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Abstract

We make two remarks about the null-controllability of the heat equation with Dirichlet condition in
unbounded domains. Firstly, we give a geometric necessary condition (for interior null-controllability
in the Euclidean setting) which implies that one cannot go infinitely far away from the control region
without tending to the boundary (if any), but also applies when the distance to the control region is
bounded. The proof builds on heat kernel estimates. Secondly, we describe a class of null-controllable
heat equations on unbounded product domains. Elementary examples include an infinite strip in
the plane controlled from one boundary and an infinite rod controlled from an internal infinite rod.
The proof combines earlier results on compact manifolds with a new lemma saying that the null-
controllability of an abstract control system and its null-controllability cost are not changed by taking
its tensor product with a system generated by a non-positive self-adjoint operator.
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1. Introduction

1.1. The problem

Let M be a smooth connected completedimensional Riemannian manifold with
boundaryd M. WhendM = (, M denotes the interior antl = M U dM. Let A denote
the (negative) Laplacian oM.

Consider a positive control timE and a non-empty open control regidhof d M. Let
Lio,7(x denote the characteristic function of the space—time control rd@idh[ x £2.
The heat equation ol is said to benull-controllablein time T by boundary controls
on I if for all ¢o € L2(M) there is a control function € L2 (R; L2(3M)) such that the

solutiong € C2([0, 0o), L2(M)) of the mixed Dirichlet-Cauchy problem:
dp—Ap=0 inl0,T[x M, ¢=1prxru onl0,T[x M, (1)

with Cauchy data = ¢g att = 0, satisfiesp = 0 atr = T. Thenull-controllability costis
the best constant, denoté€d -, in the estimate:
lull 20, 71xry < Cr.rlidoll L2epr

for all initial data ¢o and controlu solving the null-controllability problem described
above. The analogous interior null-controllability problem from a non-empty open sub-
sets2 of M is also considered:

¢ — AP =1o,1[xeu ONR; x M, ¢=0 onR; x oM,
$(0) =¢o € L2(M), ue L (R; LA(M)).

loc

(2)

When M is compact (for instance a bounded domain of the Euclidean space), Lebeau
and Robbiano have proved (in [7] using local Carleman estimates) that, f@r aifid
I there is a continuous linear operat®rL2(M) — Cy°(R x 0M) such thatu = S¢o
yields the null-controllability of the heat equation (1) #fin time 7 by boundary con-
trols onI". They have also proved the analogous result for (2) which implies that interior
null-controllability holds for arbitraryl’ and £2. (We refer to [6] for a proof of null-
controllability for more general parabolic problems using global Carleman estimates.)

The null-controllability of the heat equation wheti is an unbounded domain of the
Euclidean space is an open problem which Micu and Zuazua have recently underscored
in [13]. On the one hand, it is only known to hold wh&h\ €2 is bounded (cf. [1]). On the
other hand, its failure can be much more drastic than in the bounded case Miseihe
half space and™ = oM, it is proved in [11,12] that initial data with Fourier coefficients
that grow less than any exponential are not null-controllable in any time, whereas there are
initial data with exponentially growing Fourier coefficients that are null-controllable).

The geometric aspect of the open problem in [13] is addressed here with examples of
null-controllability with unbounded uncontrolled region, and lack thereof including when
the distance to the controlled region is finite (cf. Theorem 1.4(iii)). The geometric neces-
sary condition in Theorem 1.11 grasps at some notion of “controlling capacity” of a subset
that would yield a necessary and sufficient condition for interior null-controllability.
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1.2. Elementary examples

Before stating the results in full generality, we give elementary examples.

The simplest (bounded) case to study is whnis a segment and’ is one of the end
points. It is well known that this problem reduces by spectral analysis to classical results on
non-harmonic Fourier series. For further reference, we introduce the optimal fast control
cost rate for this problem:

Definition 1.1. The ratex, is the smallest positive constant such that foral «, there
existsy > 0 such that, for all. > 0 andT €]0, inf(x, L)?), the null-controllability cost
C..r of the heat equation (1) on the Euclidean inter#al=10, L[ (i.e. A = 83) from

I' = {0} satisfiesC; 7 < y expwL?/T).

Computinga, is an interesting open problem. As proved in [9],
Theorem 1.2. The ratew, defined above satisfiet/4 < a,, < 2(36/37)2 < 2.

The simplest unbounded case where null-controllability holds is probably the following,
which extends to an infinite strip the null-controllability from one side of a rectangle proved
in [5].

Theorem 1.3. The heat equatio(il) on the infinite stripM =]0, L[x R of the Euclidean
plane(i.e. A = 33 + 8}2,) is null-controllable from one sidé" = {(x,y) | x =0,y e R} in

any timeT > 0. Moreover, the corresponding null-controllability cost satisfiedth o, as
in Theorem.2): limsug-_, o T INCr.r < a,L.

Here is an example in the usual three-dimensional space which illustrates interior null-
controllability and lack thereof.

Theorem 1.4. Consider the heat equatid@) on the infinite rodM = S x R in the Euclid-
ean spacdi.e. A = 32 + 32 + 32) where the sectiod is any smooth connected bounded
open set of the plane.

(i) It is null-controllable in any timeT > 0 from any interior infinite rod2 = w x R
where the sectiom is an open non-empty subsetSfMoreover, ifw contains a neigh-
borhood of the boundary of and S \ w does not contain any segment of lendth
then the corresponding null-controllability cost satisfigsith o, as in Theoreml.2):
limsup; o TINCo.7 < a, L2

(i) It is not null-controllable in any tim& > 0 from any interior regions2 of finite
Lebesgue measure such thidt 2 contains slabs x [z1, z2] of arbitrarily large thickness
lz2 — z1l.

(i) It is not null-controllable in any tim&" > 0 from the cylindrical interior region
2 ={(x,y,2) € M | x°+y? < R(2)?} if (0, 0) € S and the lower semi-continuous function
R:R — [0, c0) tends to zero at infinity.

1.3. Main results

A large class of null-controllable heat equations on unbounded domains is generated
by the two following theorems concerning respectively boundary and interior controlla-
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bility. In both EheoremsM denotes another smooth compléteimensional Riemannian
manifold andA denotes the corresponding Laplacian.

Theorem 1.5. Let y denote the subsdt x M of 8(M x M). If the heat equatiorfl) is
null-controllable at cosCr r then the heat equation

%p—(A+A)p=0 onR, x M x M, p=1,g OonR, x I(M x M),
¢(0) =doe L2(M x M), geLi (R L*(d(M x M))),

is exactly controllable in any tim& at a cost(fT,), which is not greater tha€r .

Theorem 1.6. Let w denote the subse® x M of M x M. If the heat equatior2) is
null-controllable at cosCr  then the heat equation

»p—(A+ANp=1,g onR, x M x M, =0 onR; x (M x M),
¢(0)=¢oe LM x M), ge L (R; L*(M x M)),

is exactly controllable in any tim& at a costCT,w which is not greater thal€'r .

Remark 1.7. Theorem 1.4(i) is a particular case of Theorem 1.6 wilith= S, M = R,
inverteds2 andw, and the cost estimate results from the cost estimate moved in [9].
Theorems 1.5 and 1.6 apply, for instance, to any open subséthe Euclidean spade”.
Thanks to the results of [7] already mentioned in Section 1.1, the conclusions of these
theorems hold for arbitrary control regions of a compag&t Then they can be applied
recursively, taking the resulting null-controllable product manifold as the Mefthe the-
orems are still valid if¥ has corners).

Remark 1.8. The case whew is a bounded Euclidean set amti= (0, ¢) with Neumann
boundary conditions at both ends has been considered in [4] with an extra time-dependent
potential. Where — 0, using global Carleman estimates, it is proved that the cost is uni-
form (as in Theorem 1.6) and depends on the uniform norm of the potential. Moreover, the
limit of the control functions is a control function for the limit problem.

Remark 1.9. The type of boundary conditions are irrelevant to the proof of Theorem 1.5
and Theorem 1.6. These theorems can be combined with Theorem 6.2 in [8] and Theo-
rem 2.3 in [9] respectively to obtain bounds on the fast null-controllability cost:

limsupTInC, r <aL% and limsufInC, 7 <axl?

T—0 T—0

forany L andLg, such that every generalized geodesic of length greaterithapasses
throughI” at a non-diffractive point, and every generalized geodesic of length greater than
L passes througke. We refer readers interested by these bounds to [8,9] where more is
said about generalized geodesics and the extra geometric assumptions needed to use them.

The last result states a geometric condition which is necessary for the interior null-
controllability of the heat equation on an unbounded domain of the Euclidean space. This
condition involves the following “distances”.
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Definition 1.10. In R", the Euclidean distance of points from the origin and the Lebesgue
measure of sets are both denoted|by. Let M be a non-empty open subset Rf.

Let d:M? — R, denote the distance function a¥, i.e. the infimum of lengths of
arcs in M with end pointsx and y (n.b., in terms of Lipschitz potentialsi(x, y) =

SURy cLip@), [V |00 <1 |¥ (%) — ¥ (3)]). The distance ofy € M from the boundary of

M is dy(y) = infyern\p |x — y|. The distance ofy € M from 2 c M is d(y. 2) =
infyeo d(x, y). We define theaveraged distancé; (y, §2) of y to £2 with Gaussian weight
of varianceT by

2
dr(y,2)2=-2T Iog</ exp<—%) dx> >d(y, £2)% — 2T log|£2|.
2

Technically, we shall use the followirgpunded distancef y to 0 M:

d 7 (v, dM) =min|dy (y), Tr?n/4}.

Theorem 1.11. Let M be a connected open subsefdfand lets2 be an open subset o1 .
If there are a sequence jren Of points inM, a timeT > 0 and a constank > 1 such
that

2,2

dz (i, 2)° I ( r )2 — +00, ask— 4o 3)
r ks - ) ,
! 4 \d7(y, IM)

then the heat equatiof2) is not null-controllable in any tim& < T'. In particular, when
£2 has finite Lebesgue measure, if there is a sequéngecn such thatinf; dy(yr) > 0
andlim; d(yx, £2) = 0o, then the heat equatio2) is not null-controllable in any timé& .

Remark 1.12. The simple condition in the second part of Theorem 1.11 is enough to prove
Theorem 1.4(ii) (consider the point, O, (z2 — z1)/2) of a sequence of slalisx [z1, z2]

in M \ £ with thickness|z, — z1| tending to infinity). Theorem 1.4¢(iii) illustrates that it
may fail although the finer condition (3) holds. The second term in the geometric condition
(3) allows{yx}ren to tend to the boundary off. To illustrate its usefulness, we give yet
another example in Remark 3.2.

Remark 1.13. The proof of Theorem 1.11 in Section 3.3 builds on heat kernel estimates.
Generalizations to some non-compact manifolds can obviously be obtained using the heat
kernel estimates available in the literature (cf. [17] and references therein). We consider
null-controllability on non-compact manifolds in a forthcoming paper.

2. An abstract lemma on tensor products

In this section, we prove that the cost of null-controllability of an abstract control system
is not changed by taking its tensor product with an uncontrolled system generated by a non-
positive self-adjoint operator.
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2.1. Abstract setting

We first recall the general setting for control systems: admissibility, observability and
controllability notions and their duality (cf. [3] and [16]).

Let Z andV be Hilbert spaces. Lefl: D(A) — Z be the generator of a strongly con-
tinuous group of bounded operators @n Let Z; denoteD(A) with the norm|z|1 =
(A — B)z]|| for someg ¢ o (A) (o (A) denotes the spectrum gf, this norm is equivalent
to the graph norm and1 is densely and continuously embeddedZinand letZ_; be the
completion ofZ with respect to the normiz | —1 = ||(A — B)~¢||. Let Z’ denote the dual
of Z with respect to the pairing , -). The dual ofA is a self-adjoint operatad’ on Z'.
The dual ofZ; is the spaceZ’ ; which is the completion oZ’ with respect to the norm
I¢l-1 = (A" — B)~¢|| and the dual ofz_; is the spacez; which is D(A’) with the
norm|zlly = [[(A" — Bz|l.

LetC € £(Z1,V) and letC' € L(V', Z” ;) denote its dual. Note that the same theory
applies to any4-bounded operataf with a domain invariant bYe’A)@o since it can be
represented by an operatordiiZ4, V) (cf. [16]).

We consider the dual observation and control systems with output functon input
functionu:

z)=Az(t), z(0)=z0€Z, v{)=Cz(1), 4)
(O =Ac@)+Cu@t), ¢O)=¢eZ, ue L%C(R; Z). )

We make the following equivalent admissibility assumptions on the observation opera-
tor C and the control operatat (cf. [16]): VT > 0,3K7 > 0,

T
Vzo € D(A), f ICeAz01?dt < Krlz0ll?, (6)
0
T 2 T
Yu e LAR; V), fe“‘"c’u(t)dr < KT/Hu(t)”Zdt. 7)
0 0

With this assumption, the output map+— v from D(A) to L%C(R; V) has a continuous

extension toZ. Eqgs. (4) and (5) have unique solutiong C(R, Z) and¢ € C(R, Z')
defined by:

t
1) =ez0, () =N (0) + / " DBu(s) ds. (8)
0
The following dual notions of observability and controllability are equivalent (cf. [3]).

Definition 2.1. The system (4) idinal observabldn time T > 0 at costkr > O if the
following observation inequality holdzo € Z, 12(T) 2 < «2 [ |v(t)|[2dz. The system
(5) is null-controllablein time T > 0 at coster > 0 if for all ¢ in Z’, there is au in
L?%(R; V') such that (T) =0 andfOT lu(t)|12dt < k2]l Thenull-controllability cost
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for (5) in time T is the smallest constant in the latter inequality (equivalently in the former
observation inequality), still denoted-. When (5) is not null-controllable in tim&, we
setkr = +00.

2.2. Tensor products

Now, we introduce the specific tensor product structure of the abstract control systems
(5) under consideration here. L&t Y, V be separable Hilbert spaces ahdlenote the
identity operator on each of them. L&t D(A) — X andB: D(B) — Y be generators of
strongly continuous semigroups of bounded operator&¥ @mdY. Let C € £L(X1, V) be
admissible for the control system:

E)=AE)+Cu@t), EO)=&eX, ucLp(R; V. 9)

Let X ® Y andV ® Y denote the closure of the algebraic tensor prodietsY andV ® Y

for the natural Hilbert norms. The operator® I : D(C) ® Y — V ®Y is densely defined
onX ®Y. The operatord ® I + I ® B defined on the algebraid(A) ® D(B) is closable
and its closure, denoted + B, generates a strongly continuous semigroup of bounded
operators orXk ® Y.

Lemma22.LetZ=XQY,V=V®Y, A=A+ BandC =C®I.If Bisanon-positive
self-adjoint operator, then, for all' > 0, the null-controllability costcy for (5) is lower
then the null-controllability costy for (9) in the same timé& .

Proof. We may assume that is finite. By definition it satisfies:
T
vreX, )2« k%/ |Ce' A% dt. (10)
0
We have to prove that:
T
VieX®Y, &:=lle"ATB2 <iF / |(€ ® De' 4B 2|2 dr =: 0. (11)
0

As explained in the proof of Lemma 7.1 in [10]:
V>0, eAtB) — A g8 12)
Applying the spectral theorem for unbounded self-adjoint operators on separable Hilbert
spaces taB < 0 (cf. Theorem VIII.4 in [14]), yields a measure spa@dd, M, 1) with

finite measurg:, a measurable functian: M — (—oo, 0] and a unitary operatdy : Y —
L?(M,dp) such that:

2
Vyey, |leBy|?= f 2P| Uy (m)| e (dm). (13)
M

SinceX is separable, there is a unique isomorphism f6o® L2(M, dp) to L3(M, du; X)
so thatx ® f(m) — f(m)x (cf. Theorem 11.10 in [14]). We denote b/ : X @Y —



182 L. Miller / Bull. Sci. math. 129 (2005) 175-185

L?(M, du; X) the composition of this isomorphism witt® U . Similarly, there is a unique
isomorphism fromV ® L2(M, du) to L2(M, du; V) so thatv ® f(m) — f(m)v. We de-
note byV: V&Y — L3(M,du; V) the composition of this isomorphism with® U. By
decomposing into an orthonormal basisxaf(13) implies:

VzeX®Y, |UI®eP): ||2 = / 2 |UZ(m)‘2M(dm), (14)
M
YweV®Y, ||(I ®etB)w||2 = / ezrh(m)}Vw(m)Fu(dm). (15)
M

Letz € X®Y. Applying (10) tol/z(m) for fixedm € M and integrating yields:

T
/ leTAUzm) |22 p(dm) < K3 / 2T / |ce'Attzm)|* dt pu(dm).
M M 0

Sincee™ AUz = U™ ® )z, (14) and (12) imply that the left hand side §sdefined
in (11). Using Fubini’s theorem angd< 0 to bound the right hand side from above yields:

T
5<k%//e2”’('”) ||Ce’AL{Z(m)||2u(dm)dt.
0 M

SinceCe'Uz = V(Ce'4 ® I)z, (15) and (12) imply that the right hand sided@sdefined
in (11), which completes the proof of (11).0

2.3. Proof of Theorems 1.3, 1.5and 1.6

The first part of Theorem 1.3 is a particular case of Theorem 1.5. The second part is an
estimate on the null-controllability cost which results from Definition 1.1 and Lemma 2.2
with X = L2(0, L), Y = L3[R), Z =R, A =02, D(A) = H*(0, L) N Hy(0, L), B = 97,
D(B) = H3R), Cf = d, fix=0. The reader balking at the abstraction of Lemma 2.2 can
prove it in this particular case using the Fourier transform on the real line in Waeiable
where the spectral theorem was used (thés the Lebesgue measure aneh) = —|m|?)
and a discrete Fourier decomposition on the interval irctlariable.

Theorems 1.5 and 1.6 are direct applications of Lemma 2.2 With L2(M), Y =
L2(M), A= A, D(A) = H¥(M) N H}(M), B = A, D(B) = H3(M) N H}(M). The-
orem 1.5 corresponds td = L2(I") and Cf = 3, fir whered, denotes the exterior
Neumann vector field ofM. Theorem 1.6 corresponds o= L?(£2) andCf = fio.

3. Geometric necessary condition

In this section, we prove Theorem 1.11. Henceforth, the domain of the Laplacian is
D(A) = H3(M) N Hol(M). Since controllability and observability in Definition 2.1 are
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equivalent, the heat equation (2) is null-controllable in tithéf and only if there is a
Cqo .1 > 0 such that

T

Y foe L2(M), f 7 fol2dx < Cor / / 1 fol2dix d. (16)
oM

As for Theorem 2.1 in [9] where the null-controllability caSk r (on a compacif)
was bounded from below & — 0, the strategy is to choose the initial datyinto be an
approximation of the Dirac masgs at somey € M which is as far from2 as possible.
Therefore both proofs build on heat kernel estimates. But here we need estimates which
are uniform onM for compact times and we use the finer notion of averaged distance of
to £2 (cf. Definition 1.10).

3.1. Heat kernel estimates

Let Ky (¢, x, y) denote the Dirichlet heat kernel avf (i.e. the fundamental solution
“ e’A(Sy (x)"). We recall some well-known facts about it. The heat kernebMpsatisfies the
following upper bound (cf. Theorem 3.2.7 in [2§¢ €]0, 1[, Ja, > 0 s.t.

d(x, y)?
4<1+e>r>'

Let C be a bounded open subset Mf. Let (1;);en+ be a non-decreasing sequence of
non-negative real numbers atd) jen+ be an orthonormal basis @f(M) such that; is

an eigenfunction of the Dirichlet Laplacian @hwith eigenvalue—2 ;. By the maximum
principle, the heat kernel oW satisfies the lower bound:

Vi >0, Vx,yeC, Ku(t,x,y)=Ket,x, )= e Mej(y)e;(x). (18)
J

vVt >0, Vx,ye M, KM(t,x,y)gagt_”/zeXp<— a7

From these pointwise bounds on the heat kernel, we deduce bounds fof tteems
appearing in (16). Definition 1.10 and (17) imply

Lh-T dater, (v, 2)2
Ku(t,x,y)|"dxdt < a2~ ex (—— . 19
Tf/' uxf % AT T 201 0 (19)
1

If C c M is ann-dimensional cube with centerand half diagonal lengti, i.e. with edge
lengthc = 2d//n, then the first eigenvalue and eigenfunction of the Dirichlet Laplacian
onC are

2
s T(Xm — Ym
Kl:”(Z) and e1(x)=c" ”/2| |cos< ( ) )>
Therefore, (18) imply

/!KMa,x, Wdx > f|1<c<r,x, WP = e ey ()
M C
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n"/2 72n2s
L G (20)

Remark 3.1. We tried without tangible improvement to dedut@ lower bounds on the
heat kernel from the uniform pointwise lower bounds available in the literature (cf. [15])
instead of deducing it from the more basic fact (18).

3.2. Proof of Theorem 1.11

Let {yi}ren, T and« satisfy the geometric condition (3). By contradiction, assume
that the heat equation (2) is null-controllable in some tifhe: T, i.e. the observability
inequality (16) holds for som€y, 7. Lete €10, 1[, e <« —1,and let’ = k(1+e)"1>1.
Leta > 0 be such thal’ = (1+ «)(1+¢)T and letT = (1+ «)T. Sinced 7/ T is non-
increasing, (3) implies

oo e 2% m%’T
D 8d (v, IM)?

— +00, ask— +oo. (22)

Letk e Nandletfo(x) = Ky (aT, x, yr) so thate'® fo(x) = Ky (aT +1, x, yr). Plugging
into (16) the upper bound (19) with, = «T andT> = T and the lower bound (20) for the
cubeC with centery; and half diagonal lengthd = d  (yx, M) (this is just the optimal
choice ford) yields: B

n'/2 ex 72n’L <C a ex dr (., 2)°
@d 7 O, 002 I\ 8d O, omy2 ) S Tt SR T )

Sincex’ > 1, we deduce that there is a- 0 independent of such that IC 7 > sx — s
and lim, sy = 400 as in (21). This contradicts the existence(@$ r and completes the
proof of Theorem 1.11.

3.3. Proof of Theorem 1.4(jii) and another example

To prove that the geometric condition (3) holds faf and 2 defined in Theorem
1.4(iii), we consider a sequenee; = (0,0, zx) € M with limg zx = +00. Since S is
bounded, we may assume thitis bounded. LeG7(z) = exp(—z2/(2T)) and letD(z)
denote the disk with cent&, 0) and radiusk(z). We have:

2 2, .2
I ::/GT(d(mk,m))dm:/exp<_%> / exp(—x ;;y )dxdydz
2 R

D(z)

< /NR(Z)ZG(Z —z1)dz =1 R?>% Gr(zx) — 0, ask — 400,
R
sinceGr € LY(R), R? € L*(R) and lim;|_. o, R(z) = 0. Therefore, by Definition 1.10,
dj(mg, 2) = —2T InIy — +oo and, since(0,0) € S, dj(my, IM)? > dy(mp)? =
inf(_x’y)e]Rz\S(x2 + y2) > 0. Hence (3) holds f_(_)_r the sequenee; }rcn With any T andx,
which completes the proof of Theorem 1.4(iii).
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Remark 3.2. To illustrate the usefulness of the second term in the geometric condition (3),
we give an example close to Theorem 1.4(ii) where (3) is satisfied by a sequefigen
tending to the boundary d#f.

Consider the shrinking roff = {(x, y, z) € R3| x2+ y2 < R(|z|)%} where the continu-
ous non-increasing functiaR: [0, co) — ]0, co) tends to zero at infinity. The heat equation
(2) is not null-controllable in any tim& > O from any interior region2 of finite Lebesgue
measure such thalf \ £2 contains a sequence of slais:= {(x, y, z) € R? x [0, c0) |
x24+y2 < R(2)2, |z — 2| < dy} satisfying

2n? T 2
I’ > 1, dkz — 2 (R(Zk +dk)> — 400, ask— +oo.
Indeedm; = (0,0, z;) satisfiesdy(my) > R(zx + di) for dy > |R||L~, andd (my, 2) >

dy. Hence{my} satisfies (3) for any €]1,«'[ andT = \/x//xT > T. In particular, if
lim,_, 100 2R (z) = +00 (i.e. M does not shrink too fast) then the heat equation (2) is not
null-controllable in any tim&" from any bounded?.
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