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A B S T R A C T

This paper presents a new methodology for the modeling and control of power systems based on

an uncertain polytopic linear parameter-varying (LPV) approach using parameter set mapping

with principle component analysis (PCA). An LPV representation of the power system dynam-

ics is generated by linearization of its differential-algebraic equations about the transient oper-

ating points for some given specific faults containing the system nonlinear properties. The time

response of the output signal in the transient state plays the role of the scheduling signal that is

used to construct the LPV model. A set of sample points of the dynamic response is formed to
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generate an initial LPV model. PCA-based parameter set mapping is used to reduce the number

of models and generate a reduced LPV model. This model is used to design a robust pole place-

ment controller to assign the poles of the power system in a linear matrix inequality (LMI)

region, such that the response of the power system has a proper damping ratio for all of the dif-

ferent oscillation modes. The proposed scheme is applied to controller synthesis of a power sys-

tem stabilizer, and its performance is compared with a tuned standard conventional PSS using

nonlinear simulation of a multi-machine power network. The results under various conditions

show the robust performance of the proposed controller.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

The current electric power systems have been operated close to
their capacity limits, thus increasing the instability risk. Small-

signal stability can be defined as the ability of the system to
maintain synchronism when subjected to small disturbances.
With this stability concept, the probable instability can be of

two forms: a steady increase in the generator rotor angle
caused by the lack of synchronizing torque and an increase
in the amplitude of rotor oscillations caused by the lack of suf-

ficient damping torque [1]. Currently, small-signal instability
occurs more frequently because of the latter form of instability.
Dynamic stability can be defined as the behavior of the power
system when subjected to small disturbances. It usually

involves insufficient or poor damping of system oscillations.
These oscillations are undesirable, even at low frequencies,
because they reduce power transfer in transmission lines. The

most important types of these oscillations are local-mode
(which occurs between one machine and the rest of the system)
and inter-area mode oscillations (which occurs between inter-

connected machines) [2]. Thus, our main objective in this paper
was to propose a suitable methodology for overcoming the
undesired oscillations.

A power system stabilizer (PSS) is used to provide positive
damping of the power system oscillations. The conventional
PSS design involves producing a component of electrical tor-
que in phase with rotor speed deviations. In the literature

[3], the effects of some PSS schemes on improving power sys-
tem dynamic performance have been analyzed. Generally, it is
possible to categorize PSS design methodologies as follows: (a)

classical methods, (b) adaptive and variable structure methods,
(c) robust control approaches, (d) artificial intelligent tech-
niques and (e) digital control schemes [4].

It is probable that conventional PSS (CPSS) fails to dam-
pen system oscillations over a wide range of operating condi-
tions or at least leads to a dishonored performance.
Consequently, a priority of robust PSSs is to address a variety

of uncertainties imposed by plausible variation in operating
points, and it is important to have proper performance for dif-
ferent load conditions while ensuring stability [5]. Therefore,

the robustness of the PSS is a major issue [6], and synthesis
of robust PSSs has been one of the most notable research
topics in power and control engineering. In many research

studies, such as literature reports [7–10], robust performance
of a controller in various operating points has been studied
and investigated. Over the past years, several methods and

approaches have been presented regarding robust control in
power systems, especially for oscillation damping [11–13].

Various robust control techniques can be used in the design
stage, for example, H1 optimal control [14] and Linear Matrix
Inequality (LMI) [15]. The basic theories and some applicable
techniques of robust control in power systems can be found in
the literature [16]. Most conventional techniques for the design

of a PSS are based on linearized models. The robustness of the
designed PSSs is limited because of operating point variations
resulting from the linearized model being valid only in the
neighborhood of the operating point used for linearization.

A polytopic model is an effective solution to this problem [17].
One special issue to address with nonlinear dynamical sys-

tems, which has received significant attention, is the issue of

linear systems, where the dynamics are described by some com-
bination of linear subsystems. The main reason for this interest
may be the efficiency of linear systems in developing the con-

trol concepts in an uncomplicated fashion. This matter led to
the tendency to form hybrid, linear parameter-varying (LPV)
and polytopic linear models. The stability problem for poly-

topic linear systems still remains a challenging research topic
[18–21]. Many research studies have focused on facilitating
the implementation of the fundamental results obtained previ-
ously regarding the asymptotic stability of a certain class of

interconnected systems via switched linear systems [22–26].
To overcome all of the perturbation from parameter uncer-

tainties and nonlinearity effects due to operating point varia-

tion of the power system, construction of polytopic linear
models based on the LPV framework is proposed in our paper.
In Hoffmann and Werner [27], a complete survey of the exper-

imental results in LPV control was provided. It briefly
reviewed and compared some of the different LPV controller
synthesis techniques. The methods are categorized as poly-

topic, linear fractional transformation and gridding based
techniques; in each of these approaches, synthesis was found
to be achieved via LMIs. LPV models are known as linear
state-space models with time-varying parameter-dependent

matrices. Their dynamics are linear, but non-stationary [28].
In fact, LPV models of a nonlinear system describe its nonlin-
earities by parameter variations. This point of view is relatively

straightforward for system descriptions, especially when the
system variations are state-dependent, e.g., power system
dynamics.

In this paper, the nonlinearity of the power system dynam-
ics is considered in the control designing process via the LPV
method [29–32]. A common approach for LPV modeling of
nonlinear systems is using a set of simulation data obtained

from the original nonlinear model [33]. It is assumed that this
set of data sufficiently captures the transient behavior of the
system. Thus, the main concept is the construction of a poly-

topic model of a power system using transient response sam-
ples that contain the nonlinear properties of the power
system. Next, parameter set mapping based on the PCA pro-

posed in the literature [32] is used to obtain LPV models with

http://creativecommons.org/licenses/by-nc-nd/4.0/
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a tighter parameter set. In addition, the less significant direc-
tions in the parameter space are detected and neglected with-
out losing much information regarding the plant.

This note is organized as follows. In the next section, an
LPV model for a power system is introduced. Parameter set
mapping and the problem statement are presented in Sectio

n ‘Parameter set mapping and problem formulation’. In Secti
on ‘Controller design’, the proposed algorithm to verify the
stability conditions is described for the family of systems con-

sidered in the polytopic based model. In Section ‘Simulation’,
a discussion is provided on the applicability of the proposed
controller and a comparison is made between the robustness
of the proposed controller with a tuned conventional standard

PSS in a simple model and a multi-machine power system.
Finally, conclusions are presented in Section ‘Conclusion’.

LPV modeling

The dynamic behavior of a power system is affected by its
complex components (generators, exciters, transformers,

etc.), which are coupled with the network model. The linear
behavior of the system can be expected in steady-state opera-
tional points. However, the nonlinearity of the system is very

obvious whenever a fault or a disturbance specifically occurs
in transient behavior. The objective in this section was to intro-
duce an LPV-model based on transient operating points of the

system to account for nonlinearity effects and uncertainties.
The mathematical model of the power system can be repre-
sented by two sets of equations [34]: one set of differential
equations (consisting of state variables) and one set of alge-

braic equations (for the other variables), as

_x ¼ fðx; n; uÞ
0 ¼ gðx; nÞ; ð1Þ

where x 2 Rn is the vector of the state variables, n 2 Rq is the
vector of the (non-state) network variables (such as load flow

variables) and u 2 Rp is the vector of control inputs (such as
the reference signal of Automatic Voltage Regulator (AVR)
called Vref). In particular, the vector x contains the state vari-

ables of generators and controllers (AVR, PSS, etc.). Fig. 1
shows the configuration of a power system for which the state

variables of the generator are as follows: excitation flux we, flux
in D-Damper winding wD, flux in Q-Damper winding wQ,

rotor speed x in p.u. and rotor position angle d in rad.
It is assumed that the functions fðx; n; uÞ and gðx; nÞ are

continuously differentiable for a sufficient number of times.
AVR Exciter

G

PSS

Xt

- Vref

+ 

V

ω

Power
Network

 

uc

Fig. 1 A power system configuration with detailed connections

of a generator.
Solution of (1) for a specific control input �uðtÞ is presented

by vectors of �x and �n, and qðtÞ is defined below as the power

system transient trajectory:

qðtÞ :¼
�xðtÞ
�nðtÞ
�uðtÞ

264
375: ð2Þ

If it is considered that

x ¼ �xþ dx

n ¼ �nþ dy

u ¼ �uþ du;

ð3Þ

then function fðx; n; uÞ can be approximated by linear Taylor
expansion with respect to its components. In fact, the power
system dynamics in the immediate proximity of the transient

trajectory ð�x; �n; �uÞ are approximated by the first terms of the
Taylor series. Thus, the following LPV model PðhÞ can be

introduced for the power system about the transient trajectory,

d _x ¼ AðhðtÞÞdxþ BðhðtÞÞdu
dy ¼ CðhðtÞÞdxþDðhðtÞÞdu ð4Þ

where

AðhðtÞÞ :¼ @f

@x
� @f

@�n

@g

@�n

� ��1
@g

@x

" #
x¼�x
n¼�n
u¼�u

; ð5Þ

BðhðtÞÞ :¼ @f

@u

� �
x¼�x
n¼�n
u¼�u

; ð6Þ

and dy 2 Rm is the deviation vector of defined output variables
about its transient trajectory �y. The time-dependent parameter

vector hðtÞ 2 Rl depends on the vector of measurable signals

qðtÞ 2 Rk, where k :¼ nþ pþ q is referred to as scheduling sig-
nals, according to

hðtÞ ¼ hðqðtÞÞ; h : Rk ! Rl; ð7Þ
where the parameter function h is continuous mapping. With-
out a loss of generality, it can be assumed that Dð�Þ ¼ 0. How-

ever, this assumption is not implausible in power systems. The
matrix Cð�Þ can be computed when the desired output vari-
ables are defined. In fact, the power system transient trajectory

qðtÞ may be interpreted as a time-varying scheduling signal
vector for the mappings Að�Þ and Bð�Þ. The compact set

Ph � Rl : h 2 Ph; 8t > 0 is considered to be a polytopic set

defined by the convex hull

Ph :¼ Cofhv1; hv2; . . . ; hvNg ð8Þ
where N is the number of vertices. It follows that the system
can be represented by a linear combination of LTI models at

the vertices; this is called a polytopic LPV system

PðhÞ 2 CofPðhv1Þ;Pðhv2Þ; . . . ;PðhvNÞg ¼
XN
i¼1

aiPðhviÞ ð9Þ

where
PN

i¼1ai ¼ 1 and ai P 0 are the convex coordinates. The

ith vertex of this convex polytope is defined by
Pi :¼ ðAi;Bi;CiÞ for i ¼ 1; 2; . . . ;N, where each of these matri-
ces is constant.
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Each model is computed at some transient operating points
that are assigned at predefined time intervals in system tran-
sient trajectory. The number of points is chosen relative to

the system operating range, transient response and nonlinear-
ity effects.

Parameter set mapping and problem formulation

In this section, parameter set mapping based on the PCA algo-
rithm is used to find tighter regions in the space of the schedul-

ing parameters. By neglecting insignificant directions in the
mapped parameter space, approximations of LPV models are
achieved that will lead to a less conservative controller synthe-

sis [32]. For the given LPV system (4) and a set of trajectories
of typical scheduling signals qðtÞ, the problem of parameter set
mapping can be summarized to find a mapping

/ðtÞ ¼ rðqðtÞÞ; r : Rk ! Rs ð10Þ

where s 6 l, such that the model

d _x ¼ bAð/ðtÞÞdxþ bBð/ðtÞÞdu
dy ¼ bCð/ðtÞÞdxþ bDð/ðtÞÞdu

ð11Þ

provides a sufficient approximation of (4). The basic details of
PCA can be found in [33]. The sampling data at time instants
t ¼ 1; 2; . . . ;N can be used to generate a l � N data matrix

N ¼ ½h1; h2; . . . ; hN�: ð12Þ
The rows Ni are normalized by an affine law Pi to generate

scaled data with a zero mean and unit standard deviation

Nn
i ¼ PiðNiÞ; Ni ¼ P�1

i ðNn
i Þ; ð13Þ

and normalized data matrix Nn ¼ PðNÞ. Next, the following
singular value decomposition

Nn ¼ bUT UT
� � ¼ bR 0 0

0 R 0

" # bV
V

" #
ð14Þ

yields s significant singular values corresponding to bU, bR, andbV. Neglecting less significant singular values leads tobNn ¼ bUbR bVT � Nn ð15Þ
such that bNn is an approximation of the given data, and the

matrix bU as a basis of the significant column space of the data
matrix Nn can be used to obtain the reduced mapping r from

qðtÞ to /ðtÞ by computing

/ðtÞ ¼ rðqðtÞÞ ¼ bUTPðhðqðtÞÞÞ ¼ bUTPðhðtÞÞ ð16Þ
In other words, the approximate mapping ofbAð�Þ; bBð�Þ; bCð�Þ; bDð�Þ in (11) is related to (4) by

bPð/Þ ¼ bAð/ðtÞÞ bBð/ðtÞÞbCð/ðtÞÞ bDð/ðtÞÞ

" #
¼ AðĥðtÞÞ BðĥðtÞÞ

CðĥðtÞÞ DðĥðtÞÞ

" #
ð17Þ

where

ĥðtÞ ¼ P�1ð bU/ðtÞÞ ¼ P�1ð bU bUTPðhðtÞÞÞ ð18Þ
and P�1 denotes row-wise rescaling. Thus, the polytopic LPV
system (9) is reduced to the following polytopic LPV system
with S = 2S vertices.
bPðĥÞ 2 Cof bPðĥv1Þ; bPðĥv2Þ; . . . ; bPðĥv�sÞg ¼
XS
i¼1

ai bPðĥviÞ ð19Þ

The quality of the approximation can be measured by the
fraction of the total variation vs, which is determined by the

singular values in (14) as

vs ¼
Ps

i¼1r
2
iPl

i¼1r
2
i

ð20Þ

Definition 3.1 (LMI Region [35]). A subset D of the complex
plane is called an LMI region if there is a symmetric matrix

L ¼ LT 2 Rm�m and matrix M 2 Rm�m such that

D ¼ fz 2 C : fDðzÞ < 0g ð21Þ
with

fDðzÞ ¼ Lþ zMþ �zMT: ð22Þ
Subset D defines a region in the complex plane that has cer-

tain geometric shapes, such as disks, vertical strips, and conic
sectors. A ‘conic sector’ with inner angle a and an apex at the

origin is an appropriate region for power system applications
as it ensures a minimum damping ratio fmin ¼ cos a

2
for the

closed-loop poles [36]. This LMI region has a characteristic
function given by

faðzÞ ¼
sin a

2
ðzþ �zÞ cos a

2
ðz� �zÞ

cos a
2
ð�z� zÞ sin a

2
ðzþ �zÞ

� �
: ð23Þ

Theorem 3.2 ((D -stability) [35]). The matrix A is D-stable if

and only if there is a symmetric matrix X such that

MDðA;XÞ < 0; X > 0; ð24Þ
where MDðA;XÞ is an m�m block matrix defined as

MDðA;XÞ :¼ L� XþM� ðAXÞ þMT � ðAXÞT: ð25Þ
and � denotes the Kronecker product.

From this theorem, matrix A has its poles in an LMI region
with characteristic function (23) if and only if X> 0 such that

sin a
2
ðAXþ XATÞ cos a

2
ðAX� XATÞ

cos a
2
ðXAT � AXÞ sin a

2
ðAXþ XATÞ

" #
< 0: ð26Þ

Here, the objective was to find a control law

du ¼ KðsÞdy; ð27Þ
for the LPV model (11) as a robust PSS such that the closed-
loop poles lie in region D.

Controller design

In this section, the design procedure of the control law (27) for

the LPV model (11) is described and a sufficient condition to
ensure the asymptotic stability for system (11) is given by using
the proposed controller. The linear time varying system (4)
describes the nonlinear dynamic of the power system (1) about

the system transient trajectory qðtÞ. Applying parameter set
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mapping based on a PCA algorithm to (4), the reduced LPV
model (11) will be achieved. Thus, a polytopic model with ver-

tices ð bAi; bBi; bCiÞ is obtained that is computed by implementing

the PCA algorithm on the initial LPV model after evaluating
the power system transient trajectory qðtÞ in N distinct tran-
sient operating points. The objective was to find the controller

KðsÞ, as a robust PSS, such that the poles of a closed-loop sys-
tem given by (11) and (27) lie in defined region D. Suppose that
the state-space representation of the LTI controller KðsÞ is

given by

_xkðtÞ ¼ AkxkðtÞ þ Bkdy

uðtÞ ¼ CkxkðtÞ þDkdy:
ð28Þ

Implementing controller (28) to the LPV model (11), the
following closed-loop state-space equation is obtained:

_xcl ¼ AclðĥðtÞÞxcl ð29Þ
where xcl :¼ ½dxT xT

k �T is the vector of closed loop system state

variables and

AclðĥðtÞÞ :¼ AðĥðtÞÞ þ BðĥðtÞÞDkCðĥðtÞÞ BðĥðtÞÞCk

BkCðĥðtÞÞ Ak

" #
:

ð30Þ
Using polytopic representation (19), the closed loop system

(29) can be rewritten as

_xcl ¼
XS
i¼1

ai bAclixcl ð31Þ

where bAcli is the closed loop system matrix of the ith modelbPi :¼ ð bAi; bBi; bCiÞ in the form of

bAcli :¼
bAi þ bBiDk

bCi
bBiCk

Bk
bCi Ak

" #
: ð32Þ

Here, the problem is to find X > 0 and a controller KðsÞ, as
described in (28), that satisfy

MDð bAcli;XÞ < 0: ð33Þ
This is a regular pole placement problem for which the

solution can be followed from [35]. A change of controller
variables is necessary to convert the problem into a set of

LMIs. Partition X and its inverse are given by

X ¼ R T

TT U

� �
; X�1 ¼ S N

NT V

� �
: ð34Þ

Thus, the new controller variables for each vertex are

defined asbAk ¼ NAkT
T þNBk

bCiRþ S bBiCkT
T þ Sð bAi þ bBiDk

bCiÞR;bBk ¼ NBk þ S bBiDk;bCk ¼ CkT
T þDk

bCiR;bDk ¼ Dk: ð35Þ
Note that, in this study, bDi ¼ 0 for all i ¼ 1; . . . ;S; thus,bDk ¼ Dk ¼ 0. If T and N have a full row rank, then the con-

troller variables ðAk;Bk;CkÞ can always be computed from
(35). Moreover, the controller variables can be determined

uniquely if the controller order is chosen to be equal to the
order of the plant, that is, when T and N are square invertible.
A challenging point is the uniqueness of the solution of (35)
if the objective was to have an unique controller for all ver-
tices. There are no difficulties in determining Bk and Ck

because, according to (35), they do not depend on the
parameters of the vertices, whereas the computation of Ak

is dependent on these parameters and may explicitly cause

different solutions at each vertex. As will be shown in the
simulation results, in spite of the difference in solutions,
because of the LMI region restriction for each vertex, the

poles of the closed loop system with the resulting controllers
all lie in the desired region. Therefore, the matrix Ak can be
achieved by solving (35) at any arbitrary vertex. However,
for taking an optimal solution with a minimum error norm,

the use of the average values of matrices in all of the ver-

tices is recommended, that is, using 1
S

PS
i¼1ð bAi; bBi; bCiÞ instead

of ð bAi; bBi; bCiÞ in (35).
Next, using (35) and some matrix algebraic manipulations,

the following set of LMIs is obtained to find a solution for

(33).

Find R ¼ RT, S ¼ ST, and matrices ð bAk; bBk; bCkÞ such that

R I

I S

� �
> 0; ð36Þ

sin a
2
ðUi þ UT

i Þ cos a
2
ðUi � UT

i Þ
cos a

2
ðUT

i � UiÞ sin a
2
ðUi þ UT

i Þ

" #
< 0; ð37Þ

for i ¼ 1; . . . ;S, where

Ui ¼
bAiRþ Bi

bCk
bAibAk S bAi þ bBk

bCi

" #
: ð38Þ
Simulation

In this part, two case study problems are considered. First,

the proposed design method is simulated and applied to a
simple model of a single machine connected to an infinite
busbar, and then, the resultant controller is evaluated using

a multi-machine power system model. The simulation results
are compared with a tuned conventional power system
stabilizer.

Simulation of a simplified power system model

In the following, a simplified power system is considered for

implementing the proposed scheme and investigating the sta-
bility behavior and performance of the closed loop system sub-
jected to nonlinearity, disturbance and operation condition
variation.

To show the procedure of proposed controller design and
evaluate the efficiency of the results, particularly through the
use of nonlinear simulations, a practical and simple model of

a 612 MVA power system from [37] is studied. The system con-
tains a generator connected to an infinite busbar and equipped
with a standard excitation system EXST3 and standard PSS

structure IEEEST [37]. Simulations are performed using DIg-
SILENT PowerFactory software.

The objective was to design the proposed controller for

damping control of oscillations in the power system, which is
shown in Fig. 1 as the PSS block. Thus, uc, the output of the
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controller, and x, the speed of generator, are used as the input

and output, respectively, of the system under study for con-
structing the LPV model. For extracting the initial LPV model
(4), it is possible to use the response of the power system with-

out PSS after a 3-phase short-circuit fault at the generator bus-
bar (at t ¼ 0 sec with 100 ms clearing time).

In the nominal steady state operating point similar to the

base condition of Shin et al. [37], the unit is assumed to have
loading conditions of 500 MW and 0.0 MVAR. Linearization
is performed at each transient operating point for duration
of 10 s after fault with 300 ms intervals, that is, a sampling rate
of 3.33 Hz. Fig. 2a shows the samples on the time-domain sim-
ulation, where the initial polytopic models are generated in

those transient operating points. The parameters of the gener-
ated LPV model (4) are reshaped in the form of data matrix N
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in (12). Next, after data normalization, the explained PCA
algorithm is used to construct the reduced LPV models. The
singular value decomposition of the normalized data is com-

puted as (14). To determine the number of required principal
components, the fractions of the total variation vs are plotted
for 20 first singular values in Fig. 2b. As indicated in this fig-

ure, choosing s ¼ 3 implies that 87% of the information is cap-
tured. Thus, the resulting LPV model can be formulated as
(19), which only has eight vertices in a parameter space with

three dimensions. It has much less over-bounding than the
original one, leading to a less conservative controller.
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bA ¼

97:86 2720:07 281:81 138:90 �258:16 40:89

15:51 250:36 18:77 20:05 �33:61 6:19
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The reduced LPV model is used for the proposed controller
synthesis described in Section ‘Controller design’. The objec-
tive of controller design was to improve the damping ratio f
of the oscillation modes to 15%. In other words, a conic sector

of inner angle 2 cos�1ð0:15Þ with an apex at the origin is chosen

as the desired pole region. For the open loop LPV models, the
locations of the poles are shown in Fig. 2c. The LMIs (36) and
(37) can be solved by choosing the controller order equal to the

order of the plant. The resultant changed controller variables

ð bA; bB; bCÞ are
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bB ¼

�59128:44

�35670:64

�89321:55

�665213:89

�268022:81

�95612:92

�1695571:09

2666666666664

3777777777775
bC ¼ ½�11957:80 14984:62 1019:93 165:59

� 30:23 11:02 9:74�
The main controller variables ðAk;Bk;CkÞ can be found by

solving (35). As stated before, the obtained matrix Ak may be
different when using different vertices for solving (35); how-
ever, the resultant closed loop poles locations are not varied

and laid in the desired region. This can be seen in Fig. 2c,
where the desired damping ratio restriction is satisfied with
all of the closed loop poles for all of the sample models.

The designed controller is applied to the power system.
Next, its effectiveness is compared with a tuned standard con-
ventional PSS (CPSS) proposed in the literature [37] and with

the case of no PSS in the nominal condition (500 MW and
0.0 MVAR generation as the base of LPV model construction
mentioned before). The cases are simulated in the time-domain
using DIgSILENT PowerFactory software.

Results and analysis of simplified power system study

In this study, the limiters for proposed control are considered

to be similar to CPSS in the literature [37]. Fig. 3a shows the
generator response (active power) after a 3-phase fault on
the connected busbar. In this condition, as shown in Fig. 3a,

there is no significant difference between the effects of the pro-
posed controller and the tuned standard CPSS because the
design and tuning of CPSS were both performed under the

same conditions.
To study the robustness of the proposed controller, espe-

cially in different situations, an asymmetrical event with a
new initial condition is simulated. In this event, 500 MW and

�180 MVAR generation is considered, and phase ‘‘a” of the
grid substation (infinite bus) is opened at t ¼ 0 sec and then
closed at t ¼ 0:1 s. Fig. 3b shows the generator response (active

power) for all of the predefined control conditions. The system
with the proposed control clearly has a powerful robust perfor-
mance against system variation and perturbation. For further

comparison, the control signals of the controllers are also
shown in Fig. 3c. The proposed controller with the same limits
is clearly more effective for damping the oscillations, even

under nonconventional operation conditions.
Table 1 Descriptions of events.

Event no. Pre-fault generation of G08 Description

1 500 MW & �19 MVAR Fault at Line 25–26 near

2 540 MW & �19 MVAR Fault at Bus 17 at t = 0
Simulation of a multi-machine 39-bus power system

In this part, a multi-machine power system is studied to illus-
trate the efficiency of the proposed controller and its robust-
ness under different network conditions. The model consists

of 39 buses (nodes), 10 generators, 19 loads, 34 lines and 12
transformers. Fig. 4 shows the single line diagram, which is a
simplified model of the transmission system in the New Eng-
land area in the northeast of the U.S.A. The simulation model,

as represented in the Ref. [38], is used and modified slightly to
test the proposed controller in comparison with the tuned stan-
dard PSS proposed in the literature [37].

Considering a nominal capacity approximation, generator
G08 in the original model can be replaced by the 612 MVA
generator studied in the previous section without a loss of gen-

erality and without any steady-state problems for system per-
formance. This replacement is performed for using the LPV
model extracted in the previous section. The excitation system

for G08 is similar to the previous case. The proposed controller
and the tuned standard CPSS are separately implemented on
the generator and the performances are studied using DIgSI-
LENT PowerFactory software. To prevent any interference,

other generators are considered with no PSS.

Results and analysis of the multi-machine power system study

To evaluate the multi-machine system response, the events rep-
resented in Table 1 are investigated. Each event contains a 3-
phase short-circuit fault, but the fault locations and pre- and

post-fault conditions are different.
The generated active power of G08 is considered to be the

system response after each event. In Fig. 5, all cases (without
PSS, with tuned standard CPSS and with proposed controller)

are studied and compared. Fig. 5a shows that the standard
CPSS and proposed controller have satisfactory behaviors in
the conditions of Event 1. Note that, in this event, because

the system conditions are approximately similar to the pro-
posed design and CPSS cases, the responses are found to be
close to each other. Alternatively, to study the robustness of

controllers, Event 2 is considered because it has different con-
ditions. As shown in Fig. 5b, the system response is unstable in
the case of no PSS and has undesired oscillations with tuned

standard CPSS, while it has satisfactory damped oscillations
with the proposed controller.

Therefore, the simulation results show that although the
CPSS and proposed controller have the same behavior under

basic conditions (where the CPSS is tuned), by altering the sys-
tem conditions, the CPSS weakened, while the proposed con-
troller had a suitable damped response and showed its

robust properties against the system uncertainties.
Bus 25 at t = 0 and switching and outage of the line at t = 0.100 s

and switching the Lines 17–18, 17–27 and 16–1 at t = 0.167 s
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Fig. 5 Multi-machine power system responses: (a) after Event 1

and (b) after Event 2.
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Conclusions

In this paper, an output feedback control synthesis was pre-
sented based on the LPV representation using parameter set
mapping with principle component analysis (PCA) in power

systems, where the stabilization and damping of oscillations
were the main objectives. Transient response sample points
were used to produce an initial LPV model, and then, PCA-
based parameter set mapping was applied to reduce the num-

ber of models. The proposed output feedback controller was
designed by solving a set of linear matrix inequalities (LMIs).
Although the calculations appear to be burdensome because of

the large number of LMIs, especially for large scale power sys-
tems, the method proposed in this paper is very convenient for
real-time implementation. Because all of the control computa-

tions are based on power system information, they may be
conducted offline once the probable faults have been defined,
and hence, there is no restriction for online implementation

of the proposed control. In other words, it is unnecessary to
solve the LMIs in real time. A sufficient condition is also
extracted such that the asymptotic stability is guaranteed
against the uncertainties that may have occurred on the ver-
tices. The proposed scheme was applied to controller synthesis
of a power system as a PSS for damping control of the oscilla-
tions. As stated in the paper, one challenging point that may be

considered in future studies is to find a new method of chang-
ing the controller variables, such as in (35), independent of ver-
tices variables, although it was shown that the change of

variables in (35) had different solutions for vertices, but the
same properties.

After constructing the LPV model and designing the corre-

sponding controller (as a new PSS) based on the proposed
method, the effectiveness of the proposed controller was
assessed through nonlinear simulations for nominal and other
operation conditions and perturbations in comparison with the

case of no PSS and tuned standard PSS. The simulation
results, especially for a multi-machine power system, con-
firmed the robust performance properties of the considered

power system equipped with the proposed controller.

Conflict of Interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

References

[1] Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A,

Canizares C, et al. Definition and classification of power system

stability. IEEE Trans Power Syst 2004;19:1387–401.

[2] Kundur P. Power system stability and control. New

York: McGraw-Hill; 1994.

[3] He P, Wen F, Ledwich G, Xue Y, Wang K. Effects of various

power system stabilizers on improving power system dynamic

performance. Int J Electr Power Energy Syst 2013;46:175–83.

[4] Shahgholian G. Review of power system stabilizer: application,

modeling, analysis and control strategy. Int J Tech Phys Probl

Eng 2013;5:41–52.

[5] Jabr RA, Pal BC, Martins N. A sequential conic programming

approach for the coordinated and robust design of power system

stabilizers. IEEE Trans Power Syst 2010;25:1627–37.

[6] Abdel-Magid YL, Abido MA, Mantaway AH. Robust tuning of

power system stabilizers in multimachine power systems. IEEE

Trans Power Syst 2000;15:735–40.

[7] de Campos VAF, da Cruz JJ, Zanetta LC. Robust and optimal

adjustment of power system stabilizers through linear matrix

inequalities. Int J Electr Power Energy Syst 2012;42:478–86.

[8] Ataei M, Hooshmand R-A, Parastegari M. A wide range robust

PSS design based on power system pole-placement using linear

matrix inequality. J Electr Eng 2012;63:233–41.

[9] Ellithy K, Said S, Kahlout O. Design of power system stabilizers

based on l-controller for power system stability enhancement.

Int J Electr Power Energy Syst 2014;63:933–9.

[10] El-Razaz ZS, Mandor ME-D, Salim Ali E. Damping controller

design for power systems using LMI and GA techniques. In:

IEEE Elev int Middle East power syst conf (MEPCON 2006),

El-Minia; 2006, p. 500–6.

[11] Soliman M. Robust non-fragile power system stabilizer. Int J

Electr Power Energy Syst 2015;64:626–34.

[12] Abd-Elazim SM, Ali ES. Power system stability enhancement

via bacteria foraging optimization algorithm. Arab J Sci Eng

2013;38:599–611.

http://refhub.elsevier.com/S2090-1232(16)30081-9/h0005
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0005
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0005
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0010
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0010
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0015
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0015
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0015
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0020
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0020
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0020
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0025
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0025
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0025
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0030
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0030
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0030
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0035
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0035
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0035
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0040
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0040
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0040
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0045
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0045
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0045
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0055
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0055
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0060
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0060
http://refhub.elsevier.com/S2090-1232(16)30081-9/h0060


32 Mohammad B. Abolhasani Jabali and M.H. Kazemi
[13] Ali ES. Optimization of power system stabilizers using BAT

search algorithm. Int J Electr Power Energy Syst

2014;61:683–90.

[14] Simfukwe DD, Pal BC. Robust and low order power oscillation

damper design through polynomial control. IEEE Trans Power

Syst 2013;28:1599–608.

[15] Rao PS, Sen I. Robust pole placement stabilizer design using

linear matrix inequalities. IEEE Trans Power Syst

2000;15:313–9.

[16] Pal B, Chaudhuri B. Robust control in power systems. London

(UK): Springer; 2005.

[17] Soliman M, Elshafei AL, Bendary F, Mansour W. Robust

decentralized PID-based power system stabilizer design using an

ILMI approach. Electr Power Syst Res 2010;80:1488–97.

[18] Amato F, Garofalo F, Glielmo L, Pironti A. Robust and

quadratic stability via polytopic set. Int J Robust Nonlin

Control 1995;5:745–56.
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