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1. Introduction

Hermitian solutions to some matrix equations or some operator equations were investigated by

many authors. For finitematrices, Khatri andMitra [8] gave necessary and sufficient conditions for the

existence of the common Hermitian solution to the equations
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A1X = C1, XB1 = C2 (1.1)

over the complex field C, and presented an explicit expression for the general Hermitian solution to

(1.1), by generalized inverses, when the solvability conditions were satisfied. Using the singular value

decomposition (SVD), Yuan [16] investigated the general symmetric solution of (1.1) over the real

number field R. By the SVD, Dai and Lancaster in [2] considered the symmetric solution of equation

AXA∗ = C (1.2)

over R, which was motivated and illustrated with an inverse problem of vibration theory. Größ in [6],

Tian and Liu in [11] gave the solvability conditions for Hermitian solution and its expressions of (1.2)

over C in terms of generalized inverses, respectively. By using the generalized SVD, Chang and Wang

[1] examined the symmetric solution to the matrix equations

A3XA
∗
3 = C3, A4XA

∗
4 = C4 (1.3)

overR. In [11], Tian and Liu established the solvability conditions for (1.3) to have a commonHermitian

solution overC by the ranks of coefficientmatrices. However, to our knowledge, the expression for the

general Hermitian solution to (1.3) has not been available by generalized inverses so far. For operator

equations, Phadke and Thakare [10] described the common Hermitian solution to Eq. (1.1) for Hilbert

spaceoperators.Dajić andKoliha revisited (1.1) andobtainedsomenewresults in [3].Dajić andKoliha in

[4] investigated the common Hermitian solution to Eq. (1.1) in rings with involution with applications

to Hilbert space operators. Xu in [13] considered the solvability conditions for (1.1) to have a common

Hermitian solution in the framework of Hilbert C∗-modules, gave an expression for the Hermitian

solution to (1.1) when the solvability conditions were satisfied. To our knowledge, so far there has

been little information on the common Hermitian solution to (1.3) for operators in the framework of

Hilbert C∗-modules. Note that the Eqs. (1.1) and (1.3) for operators between Hilbert C∗-modules are

special cases of the following equations

A1X = C1, XB1 = C2, A3XA
∗
3 = C3, A4XA

∗
4 = C4 (1.4)

for operators between Hilbert C∗-modules. Motivated by the work mentioned above, we in this paper

aimtoconsider thecommonHermitiansolution toEqs. (1.4) foroperatorsbetweenHilbertC∗-modules.

The paper is organized as follows. We start with some basic concepts and results about the Hilbert

C∗-modules inSection2.We inSection3give somenecessaryandsufficient conditions for theexistence

of the common Hermitian solution to (1.4) for operators between Hilbert C∗-modules, and establish

an expression for this solution when the solvability conditions are met. To conclude this paper, we in

Section 4 propose some further research topics.

2. Preliminaries

Hilbert C∗-modules arose as generalizations of the notion Hilbert space. The basic idea was to

consider modules over C∗-algebras instead of linear spaces and to allow the inner product to take

values in a C∗-algebra. The structure was first used by Kaplansky [7] in 1952. For more details of

C∗-algebra and Hilbert C∗-modules, we refer the readers to [9,12].

Let A be a C∗-algebra. An inner-product A-module is a linear space E which is a right A-module

(with a scalar multiplication satisfying λ(xa) = x(λa) = (λx)a for x ∈ E, a ∈ A, λ ∈ C), together

with a map E × E → A, (x, y) → 〈x, y〉 such that

(1) 〈x,αy + βz〉 = α〈x, y〉 + β〈x, z〉;
(2) 〈x, ya〉 = 〈x, y〉a;
(3) 〈x, y〉 = 〈y, x〉∗;
(4) 〈x, x〉 � 0, and 〈x, x〉 = 0 ⇔ x = 0

for any x, y, z ∈ E, α,β ∈ C and a ∈ A. An inner-product A-module E is called a (right) Hilbert A-

module if it is complete with respect to the induced norm ‖x‖ = |〈x, x〉|1/2.
Assume that H and K are two Hilbert A-modules, and B(H,K) is the set of all maps T : H → K

for which there is a map T∗ : K → H such that 〈Tx, y〉 = 〈x, T∗y〉, for any x ∈ H and y ∈ K. We know
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that any element T of B(H,K) is a bounded linear operator. We call B(H,K) the set of adjointable

operators fromH intoK. In caseH = K,B(H,H)whichwe abbreviate toB(H), is a C∗-algebra andwe

use the notation IH to denote the identity operator on H. For any A ∈ B(H,K), the notation R(A) and
N (A) stand for the range of A and the null space of A, respectively. An operator A ∈ B(H) is Hermitian

(or self-adjoint) if A∗ = A. Let B(H)sa denote the set of all Hermitian elements of B(H).
Let H, K be two Hilbert A-modules, A ∈ B(H,K). The Moore–Penrose inverse A† of A (if it exists)

is defined as the unique element of B(K,H)which satisfies the following four Penrose equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For any A ∈ B(H,K), theMoore–Penrose inverse A† of A exists if and only if A has closed range [15].

In this case, A† exists uniquely and (A∗)† = (A†)∗. Moreover, both A†A and AA† are idempotent and

self-adjoint. For convenience, we use notations LA and RA to stand for IH − A†A and IK − AA† induced

by A, respectively. Obviously, LA and RA are also idempotent and self-adjoint and LA = RA∗ .
For any Hilbert C∗-modules H and K, put

H ⊕ K =
{(

h

k

)∣∣∣∣ , h ∈ H, k ∈ K
}
,

which is also a Hilbert C∗-module whose inner product is given by〈(
h1
k1

)
,

(
h2
k2

)〉
= 〈h1, h2〉 + 〈k1, k2〉

for hi ∈ H and ki ∈ K, i = 1, 2.

LetH1,H2, andH3 beHilbertA-modules, andA1 ∈ B(H1,H3),A2 ∈ B(H2,H3). ThenA = (A1, A2)∈ B(H1 ⊕ H2,H3) is the partitioned operator defined as

A

(
h1
h2

)
= A1h1 + A2h2 for hi ∈ Hi, i = 1, 2.

Similarly, one can define partitioned operators withmore blocks, such as A = (A1, A2, A3, A4) ∈ B(H1⊕ H2 ⊕ H3 ⊕ H4,H5) and a 4 × 4 partitioned operator A4×4 ∈ B(H1 ⊕ H2 ⊕ H3 ⊕ H4).

Lemma 2.1 [14]. Let A = (A1, A2) be a partitioned operator with A1 ∈ B(H1,H3), A2 ∈ B(H2,H3).
Suppose A1 has closed range, then A† exists if and only if (RA1A2)

† exists.

In addition, since R(A1A
†
1) ⊆ R(RA1A2)

⊥, where R(RA1A2)
⊥ is the orthogonal complement of

R(RA1A2), we have (RA1A2)
†(A1A

†
1) = 0, i.e.,

(RA1A2)
†RA1 = (RA1A2)

†. (2.1)

3. Common Hermitian solution to (1.4)

In this section, we give some solvability conditions for (1.4) to possess common Hermitian solution

and present an expression for this common Hermitian solution when the solvability conditions are

met. Throughout this section, H and Ki (i = 1, 2, 3, 4) are Hilbert A-modules. We have the following

main result of this paper.

Theorem 3.1. Let A1, C1 ∈ B(H,K1), B1, C2 ∈ B(K2,H), A3∈B(H,K3), A4 ∈ B(H,K4), C3 ∈ B(K3),
C4 ∈ B(K4). Suppose that A1, B1, A3, A4 and F, M, P, N have closed ranges, where F = B∗

1LA1 , M = SLF ,

P = (TLF)
∗, N = P∗LM and S = A3LA1 , T = A4LA1 . Let

D = C∗
2 − B∗

1A
†
1C1, J = A

†
1C1 + F†D, (3.1)

G = C3 − A3(J + LA1LF J
∗)A∗

3 , (3.2)

Q = C4 − A4[J + LA1LF J
∗ + M†G(M†)∗]A∗

4. (3.3)
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Then the following conditions are equivalent:
(1) Eqs. (1.4) have a solution X ∈ B(H)sa.
(2) C3 = C∗

3 , C4 = C∗
4 and

A1C2 = C1B1, A1C
∗
1 = C1A

∗
1 , B∗

1C2 = C∗
2B1, (3.4)

RA1C1 = 0, RFD = 0, (3.5)

RMG = 0, QLP = 0, RNQRN = 0. (3.6)

(3) C3 = C∗
3 , C4 = C∗

4 , the equalities in (3.4) hold and

R(C1) ⊆ R(A1), R
(
C1
C∗
2

)
⊆ R

(
A1

B∗
1

)
, (3.7)

R
⎛
⎝C1A

∗
3

C∗
2A

∗
3

C3

⎞
⎠ ⊆ R

⎛
⎝A1

B∗
1

A3

⎞
⎠ , (3.8)

R
⎛
⎝C1A

∗
4

C∗
2A

∗
4

C4

⎞
⎠ ⊆ R

⎛
⎝A1

B∗
1

A4

⎞
⎠ , (3.9)

R(φRψ) ⊆ R(ψ), (3.10)

where

ψ =
⎛
⎜⎜⎝
A1

B∗
1

A3

A4

⎞
⎟⎟⎠ , φ =

⎛
⎜⎜⎝

0 0 0 C1A
∗
4

0 0 0 C∗
2A

∗
4−A3C

∗
1 −A3C2 −C3 0

0 0 0 C4

⎞
⎟⎟⎠ . (3.11)

In this case, the general Hermitian solution to (1.4) can be expressed as

X = J + LA1LF J
∗ + M†G(M†)∗ + 1

2
[N†Q(RN + IK4

)P†

+(P†)∗(RN + IK4
)Q(N†)∗] + U + U∗, (3.12)

where

U = LA1LFLMVLFLA1 − N†NVPP† + 1

2
N†NVPNN†P† − 1

2
N†P∗V∗N∗P† (3.13)

and V ∈ B(H) is arbitrary.

Proof. (2) ⇒ (1): Note that A1LA1 = 0. Then A1F
∗ = 0, FM∗ = 0 and

LA1LF = (IH − A
†
1A1 − F†F) = LFLA1 ,

LA1LM = (IH − A
†
1A1 − M†M) = LMLA1 ,

LF LM = (IH − F†F − M†M) = LMLF .

Hence it follows from (2.1) that

(N∗)† = (
LMLFLA1A

∗
4

)† = (
LMLFLA1A

∗
4

)†
LM = (

LFLMLA1A
∗
4

)†
LM = (

LFLMLA1A
∗
4

)†
LFLM

= (
LA1LFLMA∗

4

)†
LFLM = (

LA1LFLMA∗
4

)†
LA1LFLM.

Therefore
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(N)† = LMLFLA1N
† = LA1LFLMN†.

Similarly,

F† = LA1F
†, M† = LFLA1M

† = LA1LFM
†, (P†)∗ = LFLA1(P

†)∗ = LA1LF(P
†)∗.

Accordingly

A1M
† = A1(P

†)∗ = A1N
† = B∗

1M
† = B∗

1(P
†)∗ = B∗

1N
† = 0, B∗

1F
† = FF†, (3.14)

A3M
† = MM†, A3N

† = 0, A4M
† = P∗M†, A4(P

†)∗ = P†P, A4N
† = NN†. (3.15)

Suppose (2) holds and X has the form of (3.12), where U can be expressed as (3.13). It follows from

(3.4) that

C1F
∗ = A1D

∗, C∗
2 F

∗ = B∗
1D

∗, DF∗ = FD∗. (3.16)

By (3.16),

JLF LA1 = (A
†
1C1 + F†D)(IH − A

†
1A1 − F†F)

= A
†
1C1 − A

†
1C1A

∗
1(A

†
1)

∗ − A
†
1C1F

∗(F†)∗ + F†D − F†DA∗
1(A

†
1)

∗ − F†DF∗(F†)∗

= J − A
†
1A1(A

†
1C1)

∗ − A
†
1A1(F

†D)∗ − F†F(A
†
1C1)

∗ − F†F(F†D)∗

= J − (A
†
1A1 + F†F)J∗

= J − J∗ + LA1LF J
∗, (3.17)

implying that J + LA1LF J
∗ is Hermitian. In view of C3 = C∗

3 , C4 = C∗
4 and the definition of G, Q in (3.2)

and (3.3), thenG = G∗ andQ = Q∗. Note the expression ofX in (3.12), thenX = X∗, i.e.,X is Hermitian.

By (3.1), (3.4), (3.5) and (3.14),

A1X = A1A
†
1C1 = C1, XB1 = (

B∗
1X

)∗ =
(
D + B∗

1A
†
1C1 − RFD

)∗ = C2.

Noting RMG = 0 yields

A3XA
∗
3 = A3[J + LA1LF J

∗ + M†G(M†)∗]A∗
3 = C3 − G + MM†G(M†)∗M∗ = C3

byMLM = 0, (3.2) and (3.15). It follows from R(N) ⊂ R(P∗), i.e., P†PN = N and QLP = 0, RNQRN = 0

that

1

2
[NN†Q(RN + IK4

)P†P + P†P(RN + IK4
)QNN†]

= 1

2
[(IK4

− RN)Q(RN + IK4
)P†P + P†P(RN + IK4

)Q(IK4
− RN)]

= 1

2
(QRNP

†P + Q − RNQ + P†PRNQ + Q − QRN) = Q .

In view of (3.3) and (3.15),

A4XA
∗
4 = A4[J + LA1LF J

∗ + M†G(M†)∗]A∗
4 + 1

2
[NN†Q(RN + IK4

)P†P + P†P(RN + IK4
)QNN†]

= C4 − Q + Q = C4.

(1) ⇒ (3): Let X0 ∈ B(H)sa be a Hermitian solution to (1.4). Then

A1C2 = A1X0B1 = C1B1, A1C
∗
1 = A1X0A

∗
1 = C1A

∗
1 , B∗

1C2 = B∗
1X0B1 = C∗

2B1,

and

A1X0 = C1,

(
A1

B∗
1

)
X0 =

(
C1
C∗
2

)
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yielding (3.7),⎛
⎝A1

B∗
1

A3

⎞
⎠ X0A

∗
3 =

⎛
⎝C1A

∗
3

C∗
2A

∗
3

C3

⎞
⎠ ,

⎛
⎝A1

B∗
1

A4

⎞
⎠ X0A

∗
4 =

⎛
⎝C1A

∗
4

C∗
2A

∗
4

C4

⎞
⎠

giving (3.8) and (3.9). It follows fromψQ + Pψ∗ = φ, where

P = (
0 0 −X∗

0A
∗
3 0

)∗
, Q = (

0 0 0 X0A
∗
4

)
thatψQRψ = φRψ . Therefore (3.10) holds.

(3) ⇒ (2): It is well known that if R(A) is closed, then R(A∗) is also closed. It follows from Lemma

2.1 and the fact LA = RA∗ that

R(N) is closed ⇔ R(N∗) is closed ⇔ (LMP)† exists ⇔ [
LF

(
S∗ T∗)]†

exists

⇔ [
LA1

(
B1 A∗

3 A∗
4

)]†
exists ⇔ (

A∗
1 B1 A∗

3 A∗
4

)†
exists ⇔ ψ † exists.

Similarly, let

ϕ =
⎛
⎝A1

B∗
1

A3

⎞
⎠ ∈ B(H,K1 ⊕ K2 ⊕ K3), η =

⎛
⎝A1

B∗
1

A4

⎞
⎠ ∈ B(H,K1 ⊕ K2 ⊕ K4),

ξ =
(
A1

B∗
1

)
∈ B(H,K1 ⊕ K2).

Then ϕ† ∈ B(K1 ⊕ K2 ⊕ K3,H), η† ∈ B(K1 ⊕ K2 ⊕ K4,H) and ξ † ∈ B(K1 ⊕ K2,H) exist.
Suppose (3.7)–(3.10) hold. It follows from the well known fact

R(B) ⊆ R(A) ⇐⇒ AA†B = B (3.18)

that RA1C1 = 0,

Rϕ

⎛
⎝C1A

∗
3

C∗
2A

∗
3

C3

⎞
⎠ = 0, Rη

⎛
⎝C1A

∗
4

C∗
2A

∗
4

C4

⎞
⎠ = 0, Rξ

(
C1
C∗
2

)
= 0 (3.19)

and

RψφLψ∗ = RψφRψ = 0. (3.20)

Suppose ϕ† = (
K1 K2 K3

)
. Then

Rϕ = IK1⊕K2⊕K3
− ϕϕ† =

⎛
⎝IK1

− A1K1 −A1K2 −A1K3−B∗
1K1 IK2

− B∗
1K2 −B∗

1K3−A3K1 −A3K2 IK3
− A3K3

⎞
⎠ .

Substituting Rϕ above into the first equality in (3.19) gives

A1K1C1A
∗
3 + A1K2C

∗
2A

∗
3 + A1K3C3 = C1A

∗
3 , (3.21)

B∗
1K1C1A

∗
3 + B∗

1K2C
∗
2A

∗
3 + B∗

1K3C3 = C∗
2A

∗
3 , (3.22)

A3K1C1A
∗
3 + A3K2C

∗
2A

∗
3 + A3K3C3 = C3. (3.23)

Multiplying (3.21) by (−B∗
1A

†
1), (−A3A

†
1) from left side and adding them to (3.22), (3.23), respectively,

we have

FK1C1A
∗
3 + FK2C

∗
2A

∗
3 + FK3C3 = DA∗

3 , (3.24)

SK1C1A
∗
3 + SK2C

∗
2A

∗
3 + SK3C3 = C3 − A3A

†
1C1A

∗
3. (3.25)
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Multiplying (3.24) by (−SF†) from left side and adding it to (3.25) yields

MK1C1A
∗
3 + MK2C

∗
2A

∗
3 + MK3C3 = C3 − A3A

†
1C1A

∗
3 − SF†DA∗

3. (3.26)

Note RMM = 0 and (3.2). Multiplying (3.26) by RM from left side gives RMG = 0.

Similarly, one can easily show that QLP = 0 and RFD = 0 by the second equality and the third

equality in (3.19), respectively.

Now we want to show that RNQRN = 0. Assume that

ψ † = (
K4 K5 K6 K7

) ∈ B(K1 ⊕ K2 ⊕ K3 ⊕ K4,H).
Then

Rψ = IK1⊕K2⊕K3⊕K4
− ψψ †

=
⎛
⎜⎜⎝
IK1

− A1K4 −A1K5 −A1K6 −A1K7−B∗
1K4 IK2

− B∗
1K5 −B∗

1K6 −B∗
1K7−A3K4 −A3K5 IK3

− A3K6 −A3K7−A4K4 −A4K5 −A4K6 IK4
− A4K7

⎞
⎟⎟⎠ ,

Lψ∗ = IK1⊕K2⊕K3⊕K4
− (ψ∗)†ψ∗

=
⎛
⎜⎜⎝
IK1

− K∗
4 A

∗
1 −K∗

4 B1 −K∗
4 A

∗
3 −K∗

4 A
∗
4−K∗

5 A
∗
1 IK2

− K∗
5 B1 −K∗

5 A
∗
3 −K∗

5 A
∗
4−K∗

6 A
∗
1 −K∗

6 B1 IK3
− K∗

6 A
∗
3 −K∗

6 A
∗
4−K∗

7 A
∗
1 −K∗

7 B1 −K∗
7 A

∗
3 IK4

− K∗
7 A

∗
4

⎞
⎟⎟⎠ .

Substituting Rψ and Lψ∗ above into (3.20) yields

A1K6H1 − [(IK1
− A1K4)C1A

∗
4 − A1K5C

∗
2A

∗
4 − A1K7C4]K∗

7 A
∗
1 = 0, (3.27)

B∗
1K6H1 − [

(IK2
− B∗

1K5)C
∗
2A

∗
4 − B∗

1K4C1A
∗
4 − B∗

1K7C4
]
K∗
7 A

∗
1 = 0, (3.28)

(A3K6 − IK3
)H1 + (A3K4C1A

∗
4 + A3K5C

∗
2A

∗
4 + A3K7C4)K

∗
7 A

∗
1 = 0, (3.29)

A4K6H1 − [
(IK4

− A4K7)C4 − A4K4C1A
∗
4 − A4K5C

∗
2A

∗
4

]
K∗
7 A

∗
1 = 0, (3.30)

and

A1K6H2 − [
(IK1

− A1K4)C1A
∗
4 − A1K5C

∗
2A

∗
4 − A1K7C4

]
K∗
7 B1 = 0,

B∗
1K6H2 − [

(IK2
− B∗

1K5)C
∗
2A

∗
4 − B∗

1K4C1A
∗
4 − B∗

1K7C4
]
K∗
7 B1 = 0,

(A3K6 − IK3
)H2 + (

A3K4C1A
∗
4 + A3K5C

∗
2A

∗
4 + A3K7C4

)
K∗
7 B1 = 0,

A4K6H2 − [
(IK4

− A4K7)C4 − A4K4C1A
∗
4 − A4K5C

∗
2A

∗
4

]
K∗
7 B1 = 0,

(3.31)

A1K6H3 − [
(IK1

− A1K4)C1A
∗
4 − A1K5C

∗
2A

∗
4 − A1K7C4

]
K∗
7 A

∗
3 = 0,

B∗
1K6H3 − [

(IK2
− B∗

1K5)C
∗
2A

∗
4 − B∗

1K4C1A
∗
4 − B∗

1K7C4
]
K∗
7 A

∗
3 = 0,

(A3K6 − IK3
)H3 + (

A3K4C1A
∗
4 + A3K5C

∗
2A

∗
4 + A3K7C4

)
K∗
7 A

∗
3 = 0,

A4K6H3 − [
(IK4

− A4K7)C4 − A4K4C1A
∗
4 − A4K5C

∗
2A

∗
4

]
K∗
7 A

∗
3 = 0,

(3.32)

A1K6H4 − [
(IK1

− A1K4)C1A
∗
4 − A1K5C

∗
2A

∗
4 − A1K7C4

]
(K∗

7 A
∗
4 − IK4

) = 0,

B∗
1K6H4 − [

(IK2
− B∗

1K5)C
∗
2A

∗
4 − B∗

1K4C1A
∗
4 − B∗

1K7C4
]
(K∗

7 A
∗
4 − IK4

) = 0,

(A3K6 − IK3
)H4 + (

A3K4C1A
∗
4 + A3K5C

∗
2A

∗
4 + A3K7C4

) (
K∗
7 A

∗
4 − IK4

) = 0,

A4K6H4 − [
(IK4

− A4K7)C4 − A4K4C1A
∗
4 − A4K5C

∗
2A

∗
4

] (
K∗
7 A

∗
4 − IK4

) = 0,

(3.33)

where

H1 = A3C
∗
1 (IK1

− K∗
4 A

∗
1)− A3C2K

∗
5 A

∗
1 − C3K

∗
6 A

∗
1 ,

H2 = A3C
∗
1 (−K∗

4 B1)+ A3C2(IK2
− K∗

5 B1)− C3K
∗
6 B1,

H3 = A3C
∗
1 (−K∗

4 A
∗
3)− A3C2K

∗
5 A

∗
3 + C3(IK3

− K∗
6 A

∗
3),

H4 = −A3C
∗
1K

∗
4 A

∗
4 − A3C2K

∗
5 A

∗
4 − C3K

∗
6 A

∗
4.
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Multiplying (3.27) by (−B∗
1A

†
1), (−A3A

†
1), (−A4A

†
1) from left side and adding them to (3.28)–(3.30),

respectively, we can get

FK6H1 + [−DA∗
4 + FK4C1A

∗
4 + FK5C

∗
2A

∗
4 + FK7C4]K∗

7 A
∗
1 = 0,

(SK6 − IK3
)H1 + [A3A

†
1C1A

∗
4 + SK4C1A

∗
4 + SK5C

∗
2A

∗
4 + SK7C4]K∗

7 A
∗
1 = 0,

TK6H1 + [A4A
†
1C1A

∗
4 − C4 + TK4C1A

∗
4 + TK5C

∗
2A

∗
4 + TK7C4]K∗

7 A
∗
1 = 0.

(3.34)

Similarly, the equalities in (3.31)–(3.33) gives

FK6H2 + (−DA∗
4 + FK4C1A

∗
4 + FK5C

∗
2A

∗
4 + FK7C4)K

∗
7 B1 = 0,

(SK6 − IK3
)H2 + (A3A

†
1C1A

∗
4 + SK4C1A

∗
4 + SK5C

∗
2A

∗
4 + SK7C4)K

∗
7 B1 = 0,

TK6H2 + (A4A
†
1C1A

∗
4 − C4 + TK4C1A

∗
4 + TK5C

∗
2A

∗
4 + TK7C4)K

∗
7 B1 = 0,

(3.35)

FK6H3 + (−DA∗
4 + FK4C1A

∗
4 + FK5C

∗
2A

∗
4 + FK7C4)K

∗
7 A

∗
3 = 0,

(SK6 − IK3
)H3 + (A3A

†
1C1A

∗
4 + SK4C1A

∗
4 + SK5C

∗
2A

∗
4 + SK7C4)K

∗
7 A

∗
3 = 0,

TK6H3 + (A4A
†
1C1A

∗
4 − C4 + TK4C1A

∗
4 + TK5C

∗
2A

∗
4 + TK7C4)K

∗
7 A

∗
3 = 0,

(3.36)

and

FK6H4 + (−DA∗
4 + FK4C1A

∗
4 + FK5C

∗
2A

∗
4 + FK7C4)(K

∗
7 A

∗
4 − IK4

) = 0,

(SK6 − IK3
)H4 + (A3A

†
1C1A

∗
4 + SK4C1A

∗
4 + SK5C

∗
2A

∗
4 + SK7C4)(K

∗
7 A

∗
4 − IK4

) = 0,

TK6H4 + (A4A
†
1C1A

∗
4 − C4 + TK4C1A

∗
4 + TK5C

∗
2A

∗
4 + TK7C4)(K

∗
7 A

∗
4 − IK4

) = 0.

(3.37)

Multiplying the first equality in (3.34) by −(A†
1)

∗B1, −(A†
1)

∗A∗
3, −(A†

1)
∗A∗

4 from right side and adding

them to the first equality in (3.35)–(3.37), respectively, we have

FK6(A3D
∗ − A3C

∗
1K

∗
4 F

∗ − A3C2K
∗
5 F

∗ − C3K
∗
6 F

∗)+ H5K
∗
7 F

∗ = 0,

FK6[C3 − A3(A
†
1C1)

∗A∗
3 − A3C

∗
1K

∗
4 S

∗ − A3C2K
∗
5 S

∗ − C3K
∗
6 S

∗] + H5K
∗
7 S

∗ = 0,

FK6[−A3(A
†
1C1)

∗A∗
4 − A3C

∗
1K

∗
4 T

∗ − A3C2K
∗
5 T

∗ − C3K
∗
6 T

∗] + H5(K
∗
7 T

∗ − IK4
) = 0,

(3.38)

where

H5 = −DA∗
4 + FK4C1A

∗
4 + FK5C

∗
2A

∗
4 + FK7C4.

Likewise, it follows from the second equality in (3.34)–(3.37) and the third equality in (3.34)–(3.37)

that

(SK6 − IK3
)(A3D

∗ − A3C
∗
1K

∗
4 F

∗ − A3C2K
∗
5 F

∗ − C3K
∗
6 F

∗)+ H6K
∗
7 F

∗ = 0,

(SK6 − IK3
)[C3 − A3(A

†
1C1)

∗A∗
3 − A3C

∗
1K

∗
4 S

∗ − A3C2K
∗
5 S

∗ − C3K
∗
6 S

∗] + H6K
∗
7 S

∗ = 0,

(SK6 − IK3
)[−A3(A

†
1C1)

∗A∗
4 − A3C

∗
1K

∗
4 T

∗ − A3C2K
∗
5 T

∗ − C3K
∗
6 T

∗] + H6(K
∗
7 T

∗ − IK4
) = 0

(3.39)

and

TK6(A3D
∗ − A3C

∗
1K

∗
4 F

∗ − A3C2K
∗
5 F

∗ − C3K
∗
6 F

∗)+ H7K
∗
7 F

∗ = 0,

TK6[C3 − A3(A
†
1C1)

∗A∗
3 − A3C

∗
1K

∗
4 S

∗ − A3C2K
∗
5 S

∗ − C3K
∗
6 S

∗] + H7K
∗
7 S

∗ = 0,

TK6[−A3(A
†
1C1)

∗A∗
4 − A3C

∗
1K

∗
4 T

∗ − A3C2K
∗
5 T

∗ − C3K
∗
6 T

∗] + H7(K
∗
7 T

∗ − IK4
) = 0,

(3.40)

where

H6 = A3A
†
1C1A

∗
4 + SK4C1A

∗
4 + SK5C

∗
2A

∗
4 + SK7C4,

H7 = A4A
†
1C1A

∗
4 − C4 + TK4C1A

∗
4 + TK5C

∗
2A

∗
4 + TK5C4.

Let

H8 = A3D
∗ − A3C

∗
1K

∗
4 F

∗ − A3C2K
∗
5 F

∗ − C3K
∗
6 F

∗.
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Then multiplying the first equality in (3.38) by −SF†, −TF† from left side and adding them to the first

equality in (3.39) and (3.40), respectively, we obtain

(MK6 − IK3
)H8 + (A3JA

∗
4 + MK4C1A

∗
4 + MK5C

∗
2A

∗
4 + MK7C4)K

∗
7 F

∗ = 0,

P∗K6H8 + (A4JA
∗
4 − C4 + P∗K4C1A

∗
4 + P∗K5C

∗
2A

∗
4 + P∗K7C4)K

∗
7 F

∗ = 0.
(3.41)

In the same way, from the second equality in (3.38)–(3.40) and the third equality in (3.38)–(3.40), we

derive

(MK6 − IK3
)H9 + (A3JA

∗
4 + MK4C1A

∗
4 + MK5C

∗
2A

∗
4 + MK7C4)K

∗
7 S

∗ = 0,

P∗K6H9 + (A4JA
∗
4 − C4 + P∗K4C1A

∗
4 + P∗K5C

∗
2A

∗
4 + P∗K7C4)K

∗
7 S

∗ = 0
(3.42)

and

(MK6 − IK3
)H10 + (A3JA

∗
4 + MK4C1A

∗
4 + MK5C

∗
2A

∗
4 + MK7C4)(K

∗
7 T

∗ − IK4
) = 0,

P∗K6H10 + (A4JA
∗
4 − C4 + P∗K4C1A

∗
4 + P∗K5C

∗
2A

∗
4 + P∗K7C4)(K

∗
7 T

∗ − IK4
) = 0,

(3.43)

where

H9 = C3 − A3(A
†
1C1)

∗A∗
3 − A3C

∗
1K

∗
4 S

∗ − A3C2K
∗
5 S

∗ − C3K
∗
6 S

∗,
H10 = −A3(A

†
1C1)

∗A∗
4 − A3C

∗
1K

∗
4 T

∗ − A3C2K
∗
5 T

∗ − C3K
∗
6 T

∗.

Then multiplying the first equality in (3.41) by −(F†)∗S∗, −(F†)∗T∗ from right side and adding them

to the first equality in (3.42) and (3.43), respectively, we have

(MK6 − IK3
)(C3 − A3J

∗A∗
3 − A3C

∗
1K

∗
4M

∗ − A3C2K
∗
5M

∗ − C3K
∗
6M

∗)+ H11K
∗
7M

∗ = 0, (3.44)

(MK6 − IK3
)(−A3J

∗A∗
4 − A3C

∗
1K

∗
4 P − A3C2K

∗
5 P − C3K

∗
6 P)+ H11(K

∗
7 P − IK4

) = 0, (3.45)

where

H11 = A3JA
∗
4 + MK4C1A

∗
4 + MK5C

∗
2A

∗
4 + MK7C4.

Similarly, it follows from the second equality in (3.41)–(3.43) that

P∗K6(C3 − A3J
∗A∗

3 − A3C
∗
1K

∗
4M

∗ − A3C2K
∗
5M

∗ − C3K
∗
6M

∗)+ H12K
∗
7M

∗ = 0, (3.46)

P∗K6(−A3J
∗A∗

4 − A3C
∗
1K

∗
4 P − A3C2K

∗
5 P − C3K

∗
6 P)+ H12(K

∗
7 P − IK4

) = 0, (3.47)

where

H12 = A4JA
∗
4 − C4 + P∗K4C1A

∗
4 + P∗K5C

∗
2A

∗
4 + P∗K7C4.

Multiplying (3.44), (3.45) by −P∗M† from left side and adding them to (3.46) and (3.47), respectively,

we can get

(NK6 + P∗M†)(C3 − A3J
∗A∗

3 − A3C
∗
1K

∗
4M

∗ − A3C2K
∗
5M

∗ − C3K
∗
6M

∗)
+ (A4JA

∗
4 − C4 − P∗M†A3JA

∗
4 + NK4C1A

∗
4 + NK5C

∗
2A

∗
4 + NK7C4)K

∗
7M

∗ = 0, (3.48)

(NK6 + P∗M†)(−A3J
∗A∗

4 − A3C
∗
1K

∗
4 P − A3C2K

∗
5 P − C3K

∗
6 P)

+ (A4JA
∗
4 − C4 − P∗M†A3JA

∗
4 + NK4C1A

∗
4 + NK5C

∗
2A

∗
4 + NK7C4)(K

∗
7 P − IK4

) = 0. (3.49)

Multiplying (3.48) by −(M†)∗P from right side and adding it to (3.49) gives

(NK6 + P∗M†)[−A3J
∗A∗

4 − (C3 − A3J
∗A∗

3)(M
†)∗P − A3C

∗
1K

∗
4N

∗ − A3C2K
∗
5N

∗ − C3K
∗
6N

∗]
+ [A4JA

∗
4 − C4 − P∗M†A3JA

∗
4 + NK4C1A

∗
4 + NK5C

∗
2A

∗
4 + NK7C4](K∗

7N
∗ − IK4

) = 0. (3.50)

Note RNN = 0, then multiplying (3.50) by RN from two sides yields

RN[C4 − A4JA
∗
4 + P∗M†A3(J − J∗)A∗

4 − P∗M†(C3 − A3J
∗A∗

3)(M
†)∗P]RN = 0. (3.51)
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In view of (3.2), (3.17) and M†MPRN = PRN ,

−RNP
∗M†(C3 − A3J

∗A∗
3)(M

†)∗PRN
= −RNP

∗M†[G + A3(J + LA1LF J
∗ − J∗)A∗

3](M†)∗PRN
= −RNP

∗M†[G(M†)∗P + A3JM
†MP]RN

= −RNP
∗M†[G(M†)∗P + A3JP]RN

= −RNP
∗M†[G(M†)∗P + A3JLF LA1A

∗
4]RN

= −RNP
∗M†[G(M†)∗P + A3(J − J∗)A∗

4 + MJ∗A∗
4]RN

= −RNP
∗M†[G(M†)∗P + A3(J − J∗)A∗

4]RN − RNP
∗J∗A∗

4RN . (3.52)

Substituting (3.52) into (3.51) gives

RN[C4 − A4JA
∗
4 − P∗M†G(M†)∗P − P∗J∗A∗

4]RN = 0,

implying RNQRN = 0 by P∗M† = A4M
†.

Nowwe show that if Eqs. (1.4) have a common Hermitian solution, i.e., the equalities in (3.4)–(3.6)

hold, then its general Hermitian solution can be expressed by (3.12), where U can be expressed as

(3.13).

Assume X0 ∈ B(H)sa is any Hermitian solution to (1.4). Then

LA1LFX0LFLA1 = (IH − A
†
1A1 − F†F)X0LFLA1 = (X0 − J)LFLA1

= X0(IH − A
†
1A1 − F†F)− J + J∗ − LA1LF J

∗

= X0 − J − LA1LF J
∗. (3.53)

Put V = 1
2
(X0 + X0M

†M). In view of (3.2) and (3.53),

LA1LFLMVLFLA1 + LA1LFV
∗LMLFLA1

= 1

2
LA1LF [LM(X0 + X0M

†M)+ (X0 + M†MX0)LM]LFLA1
= LA1LF [X0 − M†MX0M

†M)]LFLA1
= X0 − J − LA1LF J

∗ − M†A3(X0 − J − LA1LF J
∗)A∗

3(M
†)∗

= X0 − J − LA1LF J
∗ − M†G(M†)∗

and

NVP + P∗V∗N∗ = A4(LA1LFLMVLFLA1 + LA1LFV
∗LMLFLA1)A

∗
4

= C4 − A4(J + LA1LF J
∗ + M†G(M†)∗)A∗

4 = Q .

In this case,

−N†NVPP† + 1

2
N†NVPNN†P† − 1

2
N†P∗V∗N∗P†

= −1

2
N†NVPP† − 1

2
N†NVPRNP

† − 1

2
N†P∗V∗N∗P†

= −1

2
N†QP† − 1

2
N†(Q − P∗V∗N∗)RNP† = −1

2
N†Q(RN + IK4

)P†

and



Q.-W. Wang, Z.-C. Wu / Linear Algebra and its Applications 432 (2010) 3159–3171 3169

U + U∗ = X0 − J − LA1LF J
∗ − M†G(M†)∗ − 1

2
[N†Q(RN + IK4

)P† + (P†)∗(RN + IK4
)Q(N†)∗].

Then X0 can be expressed as

X0 = J + LA1LF J
∗ + M†G(M†)∗ + 1

2
[N†Q(RN + IK4

)P† + (P†)∗(RN + IK4
)Q(N†)∗] + U + U∗.

This expression implies that (3.13),whereU canbeexpressedas (3.12), is thegeneralHermitian solution

to (1.4). �

Now we consider some special cases of Theorem 3.1.

Corollary 3.2. Let A1, C1, B1, C2, A3, C3 and F, D, M, J, G be as in Theorem 3.1. Suppose that A1, B1, A3

and F, M have closed ranges. Then the following conditions are equivalent:
(1) Equations

A1X = C1, XB1 = C2, A3XA
∗
3 = C3 (3.54)

have a solution X ∈ B(H)sa.
(2) C3 = C∗

3 , the equalities in (3.4), (3.5) and the first equality of (3.6) hold.
(3) C3 = C∗

3 , the equalities in (3.4), (3.7) and (3.8) hold.
In this case, the general Hermitian solution to (3.54) can be expressed as

X = J + LA1LF J
∗ + LA1LFM

†G(M†)∗LFLA1 + LA1LFLMVLFLA1 + LA1LFV
∗LMLFLA1 ,

where V ∈ B(H) is arbitrary.

Corollary 3.3. Let A3, C3, A4, C4 be as in Theorem 3.1 and A3, A4 and N have closed ranges, where N =
A4LA3 . Put

Q = C4 − A4A
†
3C3(A

†
3)

∗A∗
4.

Then the following conditions are equivalent:
(1) Eqs. (1.3) have a solution X ∈ B(H)sa.
(2) C3 = C∗

3 , C4 = C∗
4 and

RA3C3 = 0, RA4C4 = 0, RNQRN = 0.

(3) C3 = C∗
3 , C4 = C∗

4 and

R(C3) ⊆ R(A3), R(C4) ⊆ R(A4), R(φRψ) ⊆ R(ψ),
where

ψ =
(
A3

A4

)
, φ =

(−C3 0

0 C4

)
.

In this case, the general Hermitian solution to (1.3) can be expressed as

X = A
†
3C3(A

†
3)

∗ + 1

2
[N†Q(RN + IK4

)(A∗
4)

† + A
†
4(RN + IK4

)Q(N†)∗] + U + U∗,

where

U = LA3V − N†NVA
†
4A4 + 1

2
N†NVA∗

4NN
†(A∗

4)
† − 1

2
N†A4V

∗N∗(A∗
4)

†

and V ∈ B(H) is arbitrary.

Remark 3.1. The finite-dimensional case of the above corollary was considered in [11,1] by rank and

the singular-value decomposition, respectively.
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Corollary 3.4. Let A1, C1, B1, C2, F , D, J be as in Theorem 3.1. Suppose that A1, B1 and F have closed

ranges. Then the following conditions are equivalent:
(1) Eqs. (1.1) have a solution X ∈ B(H)sa.
(2) The equalities in (3.4) and (3.5) hold.
(3) The equalities in (3.4) and (3.7) hold.

In this case, the general Hermitian solution to (1.1) can be expressed as

X = J + LA1LF J
∗ + LA1LFYLFLA1 , (3.55)

where Y ∈ B(H)sa is arbitrary.

Remark 3.2. Corollary 3.4 is one of the main results of [4,13].

Remark 3.3. For matrices, we revisit Khatri and Mitra’s solvable conditions for the existence of the

common Hermitian solution to (1.1) over C in [8]. The following counterexample shows that these

conditions given in [8] are not sufficient for the existence of a common Hermitian solution to (1.1).

Take, for example,

A1 = (
1 1

)
, C1 = (

1 − i 1 + i
)
, B1 =

(
i

i

)
, C2 =

(
i

i

)
.

Then it is easy to verify that the conditions in [8] are all satisfied, and
(
1 0
0 0

)
is one of the inner

inverses of

(
A1
B∗
1

)
. According to the expression for the Hermitian solution to (1.1), given in [8], we have

that

X =
(

0 1 + i

1 − i 0

)
+

(
0 −1

0 1

)
U

(
0 0

−1 1

)
,

where U is an arbitrary Hermitian matrix with suitable size. However,

XB1 =
(
i − 1

i + 1

)
/= C2.

The correction is as follows. Eqs. (1.1) have a common Hermitian solution if and only if (3.4) and (3.5)

hold.

Remark 3.4. For matrices, we revisit the expression for general symmetric solution to (1.1)

X = A
†
1C1 + LA1(A

†
1C1)

∗ + F†DLA1 + LFLA1(F
†D)∗ + LFXLF

in [16]. By simply computing, we can show that the solvable conditions for (1.1) to have a symmetric

solution in [16] are equivalent to (3.4) and (3.5). However, under the conditions (3.4) and (3.5),

XB1 = C2 + LFXLFB1 /= C2.

The correct version of the general symmetric solution should be

X = A
†
1C1 + LA1(A

†
1C1)

∗ + F†DLA1 + LFLA1(F
†D)∗ + LA1LFXLFLA1 .

By (3.16), the expression mentioned above is the same as (3.55).

4. Conclusion

In this paper, we derive necessary and sufficient conditions for the existence of the commonHermi-

tian solution to (1.4) for Hilbert C∗-modules operators, and give an expression for the general common

Hermitian solution to (1.4) when the solvability conditions are satisfied. Some corresponding results

on special cases are also given. Some known results can be viewed as special cases of this paper.
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It is worthy to say that the approach and results in this paper are also true to the bounded operators

between quaternionic Hilbert spaces, which plays an important role in certain physical problems (see,

for example [5]).

Motivated by thework in this paper, it would be of interest to investigate the common nonnegative

and positive solutions to equations (1.4) for Hilbert C∗-modules operators. Moreover, two challenging

tasks are to derive the extremal ranks and inertias of the common general Hermitian solution to (1.4)

in matrix equation version.

Acknowledgments

The authors would like to thank Professor X.Z. Zhan, the anonymous referees for their valuable

suggestions that improved the exposition of this paper. The first author also thanks Professor Chaoping

Xing for his great helps and valuable discussions.

References

[1] X.W. Chang, J. Wang, The symmetric solutions of the matrix equations AX + YA = C, AXAT + BYBT = C and

(ATXA, BTXB) = (C, D),Linear Algebra Appl. 179 (1993) 171–189.
[2] H. Dai, Linear matrix equation from an inverse problem of vibration theory, Linear Algebra Appl. 246 (1996) 31–47.
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