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The Makings of a Tumor Rejection Antigen Review

strong tumor rejection antigens, describing quantita-Eli Gilboa*
tively the impact of the immune response on tumorCenter for Genetic and Cellular Therapies
growth. The extent to which an antigen is a tumor rejec-Department of Surgery
tion antigen is also a function of the immunization proto-Duke University Medical Center
col. A weak tumor rejection antigen can record as aDurham, North Carolina 27710
strong tumor rejection antigen by using an effective vac-
cination protocol, such as protocols that favor the induc-
tion of CTL responses and the Th-1 subset of CD41 TThe demonstration that naturally induced tumors in ro-
cell responses (see below). It is therefore not surprisingdents were largely nonimmunogenic and disappointing
if different studies reach divergent conclusions as toresults from clinical studies were responsible for the
whether a tumor antigen is or is not a tumor rejectionnotion that tumors are not sufficiently distinct from nor-
antigen (Ramarathinam et al., 1995; Rosato et al., 1997;mal tissue to activate the immune system and led to the
Brandle et al., 1998). The take-home message is thatinevitable conclusion that immunological intervention in
the potency of a tumor rejection antigen is a relativecancer is futile (Hewitt et al., 1976). In a seminal work,
value that can be assessed only by comparing tumorvan Pel and Boon have shown that a protective immune
antigens using the same vaccination protocol.response can be generated against a “nonimmuno-

Historically, it was thought that tumor immunity is bestgenic” murine tumor, providing the first experimental
mediated by antibodies. Hence, extensive efforts wereevidence that lack of immunogenicity could be due to
devoted to the development of serological approachesthe tumor’s inability to activate the immune system
for identifying antigens expressed on the surface of tu-rather then the absence of tumor antigens (van Pel and
mor cells, which are recognized by antibodies from can-Boon, 1982). This observation, subsequently confirmed
cer patients (Old, 1981). Disappointing results from earlyand extended to other rodent nonimmunogenic tumor
clinical vaccination trials, animal studies indicating themodels, has shown that by proper manipulation—
importance of the cellular arm in the antitumor immuneotherwise called vaccination—the tumor antigens pres-
response, and new insights into immunological mecha-ent in nonimmunogenic tumors can be “exposed” to
nisms have refocused the attention on the cellular re-the immune system to generate an immune response
sponse arm of the immune response as the mediatorcapable of eradicating the tumor. If this conclusion can
of tumor immunity. The seminal work of Boon and hisbe extrapolated to human cancer—and I see no reason
colleagues, first introducing the methodology of isolat-why it cannot—all forms of cancer should be susceptible
ing tumor antigens recognized by CTL (De Plaen et al.,to immunological intervention; namely, all forms of can-
1988) and then isolating the first human antigen recog-cer contain tumor antigens that can be targeted for im-
nized by CTL from melanoma patients (van der Bruggenmunotherapy.
et al., 1991), represents yet another important milestoneThe recognition that tumors could after all be suffi-
in the annals of contemporary cancer immunotherapy.ciently “foreign” to be recognized by the immune system

There are three good reasons why tumor antigenshas reinvigorated the efforts to identify and isolate tumor
recognized by CTL would make effective tumor rejectionantigens (Boon and van der Bruggen, 1996; Rosenberg,
antigens. (1) The major histocompatibility complex1999). This review will focus on what makes a tumor
(MHC) class I processing pathway ensures that CTL are

antigen a good or not-so-good target for immuno-
able to recognize subtle changes in the repertoire of

therapy.
antigens expressed by most (MHC class I–expressing)
somatic cells (Townsend and Bodmer, 1989). (2) Murine

Which Tumor Antigens Function as (Better) Tumor studies using antibody depletion or adoptive transfer of
Rejection Antigens T cell subsets have shown that the CD81 CTL arm of
Tumor antigens can be classified according to the type the immune response, alone or sometime in combina-
of immune response they elicit: humoral, cellular, CD41 tion with CD41 T cells, constitutes the primary antitumor
(T helper), or CD81 cytotoxic T lymphocyte (CTL) re- effector arm of the adaptive immune response. (3) Per-
sponses. As will be discussed below, the fact that a haps the most compelling evidence stems from the fre-
tumor antigen elicits a tumor-specific immune response quent correlation seen between tumor progression and
does not necessarily mean that the immune response loss of histocompatibility leukocyte antigen (HLA) class
will cause the rejection of the tumor in vivo. Thus, from I expression in cancer patients (Garrido et al., 1997;
a vaccination standpoint, the question is which tumor Hicklin et al., 1999), strongly suggesting that progressing
antigen can or is better at inducing a clinically beneficial tumors in cancer patients must have elaborate means of

escaping an apparently effective MHC class I–restrictedresponse. We refer to such antigens as “tumor rejection
immune response. It is, however, becoming clear thatantigens.” Tumor-rejection antigen is therefore an oper-
the CD41 T cell response also plays an essential roleational term describing how well an immune response
in tumor rejection. The primary role of CD41 T cells,elicited against a tumor antigen will impact on tumor
specifically, the Th-1 subset, is to enhance the inductiongrowth. Tumor antigens can be poor, intermediate, or
and/or extend the persistence of CD81 CTL in vivo
(Frasca et al., 1998; Zajac et al., 1998; Toes et al., 1999).
CD41 T cells have also been ascribed a direct effector*E-mail: e.gilboa@cgct.duke.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82377525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Immunity
264

function (Hu et al., 1993; Levitsky et al., 1994; Overwijk et B7-1 (Ramarathinam et al., 1995; Brandle et al., 1998).
It would appear, therefore, that P1A is at best a weakal., 1999), but their contribution relative to other effector

arms has not yet been fully elucidated. Clearly, tumor tumor rejection antigen.
MART-1/Melan A is a human melanocyte–specific an-antigens capable of eliciting CD41 T cell responses will

also function as important tumor rejection antigens, and tigen that is recognized by CTL from melanoma patients.
Tumor infiltrating lymphocytes (TIL) from nine out of tentheir incorporation into effective tumor vaccination pro-

tocols is absolutely essential. patients exhibited CTL activity against MART-1, but only
four TILs exhibited activity against another tumor-asso-And what about humoral tumor antigens? Humoral

responses do not appear to play an important role in ciated antigen, gp100 (Kawakami et al., 1994). Yet, upon
adoptive transfer of TIL to patients, tumor regressionprotective tumor immunity. Tumor-reactive antibodies

occur with high frequency in cancer patients but do not was correlated with TIL, which recognized gp100 and
not MART-1 (Kawakami et al., 1995). Furthermore, vacci-correlate with disease state (Disis and Cheever 1996).

Vaccination of mice with tumors can elicit tumor-specific nation with the dominant MART-1 peptide administered
in adjuvant generated significant increases in MART-1-humoral responses that are not protective (Qin et al.,

1998). Thus, humoral tumor antigens would make poor specific CTL, yet no clinical responses were seen (Jae-
ger et al., 1996; Cormier et al., 1997). Notwithstandingtumor rejection antigens and under some circumstances

could even prevent the establishment of a T cell–based the preliminary nature of such phase I clinical studies,
MART-1/Melan A is a dominant antigen recognized byantitumor response (Rowley and Stach, 1993). Yet,

monoclonal antibody therapy can exert a significant CTL in melanoma patients, yet it does not exhibit proper-
ties of a tumor rejection antigen.therapeutic benefit in murine models and in cancer pa-

tients, suggesting that humoral tumor antigens could In a recent study, vaccination of melanoma patients
with an anchor residue–modified gp100 derived peptidefunction as tumor rejection antigens (Hara et al., 1995;

Herlyn and Birebent, 1999). Interestingly, in a recent stimulated strong CTL responses in most patients, yet
no clinical responses were seen. Interestingly, patientsstudy, the protective effects of DNA vaccination against

an idiotype expressed on a murine B cell lymphoma who also received IL-2 exhibited reduced CTL activities
but experienced a dramatic increase in clinical re-could be largely attributed to humoral but not cellular

immunity (Syrengelas and Levy, 1999). Thus, at present sponses. Clearly, there was no simple correlation be-
tween the measured CTL responses and clinical re-the prospects of using humoral tumor antigens in cancer

vaccine formulations is “down but not out.” New and sponses in this particular case (Rosenberg et al., 1998).
What Makes a Tumor Antigen a Good Tumorvastly improved methods for isolating tumor antigens

recognized by the humoral response have reinvigorated Rejection Antigen?
At the heart of the matter is the growing appreciationthe efforts to develop antibody-based treatments to

cancer (Sahin et al., 1997). that the biological impact of a CTL response is not only
a function of the experimentally determined magnitude
of the immune response, but it is also, and perhaps evenTumor Rejection Antigens Recognized by CTL:
more so, a function of the avidity of the CTL to theirShared or Patient Specific

Whether effective tumor rejection antigens are unique targets. Several studies have shown that whereas low-
avidity CTL can be readily detected by standard immu-patient-specific antigens or correspond to normal gene

products shared among many patients is of enormous nological assays, only high-avidity CTL exert biological
function in vivo in viral (Speiser et al., 1992; Alexander-practical value. Identification and isolation of tumor re-

jection antigens from each patient is currently not an Miller et al., 1996a; Gallimore et al., 1998) or tumor (Zeh
3rd et al., 1999) models. Thus, perhaps the single mostoption. If nonmutated shared antigens can function as

tumor rejection antigens, common “off-the-shelf” re- important parameter that determines the potency of a
tumor rejection antigen is the avidity of the cognate Tagents could be used to treat many cancer patients.

A Tumor Antigen Encoding a CTL Epitope Is Not cells that can be activated and marshaled against the
progressing tumor.by Default a Tumor Rejection Antigen

While the notion that tumor antigens encoding CTL epi- Two assumptions are necessary to complete this ar-
gument. The first assumption is that tolerance to self-topes will make good tumor rejection antigens is com-

pelling, a tumor antigen encoding a CTL epitope is not antigen is incomplete. Antigens presented by thymic
antigen-presenting cells (APC) cause the clonal deletionnecessarily a potent tumor rejection antigen. Three ex-

amples will illustrate this point. of autoreactive T cells (central tolerance), whereas the
response to peripherally expressed antigens with noP1A is a murine prototype of a nonmutated shared

tumor antigen recognized by tumor-specific CTL (Van access to the thymus varies from physical elimination
or functional anergy to complete “ignorance” (peripheralden Eynde et al., 1991). P1A was isolated from the P185

mastocytoma cell line by virtue of the fact that tumor tolerance). If self-antigens induce tolerance by causing
the functional or physical elimination of all autoreactivecells which lost P1A antigen (as well as other tumor

antigens) escaped tumor rejection in vivo (Uyttenhove et T cells, self-antigens could not be tumor antigens, let
alone tumor rejection antigens. This, however, does notal., 1983). P1A is expressed in several unrelated tumors

including Meth A sarcoma and J558 plasmacytoma appear to be the case. As a rule, tolerogenic responses
are limited to the inactivation of high-avidity but not(Ramarathinam et al., 1995) and immunization of mice

with each tumor elicits P1A-specific CTL. Nevertheless, low-avidity T cells. The threshold is determined by the
properties of the APC and epitope density. Tolerogeniccross-protection among the P1A-expressing tumors is

weak and could be demonstrated only when the P1A- responses to self are calibrated to eliminate only the
high-avidity T cells capable of reacting to physiologicallyexpressing tumor cells were also engineered to express
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relevant amounts of antigen presented by somatic cells. was established in tumor-bearing mice (Staveley-O’Car-
roll et al., 1998), yet in other studies no impairment ofThus, low-avidity autoreactive T cells, which are not
tumor antigen–specific (CD81) T cell responses was ob-capable of recognizing self-antigens under normal con-
served (Wick et al., 1997; Prevost-Blondel et al., 1998;ditions, persist in the circulation. The presence of such
Ochsenbein et al., 1999). We have not seen evidencelow-avidity anti-self T cells has been amply documented
that in vitro stimulation of CTL against a “self” tumor-in animal studies (Poindexter et al., 1992; Cibotti et al.,
associated antigen, carcinoembryonic antigen (CEA), is1994; Oehen et al., 1994; von Herrath et al., 1994;
significantly blunted in cancer patients as compared toPoplonski et al., 1996; Morgan et al., 1998). It is therefore
healthy individuals (Nair et al., 1999). Thus, whether orconceivable that a spectrum of autoreactive T cells are
to what extent progressing tumors impact negatively onpresent in the mature T cell population, ranging from
tumor-specific immunity is yet unresolved, but it clearlyhigh-avidity T cells corresponding to antigens that have
merits more investigation.been completely “ignored” to very low-avidity T cells

Unique tumor antigens recognized by CTL have beendirected against antigens that have triggered effective
isolated from tumor-bearing mice and from cancer pa-tolerance. The second assumption, which constitutes
tients. Mut-1 was the first murine tumor antigen recog-the underlying rationale for using nonmutated self-anti-
nized by CTL isolated from the spontaneously inducedgens as tumor rejection antigens, is that through vacci-
Lewis lung carcinoma line (Mandelboim et al., 1994).nation low-avidity anti-self T cells can be activated and
The Mut-1 epitope was generated by a point mutationmarshaled to eradicate tumors. Conceivably, activation
in the connexin 37 protein generating a novel H-2Kb-of such low-avidity T cells will be less efficient and more
restricted epitope. Immunization of mice with Mut-1difficult to achieve than activation of high-avidity T cells,
peptide elicit CTL that recognize the tumor of origin andand hence the corresponding antigens will score as
can lead to the regression of established metastases inweak tumor rejection antigens. The key is the effective-
tumor-bearing mice (Mandelboim et al., 1995). Tumorness of the vaccination protocol required to activate
antigens resulting from point mutations in normal genethe low-avidity T cells in order to compensate for their
products recognized by CTL from cancer patients haverelative weakness in recognizing their tumor targets.
been also identified, although they represent a smallThat low-avidity T cells corresponding to a self-transgene
fraction of the human tumor antigens isolated so farcan be activated to impact on tumor growth has been
(Boon and van der Bruggen, 1996; Rosenberg, 1999).demonstrated in the elegant studies by Morgan et al.
Nevertheless, as will be discussed below, experimental(1998).
bias in the methodology of isolating human tumor anti-The potency of a tumor rejection antigen is also dic-
gens may be responsible for underrepresentation of thistated by the frequency of cognate T cells in the mature
group of antigens.T cell population and, as suggested from viral models,

Group II. Group II antigens correspond to tumor-spe-the TCR diversity of the responding population (Busch
cific antigens (antigens expressed in tumor cells but notet al., 1998; Cooper et al., 1999). Conceivably, a high
in normal tissue), which nevertheless could be sharedfrequency of responding T cells can offset their low
among cancer patients. This group of antigens is furtheravidity, and their activation in the course of vaccination
subdivided into two subgroups. One subgroup consistswould elicit an effective antitumor response. Naturally,
of antigens that have arisen as a result of mutationsboth frequency and diversity of the responding T cells
related to the oncogenic process and hence are con-will be reduced by tolerance.
ceivably shared among some of the patients. For exam-The overall implications are that mutated-self, tumor-
ple, mutated or translocated oncogens could providespecific antigens will make effective tumor rejection an-
new epitopes and serve as tumor rejection antigens.tigens, whereas shared tumor antigens corresponding
Indeed, vaccination of mice with peptides spanning mu-to nonmutated tissue-spe cific gene products will make
tations in p53 or ras elicit CTL, but evidence that vacci-

weak tumor rejection antigens. Fortunately, as will be
nation with mutated or translocated oncogens will pro-

discussed below, this is not as simple as that and there is
vide effective tumor immunity is lacking (Disis and

a gray area that can be exploited for cancer vaccination. Cheever, 1996). This is not surprising, since the likeli-
Which of the Known Human Tumor Antigens Will hood that a mutation will generate a potent epitope was
Make Good Tumor Rejection Antigens? estimated to be less than 1/300 per haplotype (Yewdell
Guided by the principle that the potency of tumor rejec- and Bennink, 1999). The second subgroup consists of
tion antigens is foremost a function of cognate T cell viral antigens present in cancers of viral etiology such as
avidity, the current list of human tumor antigens was Epstein Barr virus (EBV)-induced lymphoma and human
divided into four groups shown in Figure 1. papilloma virus (HPV)-associated cervical cancer. Over-

Group I. Group I antigens represent tumor antigens all, antigens belonging this subgroup are not expected
that have arisen as a result of somatic mutations in to trigger tolerance and should make excellent tumor
normal gene products. The mutations in this group of rejection antigens.
antigens are incidental to the oncogenic process re- Group III. Group III antigens are shared tumor antigens
flecting the genetic instability of tumor cells. Tumor anti- that correspond to normal gene products with highly
gens in this group will be therefore patient specific, not restricted tissue distribution. Antigens belonging to this
expected to trigger tolerance, and should make potent group are not expressed in most somatic tissues, usually
tumor rejection antigens. with the exception of the testis, and are reactivated

One caveat is that tumors could tolerize the immune in a number of tumors of various histological types,
system against antigens expressed on the tumor cells. including melanoma. Prototypes of this group are the

melanoma MAGE, GAGE, and BAGE families (Boon andIn one study, tumor antigen–specific CD41 T cell anergy
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Figure 1. Classification of Human Tumor Antigens Recognized by CTL from Cancer Patients

van der Bruggen, 1996; Rosenberg, 1999). The predic- of the tumors used in these studies were carcinogen
induced, and hence the unique tumor-specific rejectiontion is that antigens belonging to this group are by and
antigens most likely consisted of mutated forms of nor-large ignored by the immune system and hence will
mal genes resulting from carcinogen exposure. A lowmake good tumor rejection antigens.
level of cross-protection could be occasionally seen,Group IV. Group IV antigens consist of shared tumor
suggesting the presence of shared, albeit weak, tumorantigens that correspond to normal tissue-specific gene
rejection antigens (Coggin, 1989). The tumor trans-products, also called “differentiation antigens.” Such
plantation studies are also supported by CTL analysisantigens have been isolated from melanoma patients
in the tumor-bearing mice. Dudley and Roopenian haveand include MART-1/Melan A, gp100, and tyrosinase.
shown that whereas unique antigens represent the dom-If—and this is debatable—antigens belonging to this
inant antigens recognized by CTL in tumor-bearinggroup have triggered some level of tolerance, they will
mice, tumors also express immunosubdominant anti-make poor tumor rejection antigens. However, it should
gens, which stimulate a low level of CTL (Dudley andbe noted that the distinction between groups III and IV
Roopenian, 1996).is somewhat arbitrary and is more a matter of degree.

The rodent tumor transplantation studies are oftenAntigens corresponding to either group are likely to rep-
criticized on account of their artificial nature. Unlikeresent a spectrum of antigens ranging from antigens
most human tumor or spontaneously arising rodent tu-that have not triggered tolerance to antigens that have
mors, experimental tumors derived by exposure to largetriggered tolerance to varying degrees.
doses of carcinogen are immunogenic. (But exactly whatIn the light of what was discussed above, the predic-
is an immunogenic versus nonimmunogenic tumor and

tion is that tumor-specific antigens, whether patient
how is it determined, especially for human tumors, is

specific or shared (groups I and II, respectively), and imprecise at best.) In addition, the circumstances of
nonmutated self-antigens with highly restricted tissue inducing immunity in tumor-free mice subsequently
distribution ignored by the immune system (group III) will challenged with tumor may be quite different from the
make potent tumor rejection antigens, whereas antigens conditions prevailing in patients with cancer. However,
corresponding to tissue-specific gene products (group lack of cross-protection, taken as evidence for the domi-
IV) will have triggered tolerance to various degrees and nance of unique tumor rejection antigens, has been also
will be less effective tumor rejection antigens. Experi- seen in spontaneously induced nonimmunogenic tu-
mental observations by and large support this view mors monitoring induction of immunity in tumor-bearing
though the evidence is far from conclusive. animals (Gilboa and Lyerly, 1994). Overall, while the con-

Tumor transplantation studies in mice have provided cerns are valid, by no means do they disprove the notion
compelling evidence that antigens belonging to group I that tumor rejection antigens which dominate an effective
are responsible for protective immunity in tumor-bearing antitumor response are unique. As will be discussed be-
animals. This conclusion is based on the demonstration low, careful examination of the burgeoning field of human
that mice vaccinated with irradiated tumor cells became tumor antigens has done little to change this conclusion.
resistant to a subsequent tumor challenge, and that At first blush, the data from human studies does sug-
resistance was exquisitely tumor specific (Prehn and gest otherwise; the majority of human antigens isolated

to date correspond to nonmutated shared antigensMain, 1957; Klein et al., 1960; Old et al., 1962). Many
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belonging to groups III and IV. Only a minority of antigens specific CTL in the blood. Assuming that the unusually
long remission state of the patients was due to the mea-in the list correspond to mutated forms of normal gene

products (Boon and van der Bruggen, 1996; Rosenberg, sured CTL response—a highly plausible assumption yet
lacking definitive proof—the antigens recognized by the1999). However, closer examination suggests that this

could be a “mirage.” Tumor antigens recognized by CTL CTL would constitute effective tumor rejection antigens.
In patient LB33, four antigens characterized were neo-are isolated by fractionating the antigenic content of

tumor cells and determining which fraction is recognized antigens generated by point mutations in normal gene
products. In patient MZ2, seven of eight antigens wereby tumor-specific CTL. The key, or catch if you wish, is

what constitutes “tumor-specific CTL.” Tumor-specific encoded by nonmutated group III antigens of the MAGE,
BAGE, and GAGE family, and the eighth antigen corre-CTL cannot be detected or generated from most pa-

tients. In a few cases, notably melanoma, tumor-specific sponded to the group IV differentiation antigen tyrosi-
nase (Coulie et al., 1999).CTL can be generated following extensive in vitro culture

of T cells in the presence of tumor cells. The tumor cells Clonal and frequency analysis of CTL from four mela-
noma patients have revealed that the majority of CTLserve as APC to stimulate tumor-specific CTL present

at low frequency in melanoma patients. The question is were directed against tumor-specific, albeit shared,
group III antigens (Anichini et al., 1996). In another study,whether CTL generated via repeated in vitro stimulations

recognize strong tumor rejection antigens or whether dendritic cells transfected with tumor-derived peptides
stimulated tumor-specific CTL, which did not recognizethe CTL generated in this fashion are skewed to recog-

nize weaker tumor rejection antigens. The answer may any of the previously characterized melanoma antigens
expressed in that particular tumor (Imro et al., 1999).be the latter. There is evidence that upon in vitro restimu-

lation, high-avidity CTL corresponding to immunodomi- The implication from these studies are that the majority
of the melanoma-specific CTL may be targeted to newnant epitopes are more prone to undergo apoptotic

death in a process known as activation-induced cell yet unidentified antigens, the majority of which are not
melanocyte differentiation antigens.death (AICD) (Alexander-Miller et al., 1996b; Bush and

Pamer 1998). Thus, unless special care is taken, re- Cumulatively, these findings bring into question the
current strategies used for the identification of tumorpeated stimulation of CTL from cancer patients could

lead to the preferential expansion of low-avidity CTL rejection antigens and is consistent with the notion that
tumor-specific antigens, arising from somatic mutationscorresponding to weaker tumor antigens. It is perhaps not

surprising that many of the known tumor antigens are or introduced as viral antigens (groups I and II), or self-
antigens with highly restricted tissue distribution (group(melanocyte) differentiation antigens belonging to group IV.

Another complicating factor stems from the fact that III) will make more effective tumor rejection antigens
compared to antigens that correspond to tissue-specificthe CTL used to identify tumor antigens are generated

from cancer patients—from individuals who failed to gene products (group IV).
Isolation of human tumor rejection antigens could bereject their cancer. The concern is that CTL present in

patients with a long history of cancer are functionally improved in several ways. One approach is to modify
the ex vivo culture conditions in ways that will preservecompromised (Whiteside 1998) and were rescued from

“irrelevance” by the ex vivo culture conditions. The tu- and enrich for high-avidity CTL. This could be achieved
by employing measures which minimize Fas-mediatedmor-specific T cells remaining in the cancer patient may

represent low-avidity T cells that were not eliminated apoptosis (van Parijs and Abbas, 1996) and CTLA-4-
mediated attenuation of proliferation (Thompson andby AICD (Alexander-Miller et al., 1996b).

One way to increase the odds of isolating relevant Allison, 1997), or measures which engage the 4–1BB
receptor (Hurtado et al., 1997), etc. Another approachtumor antigens would be to use CTL from patients expe-

riencing a spontaneous remission. This would be diffi- to increase the representation of tumor-specific T cells
in the responder population would be to develop im-cult because such events are very rare. Nevertheless,

Zorn and Hercend succeeded in isolating and character- proved in vitro stimulation protocols capable of generat-
ing primary tumor-specific CTL responses from naiveizing two antigens recognized by T cells infiltrating a

spontaneously regressing melanoma lesion (Zorn and precursors, as opposed to the current strategies, which
have been used to expand a preexisting memory CTLHercend, 1999a, 1999b). Their findings are revealing.

The antigen recognized by the dominant CTL clone cor- response from cancer (melanoma) patients.
Induction of Autoimmunity by Vaccinatingresponds to a neoantigen resulting from a point mutation

in a myosin class I gene. Thus, this antigen belongs to with Self-Tumor Antigens
This important topic will be dealt with briefly here. Auto-group I of mutated-self antigens shown in Figure 1. A

second antigen represented by a less prevalent T cell immunity with pathological consequences following
vaccination with self-tumor antigens should be ex-clone was identified as MAGE-6 (group III, Figure 1).

While no firm conclusions can be drawn from two exam- pected and will likely be encountered with the advent
of increasingly effective vaccination protocols. Two linesples, it does bolster the argument that tumor-specific

antigens and nonmutated “silent” antigens would make of not unrelated observations suggest that autoimmun-
ity may not be a serious problem. First, potent tumorbetter tumor rejection antigens.

It is also informative to examine the antigenic profile immunity can be generated in mice by vaccination with
specific self-antigens or with unfractionated tumor-from patients with highly favorable clinical courses.

LB33 and MZ2 are two such melanoma patients that derived material, with little or no evidence of autoimmu-
nity. A low level of autoimmunity has been occasionallywere alive 10 years following initial diagnosis. Both

patients were treated with autologous irradiated mela- seen but appears to be the exception rather than the
rule (Hara et al., 1995; Naftziger et al., 1996; Fong et al.,noma cells and exhibited very high levels of melanoma-
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1997; Overwijk et al., 1999). Second, a host of studies the necessary amount of tumor tissue for antigen isola-
tion. In addition, melanoma patients exhibit a weak mel-have shown that an activated effector arm consisting
anoma-specific CTL response, which current tech-of antigen-specific CD81 CTL (Mayordomo et al., 1996;
niques are capable of expanding ex vivo.Roth et al., 1996; Melero et al., 1997; Vierboom et al.,

To expand the scope of vaccination with tumor anti-1997; Morgan et al., 1998) or CD41 T cells (Hu et al., 1993)
gens, general protocols for tumor antigen discovery ap-could selectively eradicate tumors without apparently
plicable to other forms of cancers have to be developed.attacking or damaging normal tissue expressing the
One such approach could involve the use of dendriticsame antigen. The implication is that even the effector
cells transfected with tumor mRNA. mRNA-transfectedarm of the immune response in its activated form can
dendritic cells are potent stimulators of T cell immunitydistinguish between normal and tumor tissue, i.e., tumor
in vitro and in vivo (Boczkowski et al., 1996; Ashley ettissue is more susceptible to immune destruction than
al., 1997; Nair et al., 1998). Dendritic cells transfectednormal tissue.
with tumor-derived mRNA may be therefore capable
of stimulating primary tumor-specific CTL responses in
vitro to provide a more representative CTL responseImplications for Vaccination
from many cancer patients. In addition, mRNA-trans-Vaccination with patient-specific mutated-self group I
fected dendritic cells can function as targets in CTLantigens is the approach of choice, but it would require
cytotoxicity assays (Nair et al., 1998), offering a practicalisolation and characterization of such antigens from
substitute for tumor cells for such assays. Finally, mRNAeach patient, clearly not an option. Theoretical consider-
should provide an inexhaustible source of tumor anti-ations and circumstantial evidence presented here ar-
gen, since the mRNA content of cells could be amplifiedgue that vaccination with shared self-antigens will be
from microscopic amounts of tumor tissue.less effective. As a rule, group III antigens should be
Vaccination with Undefined Tumor Antigensmore effective than group IV antigens, and those anti-
If isolation of unique group I–type antigens from eachgens that are completely ignored by the immune system
cancer patients is not practical, and the use of sharedshould make potent tumor rejection antigens. Whether
nonmutated antigens must await the development ofthis is indeed the case must wait clinical testing.
appropriate antigen isolation methodologies, what canThe limited efficacy of vaccination with self tumor
one do in the meantime? One attractive option is to

antigens can be offset in two ways: use of potent vacci-
vaccinate with autologous tumor-derived antigenic mix-

nation protocols capable of activating and expanding
tures. The tumor-derived antigenic mixtures will include

the remaining low-avidity T cells and vaccination with
the complete antigenic repertoire of the tumor, including

a mixture of tumor antigens. It is safe to assume that the the potent group I patient-specific antigens, yet will ob-
current vaccination protocols do not meet expectations. viate the need to identify the relevant tumor antigens in
Vaccination with genetically modified irradiated tumor each patient. In animal tumor models, vaccination with
cells, tumor-derived heat shock proteins, DNA-encoded genetically modified irradiated tumor cells (Gilboa and
antigens, or dendritic cells represent some of the prom- Lyerly, 1994), tumor-derived heat shock proteins (Ta-
ising approaches currently explored. With vaccination mura et al., 1997), or with dendritic cells loaded with
using a mixture of tumor antigens, it is conceivable that tumor-derived peptides or proteins (Gilboa et al., 1998)
the combined immune response directed against sev- is very potent. A common limitation of these strategies
eral antigens expressed by tumor cells would have an is that sufficient tumor tissue for antigen preparation
additive if not synergistic effect. Consistent with this cannot be obtained or generated from many cancer pa-
notion, Johnston et al. have shown that a polyclonal tients. In such instances, use of mRNA amplified from
CTL response directed against multiple tumor antigens small amounts of available tumor tissue could provide
correlated with an improved antitumor effect as com- unlimited amounts of antigen for vacccination protocols.
pared to a CTL response directed against a single anti-
gen (Johnston et al., 1996). References
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