp(αL2/T ).

Computingα∗ is an interesting open problem. As proved in [9],

Theorem 1.2. The rateα∗ defined above satisfies: 1/4� α∗ � 2(36/37)2 < 2.

The simplest unbounded case where null-controllability holds is probably the follow
which extends to an infinite strip the null-controllability from one side of a rectangle pr
in [5].

Theorem 1.3. The heat equation(1) on the infinite stripM =]0,L[×R of the Euclidean
plane(i.e. � = ∂2

x + ∂2
y ) is null-controllable from one sideΓ = {(x, y) | x = 0, y ∈ R} in

any timeT > 0. Moreover, the corresponding null-controllability cost satisfies(with α∗ as
in Theorem1.2): lim supT →0 T lnCΓ,T � α∗L2.

Here is an example in the usual three-dimensional space which illustrates interio
controllability and lack thereof.

Theorem 1.4. Consider the heat equation(2) on the infinite rodM = S × R in the Euclid-
ean space(i.e. � = ∂2

x + ∂2
y + ∂2

z ) where the sectionS is any smooth connected bound
open set of the plane.

(i) It is null-controllable in any timeT > 0 from any interior infinite rodΩ = ω × R

where the sectionω is an open non-empty subset ofS. Moreover, ifω contains a neigh-
borhood of the boundary ofS and S \ ω does not contain any segment of lengthL,
then the corresponding null-controllability cost satisfies(with α∗ as in Theorem1.2):
lim supT →0 T lnCΩ,T � α∗L2.

(ii) It is not null-controllable in any timeT > 0 from any interior regionΩ of finite
Lebesgue measure such thatM \Ω contains slabsS ×[z1, z2] of arbitrarily large thickness
|z2 − z1|.

(iii) It is not null-controllable in any timeT > 0 from the cylindrical interior region
Ω = {(x, y, z) ∈ M | x2+y2 < R(z)2} if (0,0) ∈ S and the lower semi-continuous functio
R :R → [0,∞) tends to zero at infinity.

1.3. Main results

A large class of null-controllable heat equations on unbounded domains is gen
by the two following theorems concerning respectively boundary and interior cont
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bility. In both theorems,M̃ denotes another smooth completeñ-dimensional Riemannia
manifold and�̃ denotes the corresponding Laplacian.

Theorem 1.5. Let γ denote the subsetΓ × M̃ of ∂(M × M̃). If the heat equation(1) is
null-controllable at costCT,Γ then the heat equation:

∂tφ − (� + �̃)φ = 0 onRt × M × M̃, φ = 1γ g onRt × ∂(M × M̃),

φ(0) = φ0 ∈ L2(M × M̃), g ∈ L2
loc

(
R;L2(∂(M × M̃)

))
,

is exactly controllable in any timeT at a costC̃T ,γ which is not greater thanCT,Γ .

Theorem 1.6. Let ω denote the subsetΩ × M̃ of M × M̃ . If the heat equation(2) is
null-controllable at costCT,Ω then the heat equation:

∂tφ − (� + �̃)φ = 1ωg onRt × M × M̃, φ = 0 onRt × ∂(M × M̃),

φ(0) = φ0 ∈ L2(M × M̃), g ∈ L2
loc

(
R;L2(M × M̃)

)
,

is exactly controllable in any timeT at a costC̃T ,ω which is not greater thanCT,Ω .

Remark 1.7. Theorem 1.4(i) is a particular case of Theorem 1.6 withM = S, M̃ = R,
invertedΩ andω, and the cost estimate results from the cost estimate onM proved in [9].
Theorems 1.5 and 1.6 apply, for instance, to any open subsetM̃ of the Euclidean spaceRñ.
Thanks to the results of [7] already mentioned in Section 1.1, the conclusions of
theorems hold for arbitrary control regions of a compactM . Then they can be applie
recursively, taking the resulting null-controllable product manifold as the newM (the the-
orems are still valid ifM has corners).

Remark 1.8. The case whenM is a bounded Euclidean set and̃M = (0, ε) with Neumann
boundary conditions at both ends has been considered in [4] with an extra time-dep
potential. Whenε → 0, using global Carleman estimates, it is proved that the cost is
form (as in Theorem 1.6) and depends on the uniform norm of the potential. Moreov
limit of the control functions is a control function for the limit problem.

Remark 1.9. The type of boundary conditions are irrelevant to the proof of Theorem
and Theorem 1.6. These theorems can be combined with Theorem 6.2 in [8] and
rem 2.3 in [9] respectively to obtain bounds on the fast null-controllability cost:

lim sup
T →0

T ln C̃γ,T � α∗L2
Γ and lim sup

T →0
T ln C̃ω,T � α∗L2

Ω

for anyLΓ andLΩ such that every generalized geodesic of length greater thanLΓ passes
throughΓ at a non-diffractive point, and every generalized geodesic of length greate
LΩ passes throughΩ . We refer readers interested by these bounds to [8,9] where m
said about generalized geodesics and the extra geometric assumptions needed to u

The last result states a geometric condition which is necessary for the interior
controllability of the heat equation on an unbounded domain of the Euclidean space
condition involves the following “distances”.
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Definition 1.10. In R
n, the Euclidean distance of points from the origin and the Lebe

measure of sets are both denoted by| · |. Let M be a non-empty open subset ofR
n.

Let d :M 2 → R+ denote the distance function onM , i.e. the infimum of lengths o
arcs in M with end pointsx and y (n.b., in terms of Lipschitz potentials:d(x, y) =
supψ∈Lip(M),‖∇ψ‖L∞�1 |ψ(x) − ψ(y)|). The distance ofy ∈ M from the boundary o

M is d∂(y) = infx∈Rn\M |x − y|. The distance ofy ∈ M from Ω ⊂ M is d(y,Ω) =
infx∈Ω d(x, y). We define theaveraged distancēdT (y,Ω) of y to Ω with Gaussian weigh
of varianceT by

d̄T (y,Ω)2 = −2T log

(∫
Ω

exp

(
−d(y, x)2

2T

)
dx

)
� d(y,Ω)2 − 2T log|Ω|.

Technically, we shall use the followingbounded distanceof y to ∂M :

d T (y, ∂M) = min
{
d∂(y), T π2n/4

}
.

Theorem 1.11. LetM be a connected open subset ofR
n and letΩ be an open subset ofM .

If there are a sequence{yk}k∈N of points inM , a timeT̄ > 0 and a constantκ > 1 such
that

d̄T̄ (yk,Ω)2 − κ
π2n2

4

(
T̄

d T̄ (yk, ∂M)

)2

→ +∞, ask → +∞, (3)

then the heat equation(2) is not null-controllable in any timeT < T̄ . In particular, when
Ω has finite Lebesgue measure, if there is a sequence{yk}k∈N such thatinfk d∂(yk) > 0
and limk d(yk,Ω) = ∞, then the heat equation(2) is not null-controllable in any timeT .

Remark 1.12. The simple condition in the second part of Theorem 1.11 is enough to p
Theorem 1.4(ii) (consider the points(0,0, (z2 − z1)/2) of a sequence of slabsS × [z1, z2]
in M \ Ω with thickness|z2 − z1| tending to infinity). Theorem 1.4(iii) illustrates that
may fail although the finer condition (3) holds. The second term in the geometric con
(3) allows{yk}k∈N to tend to the boundary ofM . To illustrate its usefulness, we give y
another example in Remark 3.2.

Remark 1.13. The proof of Theorem 1.11 in Section 3.3 builds on heat kernel estim
Generalizations to some non-compact manifolds can obviously be obtained using th
kernel estimates available in the literature (cf. [17] and references therein). We co
null-controllability on non-compact manifolds in a forthcoming paper.

2. An abstract lemma on tensor products

In this section, we prove that the cost of null-controllability of an abstract control sy
is not changed by taking its tensor product with an uncontrolled system generated by
positive self-adjoint operator.
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2.1. Abstract setting

We first recall the general setting for control systems: admissibility, observability
controllability notions and their duality (cf. [3] and [16]).

Let Z andV be Hilbert spaces. LetA :D(A) → Z be the generator of a strongly co
tinuous group of bounded operators onZ. Let Z1 denoteD(A) with the norm‖z‖1 =
‖(A− β)z‖ for someβ /∈ σ(A) (σ(A) denotes the spectrum ofA, this norm is equivalen
to the graph norm andZ1 is densely and continuously embedded inZ) and letZ−1 be the
completion ofZ with respect to the norm‖ζ‖−1 = ‖(A− β)−1ζ‖. Let Z′ denote the dua
of Z with respect to the pairing〈· , ·〉. The dual ofA is a self-adjoint operatorA′ on Z′.
The dual ofZ1 is the spaceZ′−1 which is the completion ofZ′ with respect to the norm
‖ζ‖−1 = ‖(A′ − β̄)−1ζ‖ and the dual ofZ−1 is the spaceZ′

1 which is D(A′) with the
norm‖z‖1 = ‖(A′ − β̄z‖.

Let C ∈ L(Z1,V) and letC′ ∈ L(V ′,Z′−1) denote its dual. Note that the same the

applies to anyA-bounded operatorC with a domain invariant by(etA)t�0 since it can be
represented by an operator inL(Z1,V) (cf. [16]).

We consider the dual observation and control systems with output functionv and input
functionu:

ż(t) = Az(t), z(0) = z0 ∈ Z, v(t) = Cz(t), (4)

ζ̇ (t) = A′ζ(t) + C′u(t), ζ(0) = ζ0 ∈ Z′, u ∈ L2
loc(R;Z′). (5)

We make the following equivalent admissibility assumptions on the observation o
tor C and the control operatorC′ (cf. [16]): ∀T > 0, ∃KT > 0,

∀z0 ∈ D(A),

T∫
0

‖CetAz0‖2 dt � KT ‖z0‖2, (6)

∀u ∈ L2(R;V ′),
∥∥∥∥∥

T∫
0

etA′C′u(t) dt

∥∥∥∥∥
2

� KT

T∫
0

∥∥u(t)
∥∥2

dt. (7)

With this assumption, the output mapz0 �→ v from D(A) to L2
loc(R;V) has a continuou

extension toZ. Eqs. (4) and (5) have unique solutionsz ∈ C(R,Z) and ζ ∈ C(R,Z′)
defined by:

z(t) = etAz0, ζ(t) = etA′
ζ(0) +

t∫
0

e(t−s)ABu(s) ds. (8)

The following dual notions of observability and controllability are equivalent (cf. [3

Definition 2.1. The system (4) isfinal observablein time T > 0 at costκT > 0 if the
following observation inequality holds:∀z0 ∈ Z, ‖z(T )‖2 � κ2

T

∫ T

0 ‖v(t)‖2 dt . The system
(5) is null-controllable in time T > 0 at costκT > 0 if for all ζ0 in Z′, there is au in
L2(R;V ′) such thatζ(T ) = 0 and

∫ T

0 ‖u(t)‖2 dt � κ2
T ‖ζ0‖2. Thenull-controllability cost
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observation inequality), still denotedκT . When (5) is not null-controllable in timeT , we
setκT = +∞.

2.2. Tensor products

Now, we introduce the specific tensor product structure of the abstract control sy
(5) under consideration here. LetX, Y , V be separable Hilbert spaces andI denote the
identity operator on each of them. LetA :D(A) → X andB :D(B) → Y be generators o
strongly continuous semigroups of bounded operators onX andY . Let C ∈ L(X1,V ) be
admissible for the control system:

ξ̇ (t) = A′ξ(t) + C′u(t), ξ(0) = ξ0 ∈ X′, u ∈ L2
loc(R;V ′). (9)

Let X ⊗Y andV ⊗Y denote the closure of the algebraic tensor productsX ⊗Y andV ⊗Y

for the natural Hilbert norms. The operatorC ⊗ I :D(C) ⊗ Y → V ⊗Y is densely defined
onX ⊗Y . The operatorA ⊗ I + I ⊗ B defined on the algebraicD(A) ⊗ D(B) is closable
and its closure, denotedA + B, generates a strongly continuous semigroup of boun
operators onX ⊗Y .

Lemma 2.2. LetZ = X ⊗Y , V = V ⊗Y , A = A+B andC = C ⊗ I . If B is a non-positive
self-adjoint operator, then, for allT > 0, the null-controllability costκT for (5) is lower
then the null-controllability costkT for (9) in the same timeT .

Proof. We may assume thatkT is finite. By definition it satisfies:

∀x ∈ X, ‖eT A‖2 � k2
T

T∫
0

‖CetA‖2 dt. (10)

We have to prove that:

∀z ∈ X ⊗Y, E := ‖eT (A+B)z‖2 � k2
T

T∫
0

∥∥(C ⊗ I )et (A+B)z
∥∥2

dt =:O. (11)

As explained in the proof of Lemma 7.1 in [10]:

∀t � 0, et (A+B) = etA ⊗ etB. (12)

Applying the spectral theorem for unbounded self-adjoint operators on separable H
spaces toB � 0 (cf. Theorem VIII.4 in [14]), yields a measure space(M,M,µ) with
finite measureµ, a measurable functionb :M → (−∞,0] and a unitary operatorU :Y →
L2(M,dµ) such that:

∀y ∈ Y, ‖etBy‖2 =
∫
M

e2tb(m)
∣∣Uy(m)

∣∣2µ(dm). (13)

SinceX is separable, there is a unique isomorphism fromX ⊗L2(M,dµ) toL2(M,dµ;X)

so thatx ⊗ f (m) �→ f (m)x (cf. Theorem II.10 in [14]). We denote byU :X ⊗Y →
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L2(M,dµ;X) the composition of this isomorphism withI ⊗U . Similarly, there is a unique
isomorphism fromV ⊗L2(M,dµ) to L2(M,dµ;V ) so thatv ⊗ f (m) �→ f (m)v. We de-
note byV :V ⊗Y → L2(M,dµ;V ) the composition of this isomorphism withI ⊗ U . By
decomposing into an orthonormal basis ofX, (13) implies:

∀z ∈ X ⊗Y,
∥∥(I ⊗ etB)z

∥∥2 =
∫
M

e2tb(m)
∣∣Uz(m)

∣∣2µ(dm), (14)

∀w ∈ V ⊗Y,
∥∥(I ⊗ etB)w

∥∥2 =
∫
M

e2tb(m)
∣∣Vw(m)

∣∣2µ(dm). (15)

Let z ∈ X ⊗Y . Applying (10) toUz(m) for fixedm ∈ M and integrating yields:

∫
M

∥∥eT AUz(m)
∥∥2

e2tb(m)µ(dm) � k2
T

∫
M

e2T b(m)

T∫
0

∥∥CetAUz(m)
∥∥2

dt µ(dm).

SinceeT AUz = U(eT A ⊗ I )z, (14) and (12) imply that the left hand side isE defined
in (11). Using Fubini’s theorem andb � 0 to bound the right hand side from above yiel

E � k2
T

T∫
0

∫
M

e2tb(m)
∥∥CetAUz(m)

∥∥2
µ(dm)dt.

SinceCetAUz = V(CetA ⊗ I )z, (15) and (12) imply that the right hand side isO defined
in (11), which completes the proof of (11).�
2.3. Proof of Theorems 1.3, 1.5 and 1.6

The first part of Theorem 1.3 is a particular case of Theorem 1.5. The second pa
estimate on the null-controllability cost which results from Definition 1.1 and Lemma
with X = L2(0,L), Y = L2(R), Z = R, A = ∂2

x , D(A) = H 2(0,L) ∩ H 1
0 (0,L), B = ∂2

y ,

D(B) = H 2(R), Cf = ∂xf�x=0. The reader balking at the abstraction of Lemma 2.2
prove it in this particular case using the Fourier transform on the real line in they variable
where the spectral theorem was used (thenµ is the Lebesgue measure andb(m) = −|m|2)
and a discrete Fourier decomposition on the interval in thex variable.

Theorems 1.5 and 1.6 are direct applications of Lemma 2.2 withX = L2(M), Y =
L2(M̃), A = �, D(A) = H 2(M) ∩ H 1

0 (M), B = �̃, D(B) = H 2(M̃) ∩ H 1
0 (M̃). The-

orem 1.5 corresponds toZ = L2(Γ ) and Cf = ∂νf�Γ where ∂ν denotes the exterio
Neumann vector field on∂M . Theorem 1.6 corresponds toZ = L2(Ω) andCf = f�Ω .

3. Geometric necessary condition

In this section, we prove Theorem 1.11. Henceforth, the domain of the Laplac
D(�) = H 2(M) ∩ H 1

0 (M). Since controllability and observability in Definition 2.1 a
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equivalent, the heat equation (2) is null-controllable in timeT if and only if there is a
CΩ,T > 0 such that

∀f0 ∈ L2(M),

∫
M

|eT �f0|2 dx � CΩ,T

T∫
0

∫
M

|et�f0|2 dx dt. (16)

As for Theorem 2.1 in [9] where the null-controllability costCΩ,T (on a compactM)
was bounded from below asT → 0, the strategy is to choose the initial datumf0 to be an
approximation of the Dirac massδy at somey ∈ M which is as far fromΩ as possible
Therefore both proofs build on heat kernel estimates. But here we need estimates
are uniform onM for compact times and we use the finer notion of averaged distancey

to Ω (cf. Definition 1.10).

3.1. Heat kernel estimates

Let KM(t, x, y) denote the Dirichlet heat kernel onM (i.e. the fundamental solutio
“et�δy(x)”). We recall some well-known facts about it. The heat kernel onM satisfies the
following upper bound (cf. Theorem 3.2.7 in [2]):∀ε ∈]0,1[, ∃aε > 0 s.t.

∀t > 0, ∀x, y ∈ M, KM(t, x, y) � aεt
−n/2 exp

(
− d(x, y)2

4(1+ ε)t

)
. (17)

Let C be a bounded open subset ofM . Let (λj )j∈N∗ be a non-decreasing sequence
non-negative real numbers and(ej )j∈N∗ be an orthonormal basis ofL2(M) such thatej is
an eigenfunction of the Dirichlet Laplacian onC with eigenvalue−λj . By the maximum
principle, the heat kernel onM satisfies the lower bound:

∀t > 0, ∀x, y ∈ C, KM(t, x, y) � KC(t, x, y) =
∑
j

e−tλj ej (y)ej (x). (18)

From these pointwise bounds on the heat kernel, we deduce bounds for theL2 norms
appearing in (16). Definition 1.10 and (17) imply

T2∫
T1

∫
Ω

∣∣KM(t, x, y)
∣∣2 dx dt � a2

ε

T2 − T1

T n
1

exp

(
− d̄(1+ε)T2(y,Ω)2

2(1+ ε)T2

)
. (19)

If C ⊂ M is ann-dimensional cube with centery and half diagonal lengthd , i.e. with edge
lengthc = 2d/

√
n, then the first eigenvalue and eigenfunction of the Dirichlet Lapla

onC are

λ1 = n

(
π

2c

)2

and e1(x) = c−n/2
n∏

m=1

cos

(
π(xm − ym)

2c

)
.

Therefore, (18) imply∫ ∣∣KM(t, x, y)
∣∣2 dx �

∫ ∣∣KC(t, x, y)
∣∣2 dx � e−2λ1t

∣∣e1(y)
∣∣2
M C
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me

e
l

e

,

= nn/2

(2d)n
exp

(
−π2n2t

8d2

)
. (20)

Remark 3.1. We tried without tangible improvement to deduceL2 lower bounds on the
heat kernel from the uniform pointwise lower bounds available in the literature (cf.
instead of deducing it from the more basic fact (18).

3.2. Proof of Theorem 1.11

Let {yk}k∈N, T̄ and κ satisfy the geometric condition (3). By contradiction, assu
that the heat equation (2) is null-controllable in some timeT < T̄ , i.e. the observability
inequality (16) holds for someCΩ,T . Let ε ∈]0,1[, ε < κ −1, and letκ ′ = κ(1+ε)−1 > 1.
Let α > 0 be such that̄T = (1 + α)(1 + ε)T and letT = (1 + α)T . Sinced T /T is non-
increasing, (3) implies

sk := d̄T̄ (yk,Ω)2

2T̄
− κ ′ π2n2T

8d T (yk, ∂M)2
→ +∞, ask → +∞. (21)

Let k ∈ N and letf0(x) = KM(αT ,x, yk) so thatet�f0(x) = KM(αT + t, x, yk). Plugging
into (16) the upper bound (19) withT1 = αT andT2 = T and the lower bound (20) for th
cubeC with centeryk and half diagonal lengthd = d T (yk, ∂M) (this is just the optima
choice ford) yields:

nn/2

(2d T (yk, ∂M))2
exp

(
− π2n2T

8d T (yk, ∂M)2

)
� CΩ,T

a2
ε

αnT n−1
exp

(
− d̄T̄ (yk,Ω)2

2T̄

)
.

Sinceκ ′ > 1, we deduce that there is ans > 0 independent ofk such that lnCΩ,T � sk − s

and limk sk = +∞ as in (21). This contradicts the existence ofCΩ,T and completes th
proof of Theorem 1.11.

3.3. Proof of Theorem 1.4(iii) and another example

To prove that the geometric condition (3) holds forM and Ω defined in Theorem
1.4(iii), we consider a sequencemk = (0,0, zk) ∈ M with limk zk = +∞. SinceS is
bounded, we may assume thatR is bounded. LetGT (z) = exp(−z2/(2T )) and letD(z)

denote the disk with center(0,0) and radiusR(z). We have:

Ik :=
∫
Ω

GT

(
d(mk,m)

)
dm =

∫
R

exp

(
− (z − zk)

2

2T

) ∫
D(z)

exp

(
−x2 + y2

2T

)
dx dy dz

�
∫
R

πR(z)2G(z − zk) dz = πR2 ∗ GT (zk) → 0, ask → +∞,

sinceGT ∈ L1(R), R2 ∈ L∞(R) and lim|z|→∞ R(z) = 0. Therefore, by Definition 1.10
d̄T̄ (mk,Ω)2 = −2T ln Ik → +∞ and, since(0,0) ∈ S, d T̄ (mk, ∂M)2 � d∂(mk)

2 =
inf(x,y)∈R2\S(x2 + y2) > 0. Hence (3) holds for the sequence{mk}k∈N with any T̄ andκ ,
which completes the proof of Theorem 1.4(iii).
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Remark 3.2. To illustrate the usefulness of the second term in the geometric conditio
we give an example close to Theorem 1.4(ii) where (3) is satisfied by a sequence{mk}k∈N

tending to the boundary ofM .
Consider the shrinking rodM = {(x, y, z) ∈ R

3 | x2 +y2 < R(|z|)2} where the continu
ous non-increasing functionR : [0,∞) →]0,∞) tends to zero at infinity. The heat equati
(2) is not null-controllable in any timeT > 0 from any interior regionΩ of finite Lebesgue
measure such thatM \ Ω contains a sequence of slabsSk := {(x, y, z) ∈ R

2 × [0,∞) |
x2 + y2 < R(z)2, |z − zk| � dk} satisfying

∃κ ′ > 1, d2
k − κ ′ π2n2

4

(
T

R(zk + dk)

)2

→ +∞, ask → +∞.

Indeedmk = (0,0, zk) satisfiesd∂(mk) � R(zk + dk) for dk � ‖R‖L∞ , andd(mk,Ω) �
dk . Hence{mk} satisfies (3) for anyκ ∈]1, κ ′[ and T̄ = √

κ ′/κT > T . In particular, if
limz→+∞ zR(z) = +∞ (i.e. M does not shrink too fast) then the heat equation (2) is
null-controllable in any timeT from any boundedΩ .
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