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A b s t r a c t - - I n  this paper, we first introduce a new class of generalized accretive operators named 
H-accretive operators in Banach spaces. By studying the properties of H-accretive operators, we 
extend the concept of resolvent operators associated with the classical m-accretive operators to the 
new H-accretive operators. In terms of the new resolvent operator technique, we give the approximate 
solution for a class of variational inclusions involving H-accretive operators in Banach spaces. @ 2004 
Elsevier Ltd. All rights reserved. 

K e y w o r d s - - H - a c c r e t i v e  operator, Resolvent operator technique, Variational inclusion, Iterative 
algorithm. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

Variational inequalities and variational inclusions are among the most interesting and important 
mathematical problems and have been studied intensively in the past years since they have wide 
applications in mechanics, physics, optimization and control, nonlinear programming, economics 
and transportation equilibrium, and engineering sciences, etc. (see, for example, [1-20]). In 
the theory of variational inequalities and vm'iational inclusions, the development of an efficient 
and implementable iterative algorithm is interesting and important. Various kinds of iterative 
algorithms to solve the variational inequalities and inclusions have been developed by many 
authors. For details, we can refer to [1-6,8-13,15-20] and the references therein. Among these 
methods, the resolvent operator techniques for solving variational inequalities and variational 
inclusions are interesting and important. 

Recently, Huang and Fang [12] introduced a new class of maximal r]-monotone mapping in 
Hilbert spaces, which is a generalization of the classical maximal monotone mapping, and studied 
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the properties of the resolvent operator associated with the maximal u-monotone mapping. They 
also introduced and studied a new class of nonlinear variational inclusions involving maximal 
u-monotone mapping in Hilbert spaces. For some related works, we refer to [8] and the references 
therein. 

In this paper, we further generalize the resolvent operator technique by introducing a new 
class of H-accretive operators in Banach spaces. We extend the concept of resolvent operators 
associated with the classical m-accretive operators to the new/./-accretive operators. By using 
the new resolvent operator technique, we study the approximate solution of a class of variational 
inclusions with/-/-accretive operators in Banach spaces. 

In what follows, we always let X be a real Banach space with dual space X*, (., .} be the 
dual pair between X and X*, and 2 x denote the family of all the nonempty subsets of X. The 
generalized duality mapping Jq : X ~ 2 X* is defined by 

Jq(x) = { f* e X*  : @, f*} = IIxllq and Nf*lI = HxHq-1} , V x E X ,  

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known 
that, in general, Jq(x) = IIx]lq-2J2(x), for all x ¢ 0, and Jq is single-valued if X* is strictly 
convex. In the sequel, unless otherwise specified, we always suppose that  X is a real Banach 
space such that  Jq is single-valued and H is a Hilbert space. If X = T{, then J2 becomes the 
identity mapping of T{. 

The modulus of smoothness of X is the function Px : [0, oc) --~ [0, cx~) defined by 

p x ( t )  = sup  ~ (llx + Yll + I1~ - YlI) - 1= Ilxll --- 1, IIYLI -< t , 

A Banach space X is called uniformly smooth if 

lira Px (t) = O. 
t--~0 t 

X is called q-uniformly smooth if there exists a constant c > O, such that  

px( t )  <_ ct q, q > l. 

Note that  Jq is single-valued if X is uniformly smooth. In the study of characteristic inequalities 
in q-uniformly smooth Banach spaces, Xu [21] proved the following theorem. 

THEOIkEM X. Let X be a real uniformly smooth Banach space. Then, X is q-uniformly smooth 
i f  and only i f  there exists a constant Cq > O, such that for all x, y ~ X, 

II~ + yll q < II~ll q + q (y, J~(~) )  + c~llyll ". 

DEFINITION 1.1. 
be 

Let  T, H : X --+ X be two single-valued operators. The  operator T is said to 

(i) accretive i f  

(ii) strictly accretive if  

( T x - T y ,  g q ( x - y ) )  >O, Y x ,  y e X ;  

( T x - T y ,  J q ( x - y ) ) > _ O ,  Vx ,  y e X ,  

and the equality holds i f  and only x = y; 
(iii) strongly accretive i f  

<Tx - T y ,  Jq(x  - y)> > rl lx - Yll q, V x ,  y E X;  
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(iv) s trongly  accretive with respect to I'i i f  there exists some constant  ff > O, such that  

( T x - T y ,  dq(H(x)  - H ( y ) ) )  > Vltx-yN q, Vx ,  y e X;  

(v) Lipschi tz  continuous i f  there exists some constant s > O, such that  

IITx - Tyll <_ stix - yll, V x, y E X .  

REMARK 1.1. If T and H are Lipschitz continuous with constants T and s, respectively, and T 
is strongly accretive with respect to H with constant 7, then 7 -< TSq-1. 

EXAMPLE 1.1. Let X = ( -co ,  +oo), T x  = - x  and H x  = - 2 x ,  for all x C X. Then, T is strongly 
accretive with respect to H,  but T is not strongiy accretive. 

Example 1.1 shows that  the strong aecretivity of T with respect to H is a generalization of the 
strong accretivity of T. 

DEFINITION 1.2. A mult ivalued operator M : X --* 2 x is said to be 

(i) accretive i f  

vx, y x, yaM(y); 

(ii) m-accret ive  i f  M is accretive and ([ q- A M ) ( X )  = X ,  for all ~ > O, where I denotes the 

ident i ty  mapping  on X .  

REMARK 1.2. 

(1) In Definitions 1.1 and 1.2, the number q (q > 1) can be replaced by 2 since dq(x) = 

Ilzll -2&( ), for all z e X. 

(2) If X = ~, then we can obtain the corresponding definitions of monotonicity, strict mono- 

tonicity, strong monotonicity, strong monotonicity with respect to H, and maximal mono- 

tonicity from Definitions i.I and 1.2. 

2. H - A C C R E T I V E  O P E R A T O R S  

In this section, we shall introduce a new class of generalized accretive operators--HI-accretive 
operators, and discuss some properties of H-accretive operators. 

DEFINITION 2.1. Le t  H : X --~ X be a single-valued operator and M : X -* 2 x be a mult ivalued 

operator. We say that  M is H-accret ive  i f  M is accretive and ( H  + • M ) ( X )  = X holds, for ali 

A>O. 

REMARK 2.1. If H = I, then Definition 2.1 reduces to the definition of m-accretive operator, 

and if X = ~ and H = I, then Definition 2.1 reduces to the definition of maximal monotone 

operator. 

In the sequel, we show the existence of an H-accretive operator. First we recall some concepts. 

DEFINITION 2.2. A single-valued operator 77 : 7-L --* ~-L is said to be 

(i) coercive if 

lira ( H ( x ) , x )  

(ii) hemi-continuous i f  for any fixed x, y, z E 7~, the function t ~-* (HI(x + ty) ,  z} is continuous 
at 0 +. 

DEFINITION 2.3. A set-valued operator A : X ~ 2 x is said to be bounded i f  A ( B )  is bounded 
for every bounded subset  B o f  X .  
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PROPOSITION 2.1. Let  M : 7-{ -+ 2 ~ be a rnaximM monotone operator and H : ~ -4 7-{ be a 

bounded, coercive, hemi-continuous, and monotone operator. Then, M is H-accretive.  

PROOF. For every A > 0, AM is maximal monotone since M is maximal monotone. Since H is 
bounded, coercive, hemi-continuous, and monotone, it follows from Corollary 32.26 of [22] that  
H + AM is surjective, i.e., (H + AM)(~)  = ~ holds, for every A > 0. Thus, M is an H-accretive 
operator. The proof is complete. 

The following example shows that  an m-accretive operator need not be H-accretive for some H. 

EXAMPLE 2.1. Let X = ( - e o , + o o ) ,  M x  = x and H ( x )  = x 2, for all z E X. Then, it is easy to 
see that  M is an m-accretive operator and the range of H + M is [ -1 /4 ,  +Go). Therefore, M is 
not H-accretive. 

THEOREM 2.1. Let  H : X --+ X be a s tr ic t ly  accretive single-valued operator, M : X --+ 2 x 

be an H-accret ive  operator, x , u  E X given points. I f  ( u -  V, Yq(X- y)} > 0 holds, for all 

(y ,v )  E G r a p h M ,  then u E M ( x ) ,  where G r a p h M  = {(x,u)  C X x X :  u E M(x)}.  

PROOF. Let x, u E X,  such that  

( u - v , 4 ( x - y ) }  > O, V(v,y)  E GraphM.  (2.1)  

Since M is H-accretive, ( H + A M )  ( X )  = X ,  for all A > 0. Hence, there exists (x0, u0) C Graph M,  
such tha t  

H ¢ o )  + Auo = H e )  + Au. (2.2) 

Equations (2.1) and (2.2) imply that  

0 _< A (u - uo, 4 ( x  - xo)) = (H(xo) - H(x) ,  4 @  - Xo)}. 

Since H is strictly accretive, the inequalities above show that  x = x0. Again from (2.2), we have 
u = u0. Hence, (u, x) E Graph M. The proof is complete. 

THEOREM 2.2. Let  H : X -+ X be a s tr ic t ly  accretive operator and M : X .4  2 x be an H -  

accretive operator. Then, the operator (H  + AM) -1 is single-valued, where A > 0 is a constant. 

PROOF. Let u ~ X ,  x , y  C (H + A M ) - I ( u ) .  It  follows that  - H ( x )  + u  C A M ( x )  and - H ( y ) + u  

AM(y ) .  Since M is accretive, 

( ( - H e )  + - ( - H ( v )  + 4 ¢  - y ) )  = { H ( y )  - H(x), - y ) )  >- o. 

The strict accretiveness of H implies tha t  x -- y. Thus, (H + AM) -1 is single-valued. The proof 

is complete. 

Based on Theorem 2.2, we can define the resolvent operator ]~H associated with H and M M,A 
as follows. 

DEFINITION 2.4. Let  H : X .4  X be a s tr ic t ly  accretive operator and M : X --~ 2 x be an H-  
accretive operator. The  resolvent operator R H  x : X --* X associated wi th  H and M is defined 

by 
= (H + H. 

THEOREM 2.3. Let  H : X .4  X be a strongly accretive operator wi th  constant r and M : 

X .4  2 x be an H-accret ive operator. Then, the resolvent operator R ~ , ~  : X .4  X is Lipschitz  

continuous wi th  constant  1/r ,  i.e., 
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PROOF. Let u, v be any given points in X. It follows that 

R~,~(u) : (H + AM)-I(u)  

and 

This implies that 

1 (~ _ H (R~,~(~))) c M (R~,~(~)) 

and 

A 
Since M is accretive, 

1 @ _ H ( / { ~ A ( u ) ) _ ( v _ H ( R H  (v)))  Yq(R~r,~(u)- t{~,~(v)))  
X 

: ! ( ~ _ ~ _  (H(R§,~(~) ) -  (R~,~(~))) 4 (R~,~(~)-R~,~(~))> >o. /~ ~ - -  

The inequality above implies that 

II~-~11. IIR~,~(~) - R~,~(~)II ~-* = I1~- <l • tlJ~ (R~,~(~) - R-~,~(v))ll 

> (H (R~,~(~)) - H (R~,~(v)), 4 (R~,~(~) - Rf~,~(~))) 

_>~ IIR~,~(~)- R~,~(~)II ~ 
Hence, 
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i Vu, v EH, 

This completes the proof. 

3. VARIATIONAL INCLUSIONS 

Let A, H : X -~ X be two single-valued operators and M : X --+ 2 X be a multivalued operator. 

We consider the following problem of finding u e X, such that 

0 ~ A(u) + M(u), (3.1) 

which is called the generalized variational inclusion and has been studied by many authors in the 
setting of Hilbert spaces when M is maximal monotone and A is strongly monotone. It is easy 
to see that problem (3.1) includes many variational inequality (inclusion) and complementarity 
problems as special cases. 

In this section, we shall study problem (3.1) when M is H-accretive and A is strongly accre- 
tive with respect to H. To obtain the approximate solution of problem (3.1), we first give a 
characterization the solution of problem (3.1) by using the resolvent operator R;~,~. 

LEMMA 3.1. Le t  H : X --+ X be a s tr ic t ly  accretive operator and M : X --+ 2 x be H-accretive.  

Then,  u E X is a soIution o f  prob iem (3.1) i f  and oniy  i f  

: R § , ~  [H(~) - AA(~)].  

PROOF. The conclusion follows directly from Definition 2.4 and some simple arguments. 

Based on Lemma 3.1, we construct the following iterative algorithm for solving problem (3.1). 

ALGORITHM 3.1. For any u0 E X, the iterative {u~} C X is defined by 

u~+l : RHM,),[H(u,~) -- AA(u~)], n = 0, 1, 2 , . . . .  (3.2) 
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THEOREM 3.1. Let  X be a q-uniformIy smooth  Banach space and H : X --~ X be a strongly ac- 

cretive and Lipschi tz  continuous operator with constants 7 and % respectively. Let  A : X --+ X 

be Lipschitz  continuous and strongly accretive with respect to H wi th  constants s and r, re- 

spectively. As sume  that  M : X --+ 2 x is an H-accret ive  operator and there exist  )~ > O, such 

that  

"c q - qAr + Cq)~qs q ~ ~/q, (3 .3)  

where Cq > 0 is the same as in Theorem X. Then, the i terative sequence {u~} generated by 

Algori thm 3.1 converges strongly to the unique solution o f  probIem (3.1). 

PROOF. It follows from (3.2) and Theorem 2.3 that  

Ilu,+l - u ,  II = [[R~,a[H(u~) - ) ,A(u~)]  R~,~[H(u~_~)  - AA(u~_~)] H 
1 (3.4) 

- "yllH(u~) - H(u~_~) - A(A(u~) - A ( u ~ - a ) ) ] l  

By assumptions and Theorem X, one has 

IlH(u,d - g(u,~_x)  - )~(A(u~) - A(u~_l)) l l  q 

_< ]lH(u~) - H(ur~-~)ll q - qX <A(u,~) - A (u~_ l ) ,  Jq (H(u~)  - H(u~_ l ) ) }  

+ Aqcq IIA(u~) - A(u~-~)ll q (3.5) 

< ( ~  - qar  + c ~ a ~ ) l l ~  - ~-~11 ~. 

Equations (3.4) and (3.5) imply that  

where 
1 

k =  
~ ~/Tq - qAr + Cq)~qsq" 

By (3.3), we know t h a t  0 __ k < 1. Hence,  {u~} is a e a u c h y  sequence.  Let  u~ -~ u as n -~ ~ .  

I t  follows from (3.2) t h a t  

M,X [H(u) - Ag(u)] .  (3.6) 

By Lemma 3.1, u is a solution of problem (3.1). 
Let  u* be another solution of problem (3.1). Then, Lemma 3.1 implies tha t  

u* = RH,x [H(u*) - ),A(u*)]. (3.7) 

By (3.6), (3.7), and the similar arguments above, we have 

IL~- ~*ll <- kl l~-  ~*11, 

where 
1 

k =  
~/ @-q - q i ~ r  + eq)kqsq" 

= U, and so u is the unique solution of problem (3.1). Since 0 ~ k < 1, we know u* This 
completes the proof. 

REMARK 3.1. If X is 2-uniformly smooth and there exists ), > 0, such tha t  

_ _ _ r  I < ~/r2 _ e2s2(~ _ 7~5 r2 > c2s~ (~2 _ ~ )  
C282 C282 ' : 

then (3.3) holds. We note tha t  Hilbert  spaces and Lp (or lq) spaces (2 _< q < oc) are 2-uniformly 
smooth. 
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