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Summary

Objective: Osteoarthritis (OA) is the most common form of degenerative joint diseases and a major cause of disability and impaired quality of
life in the elderly. Recent observations suggest that calcitonin may act on both osteoclasts and chondrocytes. The present review was sought
to summarize emerging observations from the molecular level to the preliminary clinical findings of possible chondroprotective effects of
calcitonin.

Method: This review summarizes peer-reviewed articles found using pre-defined search criteria and published in the PubMed database before
January 2006. In addition, abstracts from the OsteoArthritis Research Society International (OARSI) conferences in the time period
2000e2005 have been included in the search.

Results: Ample evidence for the effect of calcitonin on bone resorption was found. Support for direct effects of calcitonin on chondrocytes on
matrix synthesis and inhibition of cartilage degradation have been published. In addition, clinical evidence for the effect of calcitonin on car-
tilage degradation is emerging.

Conclusion: Several independent lines of evidence suggest a direct chondroprotective effect of calcitonin in addition to the well-established
effect on bone resorption. Given the currently limited availability of chondroprotective agents, much expectation regards the ongoing clinical
assessment of calcitonin therapy for the prevention and treatment of OA.
ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis1.
The hallmark of the disease is progressive degeneration
of articular cartilage. Currently management of OA is symp-
tomatic and targets the alleviation of pain and joint function.
There are presently no uniformly accepted treatments that
are considered to alter the course of OA.

Experimental and clinical observations suggest that the
structural integrity of articular cartilage is dependent on nor-
mal subchondral bone turnover, intact chondrocyte function
and ordinary biomechanical stresses2,3. Because there is
a strong inter-relationship between the subchondral bone
and the articular cartilage, an ideal therapeutic agent, in
the face of normal biomechanical stresses, might logically
be directed at regulating the metabolic activity of both
bone and cartilage.

The key components of articular cartilage are type II
collagen and aggrecan, which together constitute 90%
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of the dry weight of healthy cartilage4. Therefore, drug
development strategies have focused on inhibition of the
enzymes responsible for the degradation of these extra
cellular matrix (ECM) molecules, such as the matrix met-
alloproteinases (MMPs)5. This paper reviews the potential
physiological and pharmaceutical role of calcitonin in
modifying the cartilage structure. This role of calcitonin
in cartilage pathologies has only recently been introduced
in the scientific literature, but since then a great amount
of data has been published which justifies the importance
of a new review to supplement what has been published
earlier6,7.

Methods

DATA SEARCH

The present review summarizes peer-reviewed publica-
tions found on PubMed without time limitations, searched
until January 2006. In addition, abstracts from the OsteoAr-
thritis Research Society International (OARSI) conferences
in the time period 2000e2005 have been included in the
search. The search topics were calcitonin, clinical trial,
osteoclast, chondrocyte, articular cartilage, review, cartilage
and pain. All combinations were used.
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Results

CALCITONIN AND THE CALCITONIN RECEPTOR

Calcitonin is an established anti-resorptive agent that has
long been used for the treatment of osteoporosis8. Endoge-
nously, calcitonin is produced by the parafollicular cells
(C-cells)9e11 in the thyroid gland. The calcitonin receptor
(CTR) belongs to the B family of the G-coupled proteins
receptors, also known as metabotropic receptors or seven
transmembrane (7TM) receptors12e15. CTRs have been
found in cells of many tissues and organs such as bone
(osteoclasts), kidney, brain, lung, placenta, stomach, mam-
mary gland, ovary, bone marrow and lymphocytes12,14e17.
Studies have shown that binding of calcitonin to the CTR
activates the adenylate cyclase/cAMP/protein kinase A
(PKA) pathway and the Phospholipase C (PLC) pathway14.
Additionally, studies have demonstrated activation of tyro-
sin phosphorylation, which serves to transduce downstream
effectors such as mitogen activated protein kinase’s
(MAPK’s) 44/42 activation18 and activation of the Phospho-
lipase D12e14.

Most studies have focused on the function of the CTR in
osteoclasts. The effect of calcitonin on chondrocytes and
cartilage metabolism is less investigated.

IN VITRO EVIDENCE: CTR EXPRESSION AND SIGNALING

Recently it was demonstrated, that the CTR was
expressed in articular chondrocytes at both the protein
and mRNA level19. Further corroborating these interesting
findings, exposure of chondrocytes to calcitonin, resulted
in significant increased amounts of intracellular secondary
messenger cAMP, which substantiated that chondrocytes
have functional CTRs19,20. Although these findings support
the concept of direct calcitonin-related effects on chondro-
cytes, the precise signal transduction pathways by which
calcitonin exerts its effects need further investigation. In
this context, investigations should target pathways involving
members of the MAPK pathway, such as p38, p44/42,
which previously have been proven important for calcitonin
signaling in other cell-types18.

IN VITRO EVIDENCE: CARTILAGE FORMATION

Serum levels of calcitonin are highest in newborn individ-
uals and remain elevated during the first years of life21,22.
High levels of calcitonin accompany the elongation of long
bones, which grow via endochondral bone formation, and
thus depend on proliferation, differentiation and maturation
of chondrocytes. The peak of serum calcitonin coinciding
high cartilage turnover is of particular interest when consid-
ering potential effects of calcitonin on mature cartilage
metabolism. The notion is further nurtured by the findings
of Khaldi et al. who recently demonstrated that salmon
calcitonin (sCT) treatment of young growing rats e that have
large amounts of growth plate chondrocytes e stimulated
bone elongation23.

Experimental evidence for a direct effect of calcitonin is
predominantly obtained from cartilage experiments with
chondrocytes or explants isolated from growth plate chon-
drocytes, distal femoral epiphyses rudiments, endochondral
cartilage growth and hypertrophic chondrocytes24e29. Calci-
tonin had a direct effect on sulfate incorporation in lapine
articular explants that was greater in OA cartilage than
normal30. These experiments24,25,29 demonstrated that
calcitonin stimulates cartilage formation and maturation,
further corroborating the effects of calcitonin during endo-
chondral bone growth.

However, there are large differences between features of
hypertrophic growth plate chondrocytes and articular
chondrocytes. Nevertheless, studies by Franchimont et al.
demonstrated that calcitonin dose-dependently stimulates
proteoglycan synthesis and cellular proliferation in vitro, in
isolated articular chondrocytes31.

Even though these experiments eluted to a possible chon-
droanabolic action of calcitonin, a direct effect on intact artic-
ular chondrocytes has just recently been demonstrated in
ex vivo cultures of articular cartilage explants19. In this more
in vivo like biological model, calcitonin was shown to stimu-
late proteoglycan and collagen type II synthesis as estimated
by incorporation of radioactive 35S and 3H proline, respec-
tively. These findings are in alignment with the interesting
findings of Malemud et al.32, who demonstrated that small mol-
ecule modulators of cAMP, Forskolin or phosphodiesterase
(PDE) inhibitors (IBMX), resulted in increased cAMP levels in
chondrocytes, which was accompanied by an increase in pro-
teoglycan synthesis, i.e. marked induction of aggrecan mRNA
transcription. Thus, it seems reasonable to anticipate that calci-
tonin stimulates cAMP generation in chondrocytes, which in
turn may result in increased synthesis of matrix molecules.

Taken together, these data suggest that calcitonin exerts
important stimulatory effects during endochondral bone for-
mation as well as for the maintenance of the homeostasis of
mature articular chondrocytes.

IN VITRO EVIDENCE: INHIBITION OF CARTILAGE

DEGRADATION

The effect of calcitonin on the catabolic activity of chon-
drocytes has received modest attention. The plausibility of
direct actions of calcitonin on cartilage is supported by
preliminary studies on isolated chondrocytes. In this experi-
mental setting, calcitonin was shown to attenuate non-
identified collagenase activity targeting collagen type II33.
The authors speculated that this attenuation might be the
result of countered tumor necrosis factor-a (TNF-a) signaling,
yet the biochemical rationale for this has not been clarified.

Articular cartilage explants cultured in the presence of the
catalytic cytokines, Oncostatin M (OSM) and TNF-a, were
shown to be a useful ex vivo model of cartilage degrada-
tion27,34 and allow assessment of direct effects of candidate
drugs on cartilage degradation. Compared to cultures of
isolated chondrocytes, this ex vivo model offers the advan-
tage that organic links between chondrocytes and the sur-
rounding ECM are preserved. The implications of the
structural integrity of the ECM for functionality are empha-
sized by reports showing that certain cellular responses
can no longer be elicited when cells lose their organic links
to the matrix35e38. Thereby, the ex vivo articular cartilage
explants model offers high in vivo likeness, and is the
only experimental system that allows investigation of direct
effects of growth factors on cartilage degradation.

The preliminary finding of direct calcitonin effects on iso-
lated chondrocytes has recently found support in experi-
ments on ex vivo cultures of articular explants, in which
calcitonin was shown to attenuate the OSM and TNF-a
induced cartilage degradation20. The underlying mecha-
nisms seem to involve attenuation of MMP expression
and activity in articular chondrocytes, which seems to cor-
roborate the findings by Hellio et al.33.

The direct effects of calcitonin on osteoclasts resulting
in inhibition of bone resorption are well-established12,14.
Several studies have suggested that various species of
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calcitonin have different activities toward the human CTR.
Salmon calcitonin belongs to the most potent families of
the calcitonins with avian and teleost origin, in contrast
to human calcitonin from the primate and rodent fam-
ily12,14. Whether similar discrepancies of potency will
apply to chondrocytes seems reasonable, albeit deserves
more attention.

CALCITONIN DEFICIENT AND CTR DEFICIENT MICE

Recently sCT deficient and CTR deficient mice were in-
vestigated for their bone phenotype. A highly unexpected
phenotype of the calcitonin and calcitonin gene related
peptide (CT/CGRP) deficient mouse39 was the lack of an
osteoporotic phenotype, which was otherwise expected
due to the well-established anti-resorptive effect of calcito-
nin40. Although the CT/CGRP deficient mice showed an in-
creased resorptive response to parathyroid hormone
(PTH), the most apparent phenotype of these mice was in-
creased bone formation, which could not be ascribed to an
increase in osteoblast number. In support of this finding,
CTR haplo-insufficient mice41 also have increased bone
formation rates without any apparent increases in bone
resorption. Since we have no direct evidence for the exis-
tence of the CTR in osteoblasts15,42,43 but in bone only in
osteoclasts16, these data indicate that the role of calcitonin
might indeed not be restricted to regulation of osteoclast
function44. This conclusion leaves room for other physio-
logical interpretations of calcitonin.

IN VIVO EVIDENCE FROM TRAUMATIC AND NON-TRAUMATIC

MODELS OF CARTILAGE DESTRUCTION

Both traumatic and non-traumatic models have been
used to investigate the effect of calcitonin on the develop-
ment of OA and other degenerative joint diseases. Surgi-
cally induced instability models of OA are often used due
to their rapid and uniform onset of the disease. A well-
established model is the anterior cruciate ligament transec-
tion (ACLT) in dogs or rats, which are driven by instability of
the knee leading to OA lesion that mimics consequences of
traumatic injury in humans45. The characteristic macro-
scopic findings include osteophyte formation and cartilage
ulcerations, whereas microscopic findings include cartilage
fibrillation, cellular cloning, and diffuse hyper cellularity.

Estrogen deficiency accompanying the menopause has
been shown to be associated with an increased incidence
and severity of OA46. On the contrary, estrogen and
hormone replacement therapy (ERT/HRT) has been sug-
gested to decrease the incidence of OA in postmeno-
pausal women47,48. These trends are in line with the
findings of changes in levels of biochemical markers of
cartilage turnover. Levels of collagen type II degradation
fragments (CTX-II) are two-fold higher after the meno-
pause, whereas HRT is associated with suppression of
CTX-II levels to premenopausal levels49. A recent study
in cynomolgus monkeys demonstrated OA like pathologi-
cal changes within articular joints of ovariectomized ani-
mals, which were prevented by estrogen treatment50. In
addition, ovariectomy of mature rats have shown to
result in the development of pathological changes after
9 weeks similar in nature to the very early changes
observed in human OA, where mild erosion and loss of
proteoglycans are among the earliest changes51,52. The
histological appearance of the knee articular cartilage in the
ovariectomized (OVX) group differs from the appearance
of articular cartilage in models such as ACLT and menis-
cal tear53,54, where more severe erosive changes often
can be observed. The changes in the knee cartilage ob-
served after ovariectomy are relatively mild and may rep-
resent features of earlier or less aggressive disease,
which are difficult to address in many of the other models
of OA. Thus, the OVX model is particularly suitable for the
study of early-stage OA55.

Ovariectomy induces increases in CTX-II levels, which
are most pronounced after 4e6 weeks. These early
increases show close correlations with the subsequent
histological signs of articular cartilage degradation55,56.
This is in accordance with the findings obtained in clinical
investigations, where CTX-II levels and its relative
changes were shown to be closely associated with future
damage of articular cartilage of the knee joint assessed
radiographically57e59.

Collectively, the combined use of traumatic and non-
traumatic models may bring the best possible predictions
for the clinical setting.

Primary findings by Badurski et al., made in rabbits with
either corticosteroid administration, or meniscectomy and
immobilization of the hind leg all pointed in the direction
that calcitonin may counter the progression of articular car-
tilage loss60,61.

In alignment, very recently, in the preferred traumatic
OA model, the dog ACLT model62e64, calcitonin was
shown to counter the progression of joint lesions62. The
authors implicated inhibition of subchondral bone turnover
as a likely mechanism conveying this beneficial effect on
cartilage62, which by some investigators is believed to be
the most important part of the progression of OA2. But
more intriguingly a direct effect of calcitonin on cartilage
formation was also suggested, as a consequence to the
essential findings in the non-operated knees, that calcito-
nin resulted in significant increased proteoglycan content.
These data are in alignment with the aforementioned
studies in cultured isolated chondrocytes and ex vivo
explants and indicate that calcitonin may stimulate
collagen type II and proteoglycan synthesis24,25,29,31,
suggesting potential anabolic effects of the hormone on
cartilage.

In the estrogen deficiency non-traumatic model of OA
induced by ovariectomy55, which more resembles the
slow progression of OA in humans, the effect of calcitonin
was assessed by measuring serum levels of collagen
type II degradation, CTX-II. Calcitonin was able to suppress
CTX-II release from articular cartilage. Previous studies
demonstrate that such decreases in this biomarker strongly
correlate to structural changes associated with the develop-
ment of OA55,56,65. In contrast to the complete suppression
of circulating CTX-II levels, CTX-I e a marker of osteoclast-
mediated bone resorption e decreased by 50% only. These
findings might reflect a parallel impact of calcitonin on sub-
chondral bone resorption, as previously reported by Behets
et al.62 and chondrocytes, which could act synergistically in
the prevention of OA.

A further interesting finding of in vivo administration of
calcitonin is that calcitonin treatment of growing rats
resulted in augmented longitudinal growth of the skeleton,
which seen in the light of the anti-resorptive effect of calci-
tonin is very interesting66 as other anti-resorptives would
lead to a decrease rather than an increase in longitudinal
growth, as osteoclast function is essential for growth67.
These data, as previous discussed data, indicate that the
role of calcitonin might indeed not be restricted to regulation
of osteoclast function44, thereby indicating that the effects of
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calcitonin on chondrocytes may be an important part of the
physiological role of calcitonin.

IN VIVO EVIDENCE: FRACTURE REPAIR INCLUDING

ENDOCHONDRAL BONE FORMATION

Chondrocyte biology may be considered an integral part
of fracture repair. Thus, whether calcitonin positively affects
the biological repair process is interesting in terms of carti-
lage biology.

In most, but not all fracture studies, calcitonin was
shown to positively affect the formation and radiological
appearance of the callus. The conclusion of these studies
was that calcitonin positively affects endochondral ossifi-
cation during fracture healing, causing an increase in car-
tilaginous callus and a faster maturation. Interestingly, in
cases of primary fracture healing not involving processes
of endochondral ossification, calcitonin did not produce
positive effects68.

CLINICAL TRAILS

Although the chondroprotective effects of calcitonin in
humans remain to be demonstrated, Bagger et al. recently
reported significant inhibition of not only bone resorption
but also cartilage degradation in elderly women treated
with a recently introduced oral formulation of calcitonin for
3 months7.

Continuous treatment with calcitonin has been reported
to result in loss of its inhibitory effect on bone resorp-
tion69e72. However, recent studies by Tanko et al. with an
oral formulation of calcitonin in a clinical setting, showed
similar potency at baseline and after 3 months of continu-
ous treatment73. These differences remain to be further
investigated.

Furthermore, an oral formulation of calcitonin was
recently given to patients with knee OA in whom the clinical
efficacy was assessed by Lequesne’s algofunctional indi-
ces (ISK) and biochemical markers. Most convincingly,
the investigators reported a decrease of more than 5 in
the ISK score which is considered clinically relevant,
a 40% decrease in serum MMP-13 accompanied with
decreases in the urinary excretion of CTX-II74. These data
are the first showing clinical efficacy of calcitonin in a dis-
eased population monitored by several disease parame-
ters, albeit responses in biochemical markers of cartilage
degradation have been reported earlier7.

ANALGESIC EFFECTS ON BONE PAIN

Calcitonin has unique analgesic effects on bone pain,
which might relieve at least in part the symptoms accom-
panying joint diseases75. Calcitonin is effective in the treat-
ment of osteoporosis7,73,76 and in reducing the bone pain
associated with osteoporosis and some bone
tumors75,77e79. Pre-clinical evidence tends to support a
direct, receptor-mediated action that is independent of opi-
oid action80,81. Some evidence, however, has suggested
a calcitonin interaction with opioid receptors82e84. In
humans, similarities between calcitonin and morphine-
induced analgesia, and reports of calcitonin-induced eleva-
tion of plasma b-endorphin levels, suggest the possible
involvement of the endogenous opiate system in mediating
the analgesic action of calcitonin85. The direct modulation
of pain perception by calcitonin has been suggested to be
through a central mechanism involving calcitonin-binding
receptors in the central nervous system as well as an
effect on local pain mediators through calcitonin-binding
sites in the periphery86. Despite much details have been
clarified, there is still no consensus regarding overall
effects, albeit very recent systematical reviews on calcito-
nin on pain have substantiated the analgesic effects87,88.
Further research is awaited to clarify whether calcitonin
could improve the symptoms of joint disease and thereby
the quality of life of patients.

OTHER MEDIATORS OF THE CTR STIMULATE CARTILAGE

MATURATION

The CTR is promiscuous in terms of receptor binding
and action, and activated albeit to a lesser extent by
calcitonin gene related peptide (CGRP), amylin and
adrenomedullin14.

CGRP is expressed by neurons in close proximity of the
growth plate89,90, and although CGRP has been shown to
lead to cAMP accumulation91 the meaning of this finding
is not completely clear. On the other hand the neuropep-
tides amylin and adrenomedullin, which have some similar-
ities to calcitonin, have been shown to lead to longitudinal
growth of the epiphyseal cartilage92. In addition, adrenome-
dullin has been shown to promote anabolic responses in
both osteoblasts and chondrocytes93.

Thus it appears that activation of the CTR either by calci-
tonin or by related peptides, has protective or anabolic
effects on epiphyseal cartilage, and thereby promotes the
longitudinal bone growth.

Discussion

Salmon calcitonin has demonstrated several properties
that suggest it may be a clinically important therapeutic
agent for OA. The analgesic properties may give fast
symptom alleviation. From a structure modifying perspec-
tive, calcitonin has regulatory actions on cartilage and
subchondral bone, which may cause long-term clinical
benefits.

Progression of OA involves both articular cartilage
changes, metabolic changes and changes in the remodel-
ing of subchondral bone. In contrast to other anti-resorptive
treatments calcitonin may restore both bone and cartilage
turnovers. Many treatments have focused on the articular
cartilage, while the most optimal treatment may be one
that attacks both these metabolic imbalances.

As delineated in Fig. 1, evidences of both anabolic and
anti-catabolic actions of calcitonin have been put forward.
The CTR was recently identified on chondrocytes. In
addition, in response to calcitonin, the classical 7TM re-
ceptor signaling though cAMP, in articular chondrocytes
was demonstrated. The anti-catabolic effects of calcitonin
have been shown to involve attenuation of MMP’s ex-
pression and activity in articular chondrocytes19,20. Possi-
ble anabolic actions of calcitonin were shown to involve
stimulation of proliferation, matrix synthesis and matura-
tion of chondrocytes.

In conclusion, several lines of evidence, from in vitro,
ex vivo, in vivo and preliminary clinical trails provide evi-
dence that calcitonin treatment carries notable potentials
for the prevention and treatment of degenerative joint dis-
eases. Randomized clinical studies are needed to assess
the herein hypothesized clinical benefits of calcitonin for
the preservation of cartilage turnover and health.
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Fig. 1. Several catabolic cytokines such as interleukin-1 (IL-1), OSM and TNF-a have been shown to be important mediators of catabolic pro-
cesses in chondrocytes. This results in the expression of a battery of catabolic MMPs, that in turn results in vast cartilage degradation.
Recently the CTR was identified on articular chondrocytes in conjunction with cAMP signaling, verifying the presence of functional receptors.
Anti-catabolic effects of calcitonin involve down-regulation of MMP activity which results in attenuated proteoglycan and collagen type II deg-
radation. Anabolic effects of calcitonin have been identified as induction of collagen type II and proteoglycan synthesis. In combination, these

important effects on articular chondrocyte metabolism may prove beneficial for cartilage health.
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